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1. Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture

– 133 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers + Peripheral Control Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier

• Non volatile Program and Data Memories
– 128K Bytes of In-System Reprogrammable Flash

• Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits

• Selectable Boot Size: 1K Bytes, 2K Bytes, 4K Bytes or 8K Bytes
• In-System Programming by On-Chip Boot Program (CAN, UART)
• True Read-While-Write Operation

– 4K Bytes EEPROM (Endurance: 100,000 Write/Erase Cycles)
– 4K Bytes Internal SRAM
– Up to 64K Bytes Optional External Memory Space
– Programming Lock for Software Security

• JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Programming Flash (Hardware ISP), EEPROM, Lock & Fuse Bits
– Extensive On-chip Debug Support

• CAN Controller 2.0A & 2.0B
– 15 Full Message Objects with Separate Identifier Tags and Masks
– Transmit, Receive, Automatic Reply and Frame Buffer Receive Modes
– 1Mbits/s Maximum Transfer Rate at 8 MHz
– Time stamping, TTC & Listening Mode (Spying or Autobaud)

• Peripheral Features
– Programmable Watchdog Timer with On-chip Oscillator
– 8-bit Synchronous Timer/Counter-0 

• 10-bit Prescaler
• External Event Counter
• Output Compare or 8-bit PWM Output

– 8-bit Asynchronous Timer/Counter-2
• 10-bit Prescaler
• External Event Counter
• Output Compare or 8-Bit PWM Output
• 32Khz Oscillator for RTC Operation

– Dual 16-bit Synchronous Timer/Counters-1 & 3 
• 10-bit Prescaler
• Input Capture with Noise Canceler
• External Event Counter
• 3-Output Compare or 16-Bit PWM Output
• Output Compare Modulation 

– 8-channel, 10-bit SAR ADC
• 8 Single-ended Channels
• 7 Differential Channels
• 2 Differential Channels With Programmable Gain at 1x, 10x, or 200x

– On-chip Analog Comparator
– Byte-oriented Two-wire Serial Interface
– Dual Programmable Serial USART
– Master/Slave SPI Serial Interface

• Programming Flash (Hardware ISP)
• Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– 8 External Interrupt Sources
– 5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down & Standby
– Software Selectable Clock Frequency
– Global Pull-up Disable

• I/O and Packages
– 53 Programmable I/O Lines
– 64-lead TQFP and 64-lead QFN

• Operating Voltages
– 2.7 - 5.5V

• Operating temperature
– Industrial (-40°C to +85°C)

• Maximum Frequency
– 8 MHz at 2.7V - Industrial range
– 16 MHz at 4.5V - Industrial range



2. Description
The AT90CAN128 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced 
RISC architecture. By executing powerful instructions in a single clock cycle, the AT90CAN128
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize 
power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent 
registers to be accessed in one single instruction executed in one clock cycle. The resulting 
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The AT90CAN128 provides the following features: 128K bytes of In-System Programmable 
Flash with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM, 53 general pur-
pose I/O lines, 32 general purpose working registers, a CAN controller, Real Time Counter 
(RTC), four flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte oriented 
Two-wire Serial Interface, an 8-channel 10-bit ADC with optional differential input stage with pro-
grammable gain, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, 
IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug sys-
tem and programming and five software selectable power saving modes. 

The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI/CAN ports and 
interrupt system to continue functioning. The Power-down mode saves the register contents but 
freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware 
Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to main-
tain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops 
the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise 
during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the 
rest of the device is sleeping. This allows very fast start-up combined with low power 
consumption. 

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial 
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program 
running on the AVR core. The boot program can use any interface to download the application 
program in the application Flash memory. Software in the Boot Flash section will continue to run 
while the Application Flash section is updated, providing true Read-While-Write operation. By 
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, 
the Atmel AT90CAN128 is a powerful microcontroller that provides a highly flexible and cost 
effective solution to many embedded control applications.

The AT90CAN128 AVR is supported with a full suite of program and system development tools 
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, 
and evaluation kits.
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2.1 Block Diagram

Figure 2-1. Block Diagram

PROGRAM
COUNTER

STACK
POINTER

PROGRAM
FLASH

MCU CONTROL
REGISTER

SRAM

GENERAL
PURPOSE

REGISTERS

INSTRUCTION
REGISTER

TIMER/
COUNTERS

INSTRUCTION
DECODER

DATA DIR.
REG. PORTB

DATA DIR.
REG. PORTE

DATA DIR.
REG. PORTA

DATA DIR.
REG. PORTD

DATA REGISTER
PORTB

DATA REGISTER
PORTE

DATA REGISTER
PORTA

DATA REGISTER
PORTD

INTERRUPT
UNIT

EEPROM

SPIUSART0

STATUS
REGISTER

Z

Y

X

ALU

PORTB DRIVERSPORTE DRIVERS

PORTA DRIVERSPORTF DRIVERS

PORTD DRIVERS

PORTC DRIVERS

PB7 - PB0PE7 - PE0

PA7 - PA0PF7 - PF0

R
E

S
E

T

VCC

AGND

GND

AREF

X
TA

L1

X
TA

L2

CONTROL
LINES

+ -

A
N

A
LO

G
C

O
M

PA
R

AT
O

R

PC7 - PC0

INTERNAL
OSCILLATOR

WATCHDOG
TIMER

8-BIT DATA BUS

AVCC

USART1

TIMING AND
CONTROL

OSCILLATOR

OSCILLATOR

CALIB. OSC

DATA DIR.
REG. PORTC

DATA REGISTER
PORTC

ON-CHIP DEBUG

JTAG TAP

PROGRAMMING
LOGIC

BOUNDARY- 
SCAN

DATA DIR.
REG. PORTF

DATA REGISTER
PORTF

ADC

POR - BOD
RESET

PD7 - PD0

DATA DIR.
REG. PORTG

DATA REG.
PORTG

PORTG DRIVERS

PG4 - PG0

TWO-WIRE SERIAL
INTERFACE

CAN�
 CONTROLLER
 3
4250G–CAN–09/05



2.2 Pin Configurations

Figure 2-2. Pinout AT90CAN128 - TQFP 

PC0 (A8)  

V
C

C

G
N

D

P
F0

 (A
D

C
0)

P
F7

 (A
D

C
7 

/ T
D

I) 

P
F1

 (A
D

C
1)

P
F2

 (A
D

C
2)

P
F3

 (A
D

C
3)

P
F4

 (A
D

C
4 

/ T
C

K
)

P
F5

 (A
D

C
5 

/ T
M

S
) 

P
F6

 (A
D

C
6 

/ T
D

O
)

A
R

E
F

G
N

D

A
V

C
C

17

61 60

18

59

20

58

19 21

57

22

56

23

55

24

54

25

53

26

52

27

51

2928

50 49
323130

(RXD0 / PDI) PE0

(TXD0 / PDO) PE1

(XCK0 / AIN0) PE2

 (OC3A / AIN1) PE3

(OC3B / INT4) PE4

 (OC3C / INT5) PE5

(T3 / INT6) PE6

(ICP3 / INT7) PE7

(SS) PB0

(SCK) PB1

 (MOSI) PB2

(MISO) PB3

(OC2A) PB4

 (O
C

0A
 / 

O
C

1C
) P

B
7

(T
O

S
C

2 
 ) 

P
G

3

(OC1B) PB6

(T
O

S
C

1 
 ) 

P
G

4

(OC1A) PB5

PC1 (A9)

 (T
0)

 P
D

7

PC2 (A10)

PC3 (A11)

PC4 (A12)

PC5 (A13)

PC6 (A14)

PC7 (A15 / CLKO)

PA7 (AD7)

PG2 (ALE)

PA6 (AD6)

PA5 (AD5)

PA4 (AD4)

PA3 (AD3)

P
A

0 
(A

D
0)

 

P
A

1 
(A

D
1)

P
A

2 
(A

D
2)

 (R
X

C
A

N
 / 

T1
) P

D
6

(T
X

C
A

N
 / 

X
C

K
1)

 P
D

5

 (I
C

P
1)

 P
D

4

 (T
X

D
1 

/ I
N

T3
) P

D
3

 (R
X

D
1 

/ I
N

T2
) P

D
2

 (S
D

A
 / 

IN
T1

) P
D

1

 (S
C

L 
/ I

N
T0

) P
D

0

X
TA

L1

X
TA

L2

R
E

S
E

T

G
N

D

V
C

C

PG1 (RD)

PG0 (WR)

2

3 

1

4

5

6

7

8

9

10

11

12

13

14

16

15

64 63 62
47

46 

48

45

44

43

42

41

40

39

38

37

36

35

33

34

(2
)

(2
)

NC = Do not connect (May be used in future devices)(1) 

Timer2 Oscillator(2) 

NC(1) 

(64-lead TQFP top view)

INDEX CORNER
 4
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128

Figure 2-3. Pinout AT90CAN128 - QFN 

2.3 Pin Descriptions
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2.3.3 Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port A output buffers have symmetrical drive characteristics with both high sink and source 
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capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, 
even if the clock is not running.

Port A also serves the functions of various special features of the AT90CAN128 as listed on 
page 73.

2.3.4 Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port B output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, 
even if the clock is not running.

Port B also serves the functions of various special features of the AT90CAN128 as listed on 
page 75.

2.3.5 Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port C output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, 
even if the clock is not running.

Port C also serves the functions of special features of the AT90CAN128 as listed on page 77.

2.3.6 Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port D output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, 
even if the clock is not running.

Port D also serves the functions of various special features of the AT90CAN128 as listed on 
page 79. 

2.3.7 Port E (PE7..PE0)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port E output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, 
even if the clock is not running.

Port E also serves the functions of various special features of the AT90CAN128 as listed on 
page 82. 

2.3.8 Port F (PF7..PF0)
Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins 
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins 
 6
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that are externally pulled low will source current if the pull-up resistors are activated. The Port F 
pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port F also serves the functions of the JTAG interface. If the JTAG interface is enabled, the pull-
up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

2.3.9 Port G (PG4..PG0)
Port G is a 5-bit I/O port with internal pull-up resistors (selected for each bit). The Port G output 
buffers have symmetrical drive characteristics with both high sink and source capability. As 
inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are 
activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock 
is not running.

Port G also serves the functions of various special features of the AT90CAN128 as listed on 
page 87.

2.3.10 RESET 
Reset input. A low level on this pin for longer than the minimum pulse length will generate a 
reset. The minimum pulse length is given in characteristics. Shorter pulses are not guaranteed 
to generate a reset. The I/O ports of the AVR are immediately reset to their initial state even if 
the clock is not running. The clock is needed to reset the rest of the AT90CAN128.

2.3.11 XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.3.12 XTAL2
Output from the inverting Oscillator amplifier.

2.3.13 AVCC
AVCC is the supply voltage pin for the A/D Converter on Port F. It should be externally con-
nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter. 

2.3.14 AREF
This is the analog reference pin for the A/D Converter.

3. About Code Examples 
This documentation contains simple code examples that briefly show how to use various parts of 
the device. These code examples assume that the part specific header file is included before 
compilation. Be aware that not all C compiler vendors include bit definitions in the header files 
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.
 7
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4. AVR CPU Core

4.1 Introduction
This section discusses the AVR core architecture in general. The main function of the CPU core 
is to ensure correct program execution. The CPU must therefore be able to access memories, 
perform calculations, control peripherals, and handle interrupts.

4.2 Architectural Overview

Figure 4-1. Block Diagram of the AVR Architecture 

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with 
separate memories and buses for program and data. Instructions in the program memory are 
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed 
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.
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The fast-access Register File contains 32 x 8-bit general purpose working registers with a single 
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed, 
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data 
Space addressing – enabling efficient address calculations. One of the these address pointers 
can also be used as an address pointer for look up tables in Flash program memory. These 
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and 
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to 
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the 
Application Program section. Both sections have dedicated Lock bits for write and read/write 
protection. The SPM (Store Program Memory) instruction that writes into the Application Flash 
memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the 
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack 
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must 
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack 
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed 
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global 
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the 
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher is the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data 
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the AT90CAN128
has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and 
LD/LDS/LDD instructions can be used.

4.3 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose 
working registers. Within a single clock cycle, arithmetic operations between general purpose 
registers or between a register and an immediate are executed. The ALU operations are divided 
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the 
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication 
and fractional format. See the “Instruction Set Summary”  section for a detailed description.
 9
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4.4 Status Register
The Status Register contains information about the result of the most recently executed arith-
metic instruction. This information can be used for altering program flow in order to perform 
conditional operations. Note that the Status Register is updated after all ALU operations, as 
specified in the Instruction Set Reference. This will in many cases remove the need for using the 
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored 
when returning from an interrupt. This must be handled by software.

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set to enabled the interrupts. The individual interrupt 
enable control is then performed in separate control registers. If the Global Interrupt Enable 
Register is cleared, none of the interrupts are enabled independent of the individual interrupt 
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by 
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by 
the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the 
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the 
BLD instruction.

• Bit 5 – H: Half Carry Flag 
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful 
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an EXCLUSIVE OR between the negative flag N and the Two’s Complement 
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the 
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the 
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction 
Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 10
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• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set 
Description” for detailed information.

4.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve 
the required performance and flexibility, the following input/output schemes are supported by the 
Register File:

• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input
• One 16-bit output operand and one 16-bit result input

Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and 
most of them are single cycle instructions.

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them 
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the 
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

4.5.1 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect 
address registers X, Y, and Z are defined as described in Figure 4-3.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
 11
4250G–CAN–09/05



Figure 4-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement, 
automatic increment, and automatic decrement (see the instruction set reference for details).

4.5.2 Extended Z-pointer Register for ELPM/SPM – RAMPZ

• Bits 7..1 – Res: Reserved Bits
These bits are reserved for future use and will always read as zero. For compatibility with future 
devices, be sure to write to write them to zero.

• Bit 0 – RAMPZ0: Extended RAM Page Z-pointer
The RAMPZ Register is normally used to select which 64K RAM Page is accessed by the Z-
pointer. As the AT90CAN128 does not support more than 64K of SRAM memory, this register is 
used only to select which page in the program memory is accessed when the ELPM/SPM 
instruction is used. The different settings of the RAMPZ0 bit have the following effects:

Figure 4-4. The Z-pointer used by ELPM and SPM 

Note that LPM (different of ELPM) is never affected by the RAMPZ setting.

4.6 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing 
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points 
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 7 6 5 4 3 2 1 0

– – – – – – – RAMPZ0 RAMPZ
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

RAMPZ0 = 0: Program memory address 0x0000 - 0x7FFF (lower 64K bytes) is accessed by 
ELPM/SPM

RAMPZ0 = 1: Program memory address 0x8000 - 0xFFFF (higher 64K bytes) is accessed by 
ELPM/SPM

RAMPZ ZH ZL

7Bit (Individually) 0 7 0 7 0

23Bit (Z-pointer) 16 15 8 7 0
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tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack 
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt 
Stacks are located. This Stack space in the data SRAM must be defined by the program before 
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to 
point above 0xFF. The Stack Pointer is decremented by one when data is pushed onto the Stack 
with the PUSH instruction, and it is decremented by two when the return address is pushed onto 
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is 
popped from the Stack with the POP instruction, and it is incremented by two when data is 
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of 
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register 
will not be present.

4.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR 
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the 
chip. No internal clock division is used.

Figure 4-5 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept 
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, 
functions per clocks, and functions per power-unit.

Figure 4-5. The Parallel Instruction Fetches and Instruction Executions

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

clk

1st Instruction Fetch
1st Instruction Execute

2nd Instruction Fetch
2nd Instruction Execute

3rd Instruction Fetch
3rd Instruction Execute

4th Instruction Fetch

T1 T2 T3 T4

CPU
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Figure 4-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU 
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 4-6. Single Cycle ALU Operation

4.8 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset 
Vector each have a separate program vector in the program memory space. All interrupts are 
assigned individual enable bits which must be written logic one together with the Global Interrupt 
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program 
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 333 for details.

The lowest addresses in the program memory space are by default defined as the Reset and 
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 59. The list also 
determines the priority levels of the different interrupts. The lower the address the higher is the 
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL 
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 59 for more information. 
The Reset Vector can also be moved to the start of the Boot Flash section by programming the 
BOOTRST Fuse, see “Boot Loader Support – Read-While-Write Self-Programming” on page 
319.

4.8.1 Interrupt Behavior
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled 
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a 
Return from Interrupt instruction – RETI – is executed. 

There are basically two types of interrupts. The first type is triggered by an event that sets the 
interrupt flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector 
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be 
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, 
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared 
by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable 
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global 
Interrupt Enable bit is set, and will then be executed by order of priority. 

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
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The second type of interrupts will trigger as long as the interrupt condition is present. These 
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the 
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one 
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor 
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. 
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the 
CLI instruction. The following example shows how this can be used to avoid interrupts during the 
timed EEPROM write sequence.

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI(); 

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending 

; interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
 15
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4.8.2 Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine 
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack. 
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If 
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed 
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt 
execution response time is increased by four clock cycles. This increase comes in addition to the 
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock 
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is 
incremented by two, and the I-bit in SREG is set.
 16
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5. Memories
This section describes the different memories in the AT90CAN128. The AVR architecture has 
two main memory spaces, the Data Memory and the Program Memory space. In addition, the 
AT90CAN128 features an EEPROM Memory for data storage. All three memory spaces are lin-
ear and regular.

Notes: 1. Byte address.
2. Word (16-bit) address.

5.1 In-System Reprogrammable Flash Program Memory 
The AT90CAN128 contains On-chip In-System Reprogrammable Flash memory for program 
storage (see “Flash size”). Since all AVR instructions are 16 or 32 bits wide, the Flash is orga-
nized as 16 bits wide. For software security, the Flash Program memory space is divided into 
two sections, Boot Program section and Application Program section. 

The Flash memory has an endurance of at least 10,000 write/erase cycles. The AT90CAN128
Program Counter (PC) address the program memory locations. The operation of Boot Program 
section and associated Boot Lock bits for software protection are described in detail in “Boot 
Loader Support – Read-While-Write Self-Programming” on page 319. “Memory Programming” 
on page 333 contains a detailed description on Flash data serial downloading using the SPI pins 
or the JTAG interface.

Table 5-1. Memory Mapping.
Memory Mnemonic AT90CAN128

Flash

Size Flash size 128 K bytes
Start Address - 0x00000

End Address Flash end
0x1FFFF(1)

0xFFFF(2)

32 Registers

Size - 32 bytes
Start Address - 0x0000
End Address - 0x001F

I/O
Registers

Size - 64 bytes
Start Address - 0x0020
End Address - 0x005F

Ext I/O
Registers

Size - 160 bytes
Start Address - 0x0060
End Address - 0x00FF

Internal
SRAM

Size ISRAM size 4 K bytes
Start Address ISRAM start 0x0100
End Address ISRAM end 0x10FF

External
Memory

Size XMem size 0-64 K bytes
Start Address XMem start 0x1100
End Address XMem end 0xFFFF

EEPROM

Size E2 size 4 K bytes
Start Address - 0x0000
End Address E2 end 0x0FFF
 17
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Constant tables can be allocated within the entire program memory address space (see the 
LPM – Load Program Memory and ELPM – Extended Load Program Memory instruction 
description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 13.

Figure 5-1. Program Memory Map

5.2 SRAM Data Memory
Figure 5-2 shows how the AT90CAN128 SRAM Memory is organized.

The AT90CAN128 is a complex microcontroller with more peripheral units than can be sup-
ported within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the 
Extended I/O space in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. 

The lower data memory locations address both the Register File, the I/O memory, Extended I/O 
memory, and the internal data SRAM. The first 32 locations address the Register File, the next 
64 location the standard I/O memory, then 160 locations of Extended I/O memory, and the next 
locations address the internal data SRAM (see “ISRAM size”).

An optional external data SRAM can be used with the AT90CAN128. This SRAM will occupy an 
area in the remaining address locations in the 64K address space. This area starts at the 
address following the internal SRAM. The Register file, I/O, Extended I/O and Internal SRAM 
occupies the lowest bytes, so when using 64 KB (65,536 bytes) of External Memory, 
“XMem size” bytes of External Memory are available. See “External Memory Interface” on page 
26 for details on how to take advantage of the external memory map.

0x0000

Flash end 

Program Memory

Application Flash Section
 

Boot Flash Section
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5.2.1 SRAM Data Access

When the addresses accessing the SRAM memory space exceeds the internal data memory 
locations, the external data SRAM is accessed using the same instructions as for the internal 
data memory access. When the internal data memories are accessed, the read and write strobe 
pins (PG0 and PG1) are inactive during the whole access cycle. External SRAM operation is 
enabled by setting the SRE bit in the XMCRA Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access of the 
internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP 
take one additional clock cycle. If the Stack is placed in external SRAM, interrupts, subroutine 
calls and returns take three clock cycles extra because the two-byte program counter is pushed 
and popped, and external memory access does not take advantage of the internal pipe-line 
memory access. When external SRAM interface is used with wait-state, one-byte external 
access takes two, three, or four additional clock cycles for one, two, and three wait-states 
respectively. Interrupts, subroutine calls and returns will need five, seven, or nine clock cycles 
more than specified in the instruction set manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register 
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given 
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and 
the “ISRAM size” bytes of internal data SRAM in the AT90CAN128 are all accessible through all 
these addressing modes. The Register File is described in “General Purpose Register File” on 
page 11.
 19
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Figure 5-2. Data Memory Map

5.2.2 SRAM Data Access Times
This section describes the general access timing concepts for internal memory access. The 
internal data SRAM access is performed in two clkCPU cycles as described in Figure 5-3.

Figure 5-3. On-chip Data SRAM Access Cycles

32 Registers
64 I/O Registers

Internal SRAM
(ISRAM size)

0x0000 - 0x001F    
0x0020 - 0x005F 

XMem start  
ISRAM end  

0xFFFF

0x0060 - 0x00FF  

Data Memory

External SRAM
(XMem size)

160 Ext I/O Reg.
ISRAM start

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address
R

ea
d

W
rit

e

CPU

Memory Access Instruction Next Instruction
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5.3 EEPROM Data Memory
The AT90CAN128 contains EEPROM memory (see “E2 size”). It is organized as a separate 
data space, in which single bytes can be read and written. The EEPROM has an endurance of at 
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described 
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and 
the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see 
“SPI Serial Programming Overview” on page 344, “JTAG Programming Overview” on page 349, 
and “Parallel Programming Overview” on page 336 respectively.

5.3.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 5-2. A self-timing function, however, 
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power 
supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for some 
period of time to run at a voltage lower than specified as minimum for the clock frequency used. 
See “Preventing EEPROM Corruption” on page 25.for details on how to avoid problems in these 
situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. 
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is 
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next 
instruction is executed.

5.3.2 The EEPROM Address Registers – EEARH and EEARL

• Bits 15..12 – Reserved Bits
These bits are reserved bits in the AT90CAN128 and will always read as zero.

• Bits 11..0 – EEAR11..0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the 
EEPROM space (see “E2 size”). The EEPROM data bytes are addressed linearly between 0 
and “E2 end”. The initial value of EEAR is undefined. A proper value must be written before the 
EEPROM may be accessed.

Bit 15 14 13 12 11 10 9 8

– – – – EEAR11 EEAR10 EEAR9 EEAR8 EEARH
EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X X X X

X X X X X X X X
 21
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5.3.3 The EEPROM Data Register – EEDR

• Bits 7..0 – EEDR7.0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the 
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the 
EEDR contains the data read out from the EEPROM at the address given by EEAR.

5.3.4 The EEPROM Control Register – EECR

• Bits 7..4 – Reserved Bits
These bits are reserved bits in the AT90CAN128 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing 
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enable
The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. 
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at 
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has 
been written to one by software, hardware clears the bit to zero after four clock cycles. See the 
description of the EEWE bit for an EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable
The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address 
and data are correctly set up, the EEWE bit must be written to one to write the value into the 
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-
erwise no EEPROM write takes place. The following procedure should be followed when writing 
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.
2. Wait until SPMEN (Store Program Memory Enable) in SPMCSR (Store Program Mem-

ory Control and Status Register) becomes zero.
3. Write new EEPROM address to EEAR (optional).
4. Write new EEPROM data to EEDR (optional).
5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software 
must check that the Flash programming is completed before initiating a new EEPROM write. 
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the 
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader 

Bit 7 6 5 4 3 2 1 0

EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – EERIE EEMWE EEWE EERE EECR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0
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Support – Read-While-Write Self-Programming” on page 319 for details about Boot 
programming. 

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the 
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is 
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the 
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared 
during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set, 
the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct 
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the 
EEPROM read. The EEPROM read access takes one instruction, and the requested data is 
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the 
next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in 
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 5-2 lists the typical pro-
gramming time for EEPROM access from the CPU.

Table 5-2. EEPROM Programming Time.

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write (from CPU) 67 584 8.5 ms
 23
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The following code examples show one assembly and one C function for writing to the 
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glo-
bally) so that no interrupts will occur during execution of these functions. The examples also 
assume that no Flash Boot Loader is present in the software. If such code is present, the 
EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic  EECR,EEWE

rjmp  EEPROM_write    

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Write data (r16) to data register

out  EEDR,r16

; Write logical one to EEMWE

sbi  EECR,EEMWE

; Start eeprom write by setting EEWE

sbi  EECR,EEWE

ret

C Code Example

void EEPROM_write (unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE));

/* Set up address and data registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}
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The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of 
these functions.

5.3.5 Preventing EEPROM Corruption
During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is 
too low for the CPU and the EEPROM to operate properly. These issues are the same as for 
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, 
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can 
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal 
BOD does not match the needed detection level, an external low VCC reset Protection circuit can 
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic  EECR,EEWE

rjmp  EEPROM_read

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Start eeprom read by writing EERE

sbi  EECR,EERE

; Read data from data register

in  r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE));

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}
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5.4 I/O Memory
The I/O space definition of the AT90CAN128 is shown in “Register Summary” on page 401.

All AT90CAN128 I/Os and peripherals are placed in the I/O space. All I/O locations may be 
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 
general purpose working registers and the I/O space. I/O registers within the address range 
0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the 
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the 
instruction set section for more details. When using the I/O specific commands IN and OUT, the 
I/O addresses 0x00 - 0x3F must be used. When addressing I/O registers as data space using 
LD and ST instructions, 0x20 must be added to these addresses. The AT90CAN128 is a com-
plex microcontroller with more peripheral units than can be supported within the 64 location 
reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 
0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed. 
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other 
AVR’s, the CBI and SBI instructions will only operate on the specified bit, and can therefore be 
used on registers containing such status flags. The CBI and SBI instructions work with registers 
0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

5.5 External Memory Interface
With all the features the External Memory Interface provides, it is well suited to operate as an 
interface to memory devices such as External SRAM and Flash, and peripherals such as LCD-
display, A/D, and D/A. The main features are:

• Four different wait-state settings (including no wait-state).
• Independent wait-state setting for different extErnal Memory sectors (configurable sector 

size).
• The number of bits dedicated to address high byte is selectable.
• Bus keepers on data lines to minimize current consumption (optional).

5.5.1 Overview
When the eXternal MEMory (XMEM) is enabled, address space outside the internal SRAM 
becomes available using the dedicated External Memory pins (see Figure 2-2 on page 4, Table 
10-3 on page 73, Table 10-9 on page 77, and Table 10-21 on page 87). The memory configura-
tion is shown in Figure 5-4.
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Figure 5-4. External Memory with Sector Select

5.5.2 Using the External Memory Interface
The interface consists of:

• AD7:0: Multiplexed low-order address bus and data bus.
• A15:8: High-order address bus (configurable number of bits).
• ALE: Address latch enable.
• RD: Read strobe.
• WR: Write strobe.

The control bits for the External Memory Interface are located in two registers, the External 
Memory Control Register A – XMCRA, and the External Memory Control Register B – XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the data 
direction registers that corresponds to the ports dedicated to the XMEM interface. For details 
about the port override, see the alternate functions in section “I/O-Ports” on page 65. The XMEM 
interface will auto-detect whether an access is internal or external. If the access is external, the 
XMEM interface will output address, data, and the control signals on the ports according to Fig-
ure 5-6 (this figure shows the wave forms without wait-states). When ALE goes from high-to-low, 
there is a valid address on AD7:0. ALE is low during a data transfer. When the XMEM interface 
is enabled, also an internal access will cause activity on address, data and ALE ports, but the 
RD and WR strobes will not toggle during internal access. When the External Memory Interface 
is disabled, the normal pin and data direction settings are used. Note that when the XMEM inter-
face is disabled, the address space above the internal SRAM boundary is not mapped into the 
internal SRAM. Figure 5-5 illustrates how to connect an external SRAM to the AVR using an 
octal latch (typically “74x573” or equivalent) which is transparent when G is high.

0x0000

ISRAM end  

External Memory
(0-64K x 8)

0xFFFF

Internal memory

SRL[2..0]

SRW11
SRW10

SRW01
SRW00

Lower sector

Upper sector

XMem start
 27
4250G–CAN–09/05



5.5.3 Address Latch Requirements
Due to the high-speed operation of the XRAM interface, the address latch must be selected with 
care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V. When operating at condi-
tions above these frequencies, the typical old style 74HC series latch becomes inadequate. The 
External Memory Interface is designed in compliance to the 74AHC series latch. However, most 
latches can be used as long they comply with the main timing parameters. The main parameters 
for the address latch are:

• D to Q propagation delay (tPD).
• Data setup time before G low (tSU).
• Data (address) hold time after G low (TH).

The External Memory Interface is designed to guaranty minimum address hold time after G is 
asserted low of th = 5 ns. Refer to tLAXX_LD/tLLAXX_ST in “Memory Programming” Tables 27-7
through Tables 27-14. The D-to-Q propagation delay (tPD) must be taken into consideration 
when calculating the access time requirement of the external component. The data setup time 
before G low (tSU) must not exceed address valid to ALE low (tAVLLC) minus PCB wiring delay 
(dependent on the capacitive load).

Figure 5-5. External SRAM Connected to the AVR

5.5.4 Pull-up and Bus-keeper
The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is written to 
one. To reduce power consumption in sleep mode, it is recommended to disable the pull-ups by 
writing the Port register to zero before entering sleep.

The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper can be dis-
abled and enabled in software as described in “External Memory Control Register B – XMCRB” 
on page 32. When enabled, the bus-keeper will ensure a defined logic level (zero or one) on the 
AD7:0 bus when these lines would otherwise be tri-stated by the XMEM interface.

5.5.5 Timing
External Memory devices have different timing requirements. To meet these requirements, the 
AT90CAN128 XMEM interface provides four different wait-states as shown in Table 5-4. It is 
important to consider the timing specification of the External Memory device before selecting the 
wait-state. The most important parameters are the access time for the external memory com-
pared to the set-up requirement of the AT90CAN128. The access time for the External Memory 
is defined to be the time from receiving the chip select/address until the data of this address 

D[7:0]

A[7:0]

A[15:8]

RD

WR

SRAM

D Q

G

AD7:0

ALE

A15:8

RD

WR

AVR
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actually is driven on the bus. The access time cannot exceed the time from the ALE pulse must 
be asserted low until data is stable during a read sequence (see tLLRL+ tRLRH - tDVRH in Tables 27-
7 through Tables 27-14). The different wait-states are set up in software. As an additional fea-
ture, it is possible to divide the external memory space in two sectors with individual wait-state 
settings. This makes it possible to connect two different memory devices with different timing 
requirements to the same XMEM interface. For XMEM interface timing details, please refer to 
Tables 27-7 through Tables 27-14 and Figure 27-6 to Figure 27-9 in the “External Data Memory 
Characteristics” on page 371.

Note that the XMEM interface is asynchronous and that the waveforms in the following figures 
are related to the internal system clock. The skew between the internal and external clock 
(XTAL1) is not guarantied (varies between devices temperature, and supply voltage). Conse-
quently, the XMEM interface is not suited for synchronous operation.

Figure 5-6. External Data Memory Cycles no Wait-state (SRWn1=0 and SRWn0=0)(1)

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or 
SRW00 (lower sector). The ALE pulse in period T4 is only present if the next instruction 
accesses the RAM (internal or external). 

Figure 5-7. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1(1)
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Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or 
SRW00 (lower sector). 
The ALE pulse in period T5 is only present if the next instruction accesses the RAM (internal 
or external). 

Figure 5-8. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0(1)

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or 
SRW00 (lower sector). 
The ALE pulse in period T6 is only present if the next instruction accesses the RAM (internal 
or external).

Figure 5-9. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1(1)

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or 
SRW00 (lower sector). 
The ALE pulse in period T7 is only present if the next instruction accesses the RAM (internal 
or external).
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5.5.6 External Memory Control Register A – XMCRA

• Bit 7 – SRE: External SRAM/XMEM Enable
Writing SRE to one enables the External Memory Interface.The pin functions AD7:0, A15:8, 
ALE, WR, and RD are activated as the alternate pin functions. The SRE bit overrides any pin 
direction settings in the respective data direction registers. Writing SRE to zero, disables the 
External Memory Interface and the normal pin and data direction settings are used. Note that 
when the XMEM interface is disabled, the address space above the internal SRAM boundary is 
not mapped into the internal SRAM.

• Bit 6..4 – SRL2, SRL1, SRL0: Wait-state Sector Limit
It is possible to configure different wait-states for different External Memory addresses. The 
external memory address space can be divided in two sectors that have separate wait-state bits. 
The SRL2, SRL1, and SRL0 bits select the split of the sectors, see Table 5-3 and Figure 5-4. By 
default, the SRL2, SRL1, and SRL0 bits are set to zero and the entire external memory address 
space is treated as one sector. When the entire SRAM address space is configured as one sec-
tor, the wait-states are configured by the SRW11 and SRW10 bits.

Note: 1. See Table 5-1 on page 17 for “XMem start” setting.

Bit 7 6 5 4 3 2 1 0

SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00 XMCRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 5-3. Sector limits with different settings of SRL2..0

SRL2 SRL1 SRL0 Sector Addressing

0 0 0
Lower sector N/A

Upper sector “XMem start”(1) - 0xFFFF

0 0 1
Lower sector “XMem start”(1) - 0x1FFF

Upper sector 0x2000 - 0xFFFF

0 1 0
Lower sector “XMem start”(1) - 0x3FFF

Upper sector 0x4000 - 0xFFFF

0 1 1
Lower sector “XMem start”(1) - 0x5FFF

Upper sector 0x6000 - 0xFFFF

1 0 0
Lower sector “XMem start”(1) - 0x7FFF

Upper sector 0x8000 - 0xFFFF

1 0 1
Lower sector “XMem start”(1) - 0x9FFF

Upper sector 0xA000 - 0xFFFF

1 1 0
Lower sector “XMem start”(1) - 0xBFFF

Upper sector 0xC000 - 0xFFFF

1 1 1
Lower sector “XMem start”(1) - 0xDFFF

Upper sector 0xE000 - 0xFFFF
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• Bit 3..2 – SRW11, SRW10: Wait-state Select Bits for Upper Sector
The SRW11 and SRW10 bits control the number of wait-states for the upper sector of the exter-
nal memory address space, see Table 5-4.

• Bit 1..0 – SRW01, SRW00: Wait-state Select Bits for Lower Sector
The SRW01 and SRW00 bits control the number of wait-states for the lower sector of the exter-
nal memory address space, see Table 5-4.

Note: 1. n = 0 or 1 (lower/upper sector). 
For further details of the timing and wait-states of the External Memory Interface, see Figures 
5-6 through Figures 5-9 for how the setting of the SRW bits affects the timing.

5.5.7 External Memory Control Register B – XMCRB

• Bit 7– XMBK: External Memory Bus-keeper Enable
Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper is 
enabled, it will ensure a defined logic level (zero or one) on AD7:0 when they would otherwise 
be tri-stated. Writing XMBK to zero disables the bus keeper. XMBK is not qualified with SRE, so 
even if the XMEM interface is disabled, the bus keepers are still activated as long as XMBK is 
one.

• Bit 6..4 – Reserved Bits
These are reserved bits and will always read as zero. When writing to this address location, 
write these bits to zero for compatibility with future devices.

• Bit 2..0 – XMM2, XMM1, XMM0: External Memory High Mask
When the External Memory is enabled, all Port C pins are default used for the high address byte. 
If the full address space is not required to access the External Memory, some, or all, Port C pins 
can be released for normal Port Pin function as described in Table 5-5. As described in “Using 
all 64KB Locations of External Memory” on page 34, it is possible to use the XMMn bits to 
access all 64KB locations of the External Memory.

Table 5-4. Wait States(1)

SRWn1 SRWn0 Wait States

0 0 No wait-states

0 1 Wait one cycle during read/write strobe

1 0 Wait two cycles during read/write strobe

1 1 Wait two cycles during read/write and wait one cycle before driving out new 
address

Bit 7 6 5 4 3 2 1 0

XMBK – – – – XMM2 XMM1 XMM0 XMCRB
Read/Write R/W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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5.5.8 Using all Locations of External Memory Smaller than 64 KB
Since the external memory is mapped after the internal memory as shown in Figure 5-4, the 
external memory is not addressed when addressing the first “ISRAM size” bytes of data space. It 
may appear that the first “ISRAM size” bytes of the external memory are inaccessible (external 
memory addresses 0x0000 to “ISRAM end”). However, when connecting an external memory 
smaller than 64 KB, for example 32 KB, these locations are easily accessed simply by address-
ing from address 0x8000 to “ISRAM end + 0x8000”. Since the External Memory Address bit A15 
is not connected to the external memory, addresses 0x8000 to “ISRAM end + 0x8000” will 
appear as addresses 0x0000 to “ISRAM end” for the external memory. Addressing above 
address “ISRAM end + 0x8000” is not recommended, since this will address an external mem-
ory location that is already accessed by another (lower) address. To the Application software, 
the external 32 KB memory will appear as one linear 32 KB address space from “XMem start” to 
“XMem start + 0x8000”. This is illustrated in Figure 5-10.

Figure 5-10. Address Map with 32 KB External Memory

Table 5-5. Port C Pins Released as Normal Port Pins when the External Memory is Enabled

XMM2 XMM1 XMM0 # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full External Memory Space) None

0 0 1 7 PC7

0 1 0 6 PC7 .. PC6

0 1 1 5 PC7 .. PC5

1 0 0 4 PC7 .. PC4

1 0 1 3 PC7 .. PC3

1 1 0 2 PC7 .. PC2

1 1 1 No Address high bits Full Port C

(Unused)

Internal Memory
0x0000

XMem start
ISRAM end

0xFFFF

AVR Memory Map

External Memory

0x8000
0x7FFF

XMem start + 0x8000
ISRAM end + 0x8000

External 32K SRAM (Size=0x8000)

0x7FFF

0x0000

XMem start  
ISRAM end  
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5.5.9 Using all 64KB Locations of External Memory
Since the External Memory is mapped after the Internal Memory as shown in Figure 5-4, only 
(64K-(“ISRAM size”+256)) bytes of External Memory is available by default (address space 
0x0000 to “ISRAM end” is reserved for internal memory). However, it is possible to take advan-
tage of the entire External Memory by masking the higher address bits to zero. This can be done 
by using the XMMn bits and control by software the most significant bits of the address. By set-
ting Port C to output 0x00, and releasing the most significant bits for normal Port Pin operation, 
the Memory Interface will address 0x0000 - 0x1FFF. See the following code examples.

Note: 1. The example code assumes that the part specific header file is included.
Care must be exercised using this option as most of the memory is masked away.

Assembly Code Example(1)

; OFFSET is defined to 0x2000 to ensure 
; external memory access 
; Configure Port C (address high byte) to 
; output 0x00 when the pins are released 
; for normal Port Pin operation

ldi r16, 0xFF 
out DDRC, r16 
ldi r16, 0x00 
out PORTC, r16 
; release PC7:5 
ldi r16, (1<<XMM1)|(1<<XMM0) 
sts XMCRB, r16 
; write 0xAA to address 0x0001 of external 
; memory 
ldi r16, 0xaa 
sts 0x0001+OFFSET, r16 
; re-enable PC7:5 for external memory 
ldi r16, (0<<XMM1)|(0<<XMM0) 
sts XMCRB, r16 
; store 0x55 to address (OFFSET + 1) of 
; external memory 
ldi r16, 0x55 
sts 0x0001+OFFSET, r16

C Code Example(1)

#define OFFSET 0x2000 
 
void XRAM_example(void) 
{ 
unsigned char *p = (unsigned char *) (OFFSET + 1); 
 
DDRC = 0xFF; 
PORTC = 0x00; 
 
XMCRB = (1<<XMM1) | (1<<XMM0); 
 
*p = 0xaa; 
 
XMCRB = 0x00; 
 
*p = 0x55; 
}
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5.6 General Purpose I/O Registers
The AT90CAN128 contains three General Purpose I/O Registers. These registers can be used 
for storing any information, and they are particularly useful for storing global variables and status 
flags.

The General Purpose I/O Register 0, within the address range 0x00 - 0x1F, is directly bit-acces-
sible using the SBI, CBI, SBIS, and SBIC instructions.

5.6.1 General Purpose I/O Register 2 – GPIOR2

5.6.2 General Purpose I/O Register 1 – GPIOR1

5.6.3 General Purpose I/O Register 0 – GPIOR0

Bit 7 6 5 4 3 2 1 0

GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 GPIOR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 GPIOR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 GPIOR0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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6. System Clock

6.1 Clock Systems and their Distribution
Figure 6-1 presents the principal clock systems in the AVR and their distribution. All of the clocks 
need not be active at a given time. In order to reduce power consumption, the clocks to unused 
modules can be halted by using different sleep modes, as described in “Power Management and 
Sleep Modes” on page 45. The clock systems are detailed below.

Figure 6-1. Clock Distribution

6.1.1 CPU Clock – clkCPU
The CPU clock is routed to parts of the system concerned with operation of the AVR core. 
Examples of such modules are the General Purpose Register File, the Status Register and the 
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing 
general operations and calculations.

6.1.2 I/O Clock – clkI/O
The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, CAN, 
USART. The I/O clock is also used by the External Interrupt module, but note that some external 
interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the 
I/O clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clkI/O is halted, enabling TWI address reception in all sleep modes.

6.1.3 Flash Clock – clkFLASH
The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.
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6.1.4 Asynchronous Timer Clock – clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly 
from an external clock or an external 32 kHz clock crystal. The dedicated clock domain allows 
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

6.1.5 ADC Clock – clkADC
The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks 
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion 
results.

6.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown 
below. The clock from the selected source is input to the AVR clock generator, and routed to the 
appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU 
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts 
from reset, there is an additional delay allowing the power to reach a stable level before starting 
normal operation. The Watchdog Oscillator is used for timing this real-time part of the start-up 
time. The number of WDT Oscillator cycles used for each time-out is shown in Table 6-2. The 
frequency of the Watchdog Oscillator is voltage dependent as shown in “AT90CAN128 Typical 
Characteristics” on page 380.

6.3 Default Clock Source
The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default 
clock source setting is the Internal RC Oscillator with longest start-up time and an initial system 
clock prescaling of 8. This default setting ensures that all users can make their desired clock 
source setting using an In-System or Parallel programmer.

Table 6-1. Device Clocking Options Select(1)

Device Clocking Option  CKSEL3..0

External Crystal/Ceramic Resonator 1111 - 1000

External Low-frequency Crystal 0111 - 0100

Calibrated Internal RC Oscillator 0010

External Clock 0000

Reserved 0011, 0001

Table 6-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

4.1 ms 4.3 ms 4K (4,096)

65 ms 69 ms 64K (65,536)
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6.4 Crystal Oscillator
XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 6-2. Either a quartz crystal or a 
ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the 
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the 
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for 
use with crystals are given in Table 6-3. For ceramic resonators, the capacitor values given by 
the manufacturer should be used. For more information on how to choose capacitors and other 
details on Oscillator operation, refer to the Multi-purpose Oscillator Application Note.

Figure 6-2. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency 
range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 6-3.

Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table 
6-4.

Table 6-3. Crystal Oscillator Operating Modes

CKSEL3..1  Frequency Range (MHz) Recommended Range for Capacitors C1 and 
C2 for Use with Crystals (pF)

100(1) 0.4 - 0.9 12 - 22

101 0.9 - 3.0 12 - 22

110 3.0 - 8.0 12 - 22

111 8.0 - 16.0 12 - 22

XTAL2

XTAL1

GND

C2

C1
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Notes: 1. These options should only be used when not operating close to the maximum frequency of the 
device, and only if frequency stability at start-up is not important for the application. These 
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability 
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

6.5 Low-frequency Crystal Oscillator
To use a 32.768 kHz watch crystal as the clock source for the device, the low-frequency crystal 
Oscillator must be selected by setting the CKSEL Fuses to “0100”, “0101”, “0110”, or “0111”. 
The crystal should be connected as shown in Figure 6-3.

Figure 6-3. Low-frequency Crystal Oscillator Connections

12-22 pF capacitors may be necessary if the parasitic impedance (pads, wires & PCB) is very 
low.

Table 6-4. Start-up Times for the Oscillator Clock Selection 

CKSEL0 SUT1..0
Start-up Time from 
Power-down and 

Power-save

Additional Delay 
from Reset 
(VCC = 5.0V)

Recommended Usage

0 00 258 CK(1) 14CK + 4.1 ms Ceramic resonator, fast 
rising power

0 01 258 CK(1) 14CK + 65 ms Ceramic resonator, slowly 
rising power

0 10 1K CK(2) 14CK Ceramic resonator, BOD 
enabled

0 11 1K CK(2) 14CK + 4.1 ms Ceramic resonator, fast 
rising power

1 00 1K CK(2) 14CK + 65 ms Ceramic resonator, slowly 
rising power

1 01 16K CK 14CK Crystal Oscillator, BOD 
enabled

1 10 16K CK 14CK + 4.1 ms Crystal Oscillator, fast 
rising power

1 11 16K CK 14CK + 65 ms Crystal Oscillator, slowly 
rising power

XTAL2 

XTAL1 

GND

12 - 22 pF

12 - 22 pF

32.768 KHz
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When this Oscillator is selected, start-up times are determined by the SUT1..0 fuses as shown in 
Table 6-5 and CKSEL1..0 fuses as shown in Table 6-6. 

Note: 1. These options should only be used if frequency stability at start-up is not important for the 
application

6.6 Calibrated Internal RC Oscillator
The calibrated internal RC Oscillator provides a fixed 8.0 MHz clock. The frequency is nominal 
value at 3V and 25°C. If 8 MHz frequency exceeds the specification of the device (depends on 
VCC), the CKDIV8 Fuse must be programmed in order to divide the internal frequency by 8 dur-
ing start-up. The device is shipped with the CKDIV8 Fuse programmed. See “System Clock 
Prescaler” on page 43. for more details. This clock may be selected as the system clock by pro-
gramming the CKSEL Fuses as shown in Table 6-7. If selected, it will operate with no external 
components. During reset, hardware loads the calibration byte into the OSCCAL Register and 
thereby automatically calibrates the RC Oscillator. At 5V and 25°C, this calibration gives a fre-
quency within ± 10% of the nominal frequency. Using calibration methods as described in 
application notes available at www.atmel.com/avr it is possible to achieve ± 2% accuracy at any 
given VCC and temperature. When this Oscillator is used as the chip clock, the Watchdog Oscil-
lator will still be used for the Watchdog Timer and for the Reset Time-out. For more information 
on the pre-programmed calibration value, see the section “Calibration Byte” on page 336.

Note: 1. The device is shipped with this option selected.

Table 6-5. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0  Additional Delay from Reset (VCC = 5.0V) Recommended Usage

00 14CK Fast rising power or BOD enabled

01 14CK + 4.1 ms Slowly rising power

10 14CK + 65 ms Stable frequency at start-up

11 Reserved

Table 6-6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3..0 Start-up Time from 
Power-down and Power-save Recommended Usage

0100(1) 1K CK

0101 32K CK Stable frequency at start-up

0110(1) 1K CK

0111 32K CK Stable frequency at start-up

Table 6-7. Internal Calibrated RC Oscillator Operating Modes(1)

 CKSEL3..0 Nominal Frequency

0010 8.0 MHz
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When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in 
Table 6-8.

Note: 1. The device is shipped with this option selected.

6.6.1 Oscillator Calibration Register – OSCCAL

• Bit 7 – Reserved Bit
This bit is reserved for future use.

• Bits 6..0 – CAL6..0: Oscillator Calibration Value
Writing the calibration byte to this address will trim the internal Oscillator to remove process vari-
ations from the Oscillator frequency. This is done automatically during Chip Reset. When 
OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero values to this regis-
ter will increase the frequency of the internal Oscillator. Writing 0x7F to the register gives the 
highest available frequency. The calibrated Oscillator is used to time EEPROM and Flash 
access. If EEPROM or Flash is written, do not calibrate to more than 10% above the nominal fre-
quency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is intended for 
calibration to 8.0 MHz. Tuning to other values is not guaranteed, as indicated in Table 6-9.

6.7 External Clock
To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 
6-4. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.

Table 6-8. Start-up times for the internal calibrated RC Oscillator clock selection 

SUT1..0 Start-up Time from Power-
down and Power-save

Additional Delay from 
Reset (VCC = 5.0V) Recommended Usage

00 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10(1) 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

Bit 7 6 5 4 3 2 1 0

– CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 <----- ------ Device Specific Calibration Value ------ ----->

Table 6-9. Internal RC Oscillator Frequency Range.

OSCCAL Value Min Frequency in Percentage of 
Nominal Frequency

Max Frequency in Percentage of 
Nominal Frequency

0x00 50% 100%

0x3F 75% 150%

0x7F 100% 200%
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Figure 6-4. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in 
Table 6-11.

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from 
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the 
MCU is kept in Reset during such changes in the clock frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal 
clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler” on page 
43 for details.

6.8 Clock Output Buffer
When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This mode is 
suitable when chip clock is used to drive other circuits on the system. The clock will be output 
also during reset and the normal operation of I/O pin will be overridden when the fuse is pro-
grammed. Any clock source, including internal RC Oscillator, can be selected when CLKO 
serves as clock output. If the System Clock Prescaler is used, it is the divided system clock that 
is output (CKOUT Fuse programmed). 

6.9 Timer/Counter2 Oscillator
For AVR microcontrollers with Timer/Counter2 Oscillator pins (TOSC1 and TOSC2), the crystal 
is connected directly between the pins. The Oscillator is optimized for use with a 32.768 kHz 
watch crystal. 12-22 pF capacitors may be necessary if the parasitic impedance (pads, wires & 
PCB) is very low.

Table 6-10. External Clock Frequency

CKSEL3..0 Frequency Range

0000 0 - 16 MHz

Table 6-11. Start-up Times for the External Clock Selection

SUT1..0 Start-up Time from Power-
down and Power-save

Additional Delay from 
Reset (VCC = 5.0V) Recommended Usage

00 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

XTAL2  

XTAL1

GND

NC

 External
Clock
Signal
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AT90CAN128 share the Timer/Counter2 Oscillator Pins (TOSC1 and TOSC2) with PG4 and 
PG3. This means that both PG4 and PG3 can only be used when the Timer/Counter2 Oscillator 
is not enable.

Applying an external clock source to TOSC1 can be done in asynchronous operation if EXTCLK 
in the ASSR Register is written to logic one. See “Asynchronous operation of the 
Timer/Counter2” on page 158 for further description on selecting external clock as input instead 
of a 32 kHz crystal. In this configuration, PG4 cannot be used but PG3 is available.

6.10 System Clock Prescaler
The AT90CAN128 system clock can be divided by setting the Clock Prescaler Register – 
CLKPR. This feature can be used to decrease power consumption when the requirement for 
processing power is low. This can be used with all clock source options, and it will affect the 
clock frequency of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH
are divided by a factor as shown in Table 6-12.

6.10.1 Clock Prescaler Register – CLKPR

• Bit 7 – CLKPCE: Clock Prescaler Change Enable
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE 
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is 
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the 
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the 
CLKPCE bit.

• Bit 6..0 – Reserved Bits
These bits are reserved for future use.

• Bits 3..0 – CLKPS3..0: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal system 
clock. These bits can be written run-time to vary the clock frequency to suit the application 
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in 
Table 6-12.

To avoid unintentional changes of clock frequency, a special write procedure must be followed 
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in 
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE. 
Interrupts must be disabled when changing prescaler setting to make sure the write procedure is 
not interrupted.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, 
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to 

Bit 7 6 5 4 3 2 1 0

CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
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“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock 
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8 
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if 
the selected clock source has a higher frequency than the maximum frequency of the device at 
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Note: When the system clock is divided, Timer/Counter2 can be used with Asynchronous clock only. 
The frequency of the asynchronous clock must be lower than 1/4th of the frequency of the scaled 
down Source clock. Otherwise, interrupts may be lost, and accessing the Timer/Counter2 regis-
ters may fail.

Table 6-12. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved
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7. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving 
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a 
SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select 
which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be 
activated by the SLEEP instruction. See Table 7-1 for a summary. If an enabled interrupt occurs 
while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in 
addition to the start-up time, executes the interrupt routine, and resumes execution from the 
instruction following SLEEP. The contents of the register file and SRAM are unaltered when the 
device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and exe-
cutes from the Reset Vector. 

Figure 6-1 on page 36 presents the different clock systems in the AT90CAN128, and their distri-
bution. The figure is helpful in selecting an appropriate sleep mode.

7.0.1 Sleep Mode Control Register – SMCR
The Sleep Mode Control Register contains control bits for power management.

• Bit 7..4 – Reserved Bits
These bits are reserved for future use.

• Bits 3..1 – SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 7-1.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 1 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP 
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s 

Bit 7 6 5 4 3 2 1 0

– – – – SM2 SM1 SM0 SE SMCR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-1. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Reserved
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purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of 
the SLEEP instruction and to clear it immediately after waking up.

7.1 Idle Mode
When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle 
mode, stopping the CPU but allowing SPI, CAN, USART, Analog Comparator, ADC, Two-wire 
Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This 
sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal 
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the 
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by 
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will 
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered. 

7.2 ADC Noise Reduction Mode
When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC 
Noise Reduction mode, stopping the CPU but allowing the ADC, the External Interrupts, the 
Two-wire Serial Interface address watch, Timer/Counter2, CAN and the Watchdog to continue 
operating (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing 
the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If 
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the 
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out 
Reset, a Two-wire Serial Interface address match interrupt, a Timer/Counter2 interrupt, an 
SPM/EEPROM ready interrupt, an External Level Interrupt on INT7:4, or an External Interrupt on 
INT3:0 can wake up the MCU from ADC Noise Reduction mode.

7.3 Power-down Mode
When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the External Oscillator is stopped, while the External Interrupts, the 
Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled). 
Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface 
address match interrupt, an External Level Interrupt on INT7:4, or an External Interrupt on 
INT3:0 can wake up the MCU. This sleep mode basically halts all generated clocks, allowing 
operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed 
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 92
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs 
until the wake-up becomes effective. This allows the clock to restart and become stable after 
having been stopped. The wake-up period is defined by the same CKSEL fuses that define the 
Reset Time-out period, as described in “Clock Sources” on page 37.

7.4 Power-save Mode
When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:
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If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set, Timer/Counter2 
will run during sleep. The device can wake up from either Timer Overflow or Output Compare 
event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in 
TIMSK2, and the global interrupt enable bit in SREG is set. 

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended 
instead of Power-save mode because the contents of the registers in the asynchronous timer 
should be considered undefined after wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clkASY, allowing operation only of asynchronous 
modules, including Timer/Counter2 if clocked asynchronously.

7.5 Standby Mode
When the SM2..0 bits are 110 and an External Crystal/Resonator clock option is selected, the 
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down 
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up 
in 6 clock cycles. 

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If AS2 bit in ASSR is set.
3. Only INT3:0 or level interrupt INT7:4.

7.6 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR 
controlled system. In general, sleep modes should be used as much as possible, and the sleep 
mode should be selected so that as few as possible of the device’s functions are operating. All 
functions not needed should be disabled. In particular, the following modules may need special 
consideration when trying to achieve the lowest possible power consumption.

7.6.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next 
conversion will be an extended conversion. Refer to “Analog to Digital Converter - ADC” on page 
271 for details on ADC operation.

Table 7-2. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

Sleep 
Mode clkCPU clkFLASH clkIO clkADC clkASY

Main
Clock

Source
Enabled

Timer
Osc.

Enabled
INT7:0

TWI
Address

Match

Timer
2

SPM/
EEPROM

Ready
ADC Other

I/O

Idle X X X X X(2) X X X X X X

ADC Noise 
Reduction X X X X(2) X(3) X X(2) X X

Power- 
down X(3) X

Power- 
save X(2) X(2) X(3) X X(2)

Standby(1) X X(3) X
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7.6.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering 
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes, 
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up 
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all 
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep 
mode. Refer to “Analog Comparator” on page 267 for details on how to configure the Analog 
Comparator.

7.6.3 Brown-out Detector
If the Brown-out Detector is not needed by the application, this module should be turned off. If 
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep 
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to “Brown-out Detection” on page 53 for details 
on how to configure the Brown-out Detector.

7.6.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the 
Analog Comparator or the ADC. If these modules are disabled as described in the sections 
above, the internal voltage reference will be disabled and it will not be consuming power. When 
turned on again, the user must allow the reference to start up before the output is used. If the 
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 55 for details on the start-up time.

7.6.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, the module should be turned off. If the 
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume 
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 56 for details on how to configure the Watchdog Timer.

7.6.6 Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The 
most important is then to ensure that no pins drive resistive loads. In sleep modes where both 
the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will 
be disabled. This ensures that no power is consumed by the input logic when not needed. In 
some cases, the input logic is needed for detecting wake-up conditions, and it will then be 
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 69 for details on 
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have 
an analog signal level close to VCC/2, the input buffer will use excessive power. 

For analog input pins, the digital input buffer should be disabled at all times. An analog signal 
level close to VCC/2 on an input pin can cause significant current even in active mode. Digital 
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and 
DIDR0). Refer to “Digital Input Disable Register 1 – DIDR1” on page 270 and “Digital Input Dis-
able Register 0 – DIDR0” on page 290 for details. 

7.6.7 JTAG Interface and On-chip Debug System
If the On-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode, the 
main clock source is enabled, and hence, always consumes power. In the deeper sleep modes, 
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this will contribute significantly to the total current consumption. There are three alternative ways 
to avoid this:

• Disable OCDEN Fuse.
• Disable JTAGEN Fuse.
• Write one to the JTD bit in MCUCR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is 
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level, 
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCR register to one or 
leaving the JTAG fuse unprogrammed disables the JTAG interface.
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8. System Control and Reset

8.1 Reset

8.1.1 Resetting the AVR
During reset, all I/O Registers are set to their initial values, and the program starts execution 
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – Absolute 
Jump – instruction to the reset handling routine. If the program never enables an interrupt 
source, the Interrupt Vectors are not used, and regular program code can be placed at these 
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt 
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 8-1 shows the reset 
logic. Table 8-1 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes 
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal 
reset. This allows the power to reach a stable level before normal operation starts. The time-out 
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in “Clock Sources” on page 37. 

8.1.2 Reset Sources
The AT90CAN128 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset 
threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer 
than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the 
Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out 
Reset threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one 
of the scan chains of the JTAG system. Refer to the section “Boundary-scan IEEE 1149.1 
(JTAG)” on page 298 for details.
 50
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128

Figure 8-1. Reset Logic

Note: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

8.1.3 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level 
is defined in Table 8-1. The POR is activated whenever VCC is below the detection level. The 
POR circuit can be used to trigger the start-up Reset, as well as to detect a failure in supply 
voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the 
Power-on Reset threshold voltage invokes the delay counter, which determines how long the 
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay, 
when VCC decreases below the detection level.

MCU Status
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Power-on Reset
Circuit

Table 8-1. Reset Characteristics

Symbol Parameter Condition Min. Typ. Max. Units

VPOT

Power-on Reset Threshold Voltage (rising) 1.4 2.3 V

Power-on Reset Threshold Voltage 
(falling)(1) 1.3 2.3 V

VRST  RESET Pin Threshold Voltage 0.2 
VCC

0.85 
VCC

V

tRST Minimum pulse width on RESET Pin Vcc = 5 V, temperature = 25 °C 400 ns
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Figure 8-2. MCU Start-up, RESET Tied to VCC

Figure 8-3. MCU Start-up, RESET Extended Externally

8.1.4 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the 
minimum pulse width (see Table 8-1) will generate a reset, even if the clock is not running. 
Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the 
Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the MCU after 
the Time-out period – tTOUT – has expired.

Figure 8-4. External Reset During Operation
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8.1.5 Brown-out Detection

AT90CAN128 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level 
during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be 
selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free 
Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ = 
VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where 
this is the case, the device is tested down to VCC = VBOT during the production test. This guar-
antees that a Brown-Out Reset will occur before VCC drops to a voltage where correct 
operation of the microcontroller is no longer guaranteed. The test is performed using 
BODLEVEL = 010 for Low Operating Voltage and BODLEVEL = 101 for High Operating Volt-
age .

When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure 
8-5), the Brown-out Reset is immediately activated. When VCC increases above the trigger level 
(VBOT+ in Figure 8-5), the delay counter starts the MCU after the Time-out period tTOUT has 
expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for 
longer than tBOD given in Table 8-1.

Table 8-2. BODLEVEL Fuse Coding(1)

BODLEVEL 2..0 Fuses Min VBOT Typ VBOT Max VBOT Units

111 BOD Disabled

110 4.1 V

101 4.0 V

100 3.9 V

011 3.8 V

010 2.7 V

001 2.6 V

000 2.5 V

Table 8-3. Brown-out Characteristics

Symbol Parameter Min. Typ. Max. Units

VHYST Brown-out Detector Hysteresis 70 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs
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Figure 8-5. Brown-out Reset During Operation

8.1.6 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On 
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to 
page 56 for details on operation of the Watchdog Timer.

Figure 8-6. Watchdog Reset During Operation

8.1.7 MCU Status Register – MCUSR
The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 7..5 – Reserved Bits
These bits are reserved for future use.

• Bit 4 – JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by 
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic 
zero to the flag.

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

CC

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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• Bit 3 – WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a 
logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a 
logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a 
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset flags to identify a reset condition, the user should read and then reset 
the MCUSR as early as possible in the program. If the register is cleared before another reset 
occurs, the source of the reset can be found by examining the reset flags.

8.2 Internal Voltage Reference
AT90CAN128 features an internal bandgap reference. This reference is used for Brown-out 
Detection, and it can be used as an input to the Analog Comparator or the ADC.

8.2.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The 
start-up time is given in Table 8-4. To save power, the reference is not always turned on. The 
reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).
2. When the bandgap reference is connected to the Analog Comparator (by setting the 

ACBG bit in ACSR).
3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user 
must always allow the reference to start up before the output from the Analog Comparator or 
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three 
conditions above to ensure that the reference is turned off before entering Power-down mode.

8.2.2 Voltage Reference Characteristics

Table 8-4. Internal Voltage Reference Characteristics

Symbol Parameter Condition Min. Typ. Max. Units

VBG Bandgap reference voltage 1.0 1.1 1.2 V

tBG Bandgap reference start-up time 40 70 µs

IBG
Bandgap reference current 
consumption 15 µA
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8.3 Watchdog Timer
The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is 
the typical value at VCC = 5V. See characterization data for typical values at other VCC levels. By 
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as 
shown in Table 8-6 on page 57. The WDR – Watchdog Reset – instruction resets the Watchdog 
Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs. 
Eight different clock cycle periods can be selected to determine the reset period. If the reset 
period expires without another Watchdog Reset, the AT90CAN128 resets and executes from the 
Reset Vector. For timing details on the Watchdog Reset, refer to Table 8-6 on page 57.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period, 
two different safety levels are selected by the fuse WDTON as shown in Table 8-5. Refer to 
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 58 for 
details.

Figure 8-7. Watchdog Timer

8.3.1 Watchdog Timer Control Register – WDTCR

• Bits 7..5 – Reserved Bits
These bits are reserved bits for future use.

• Bit 4 – WDCE: Watchdog Change Enable
This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not 
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the 
description of the WDE bit for a Watchdog disable procedure. This bit must also be set when 

Table 8-5. WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON Safety 
Level

WDT Initial 
State

How to Disable 
the WDT

How to Change 
Time-out

Unprogrammed 1 Disabled Timed sequence Timed sequence

Programmed 2 Enabled Always enabled Timed sequence

WATCHDOG
OSCILLATOR

~1 MHz

Bit 7 6 5 4 3 2 1 0

– – – WDCE WDE WDP2 WDP1 WDP0 WDTCR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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changing the prescaler bits. See “Timed Sequences for Changing the Configuration of the 
Watchdog Timer” on page 58.

• Bit 3 – WDE: Watchdog Enable
When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written 
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit 
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be 
followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be writ-
ten to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm 
described above. See “Timed Sequences for Changing the Configuration of the Watchdog 
Timer” on page 58.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0
The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods 
are shown in Table 8-6.

Table 8-6. Watchdog Timer Prescale Select

WDP2 WDP1 WDP0 Number of WDT 
Oscillator Cycles

Typical Time-out at 
VCC = 3.0V

Typical Time-out at 
VCC = 5.0V

0 0 0 16K cycles 17.1 ms 16.3 ms

0 0 1 32K cycles 34.3 ms 32.5 ms

0 1 0 64K cycles 68.5 ms 65 ms

0 1 1 32/64K cycles 0.14 s 0.13 s

1 0 0 256K cycles 0.27 s 0.26 s

1 0 1 512K cycles 0.55 s 0.52 s

1 1 0 1,024K cycles 1.1 s 1.0 s

1 1 1 2,048K cycles 2.2 s 2.1 s
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The following code example shows one assembly and one C function for turning off the WDT. 
The example assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that 
no interrupts will occur during execution of these functions.

Note: 1. The example code assumes that the part specific header file is included.

8.4 Timed Sequences for Changing the Configuration of the Watchdog Timer
The sequence for changing configuration differs slightly between the two safety levels. Separate 
procedures are described for each level.

8.4.1 Safety Level 1
In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit 
to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out 
period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, and/or 
changing the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be writ-
ten to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits 
as desired, but with the WDCE bit cleared.

8.4.2 Safety Level 2
In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A 
timed sequence is needed when changing the Watchdog Time-out period. To change the 
Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE 
always is set, the WDE must be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as desired, 
but with the WDCE bit cleared. The value written to the WDE bit is irrelevant.

Assembly Code Example(1)

WDT_off:

; Write logical one to WDCE and WDE

ldi  r16, (1<<WDCE)|(1<<WDE)

sts  WDTCR, r16

; Turn off WDT

ldi  r16, (0<<WDE)

sts  WDTCR, r16

ret

C Code Example(1)

void WDT_off(void)

{

/* Write logical one to WDCE and WDE */

WDTCR = (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0x00;

}
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9. Interrupts
This section describes the specifics of the interrupt handling as performed in AT90CAN128. For 
a general explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on 
page 14.

9.1 Interrupt Vectors in AT90CAN128

Table 9-1. Reset and Interrupt Vectors  

Vector
No.

Program
Address(1) Source Interrupt Definition

1 0x0000(2) RESET External Pin, Power-on Reset, Brown-out Reset, 
Watchdog Reset, and JTAG AVR Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 INT1 External Interrupt Request 1

4 0x0006 INT2 External Interrupt Request 2

5 0x0008 INT3 External Interrupt Request 3

6 0x000A INT4 External Interrupt Request 4

7 0x000C INT5 External Interrupt Request 5

8 0x000E INT6 External Interrupt Request 6

9 0x0010 INT7 External Interrupt Request 7

10 0x0012 TIMER2 COMP Timer/Counter2 Compare Match

11 0x0014 TIMER2 OVF Timer/Counter2 Overflow

12 0x0016 TIMER1 CAPT Timer/Counter1 Capture Event

13 0x0018 TIMER1 COMPA Timer/Counter1 Compare Match A

14 0x001A TIMER1 COMPB Timer/Counter1 Compare Match B

15 0x001C TIMER1 COMPC Timer/Counter1 Compare Match C 

16 0x001E TIMER1 OVF Timer/Counter1 Overflow

17 0x0020 TIMER0 COMP Timer/Counter0 Compare Match

18 0x0022 TIMER0 OVF Timer/Counter0 Overflow

19 0x0024 CANIT CAN Transfer Complete or Error

20 0x0026 OVRIT CAN Timer Overrun

21 0x0028 SPI, STC SPI Serial Transfer Complete

22 0x002A USART0, RX USART0, Rx Complete

23 0x002C USART0, UDRE USART0 Data Register Empty

24 0x002E USART0, TX USART0, Tx Complete

25 0x0030 ANALOG COMP Analog Comparator

26 0x0032 ADC ADC Conversion Complete

27 0x0034 EE READY EEPROM Ready

28 0x0036 TIMER3 CAPT Timer/Counter3 Capture Event
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Notes: 1. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot 
Flash Section. The address of each Interrupt Vector will then be the address in this table 
added to the start address of the Boot Flash Section.

2. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at 
reset, see “Boot Loader Support – Read-While-Write Self-Programming” on page 319.

Table 9-2 shows reset and Interrupt Vectors placement for the various combinations of 
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt 
Vectors are not used, and regular program code can be placed at these locations. This is also 
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the 
Boot section or vice versa. 

Note: 1. The Boot Reset Address is shown in Table 25-6 on page 332. For the BOOTRST Fuse “1” 
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in 
AT90CAN128 is: 

;Address Labels Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

0x0006 jmp EXT_INT2 ; IRQ2 Handler

0x0008 jmp EXT_INT3 ; IRQ3 Handler

0x000A jmp EXT_INT4 ; IRQ4 Handler

0x000C jmp EXT_INT5 ; IRQ5 Handler

0x000E jmp EXT_INT6 ; IRQ6 Handler

0x0010 jmp EXT_INT7 ; IRQ7 Handler

29 0x0038 TIMER3 COMPA Timer/Counter3 Compare Match A

30 0x003A TIMER3 COMPB Timer/Counter3 Compare Match B

31 0x003C TIMER3 COMPC Timer/Counter3 Compare Match C

32 0x003E TIMER3 OVF Timer/Counter3 Overflow

33 0x0040 USART1, RX USART1, Rx Complete

34 0x0042 USART1, UDRE USART1 Data Register Empty

35 0x0044 USART1, TX USART1, Tx Complete

36 0x0046 TWI Two-wire Serial Interface

37 0x0048 SPM READY Store Program Memory Ready

Table 9-2. Reset and Interrupt Vectors Placement(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

Table 9-1. Reset and Interrupt Vectors  (Continued)

Vector
No.

Program
Address(1) Source Interrupt Definition
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0x0012 jmp TIM2_COMP ; Timer2 Compare Handler

0x0014 jmp TIM2_OVF ; Timer2 Overflow Handler

0x0016 jmp TIM1_CAPT ; Timer1 Capture Handler

0x0018 jmp TIM1_COMPA; Timer1 CompareA Handler

0x001A jmp TIM1_COMPB; Timer1 CompareB Handler

0x001C jmp TIM1_OVF ; Timer1 CompareC Handler

0x001E jmp TIM1_OVF ; Timer1 Overflow Handler

0x0020 jmp TIM0_COMP ; Timer0 Compare Handler

0x0022 jmp TIM0_OVF ; Timer0 Overflow Handler

0x0024 jmp CAN_IT ; CAN Handler

0x0026 jmp CTIM_OVF ; CAN Timer Overflow Handler

0x0028 jmp SPI_STC ; SPI Transfer Complete Handler

0x002A jmp USART0_RXC; USART0 RX Complete Handler

0x002C jmp USART0_DRE; USART0,UDR Empty Handler

0x002E jmp USART0_TXC; USART0 TX Complete Handler

0x0030 jmp ANA_COMP ; Analog Comparator Handler

0x0032 jmp ADC ; ADC Conversion Complete Handler

0x0034 jmp EE_RDY ; EEPROM Ready Handler

0x0036 jmp TIM3_CAPT ; Timer3 Capture Handler

0x0038 jmp TIM3_COMPA; Timer3 CompareA Handler

0x003A jmp TIM3_COMPB; Timer3 CompareB Handler

0x003C jmp TIM3_COMPC; Timer3 CompareC Handler

0x003E jmp TIM3_OVF ; Timer3 Overflow Handler

0x0040 jmp USART1_RXC; USART1 RX Complete Handler

0x0042 jmp USART1_DRE; USART1,UDR Empty Handler

0x0044 jmp USART1_TXC; USART1 TX Complete Handler

0x0046 jmp TWI ; TWI Interrupt Handler

0x0048 jmp SPM_RDY ; SPM Ready Handler

;

0x004A RESET: ldi r16, high(RAMEND) ; Main program start

0x004B out SPH,r16 ;Set Stack Pointer to top of RAM

0x004C ldi r16, low(RAMEND)

0x004D out SPL,r16

0x004E sei ; Enable interrupts

0x004F <instr>  xxx

...  ...    ...  ... 

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and the 
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and 
general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND) ; Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
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0x0004 sei ; Enable interrupts

0x0005 <instr>  xxx

;

.org (BootResetAdd + 0x0002)

0x..02 jmp EXT_INT0 ; IRQ0 Handler

0x..04 jmp PCINT0 ; PCINT0 Handler

... ... ... ; 

0x..0C jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the most 
typical and general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp PCINT0 ; PCINT0 Handler

... ... ... ; 

0x002C jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org (BootResetAdd) 
0x..00 RESET: ldi r16,high(RAMEND) ; Main program start

0x..01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x..02 ldi r16,low(RAMEND)

0x..03 out SPL,r16

0x..04 sei ; Enable interrupts

0x..05 <instr>  xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the IVSEL 
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general 
program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code Comments

;

.org (BootResetAdd) 
0x..00 jmp RESET ; Reset handler

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x..04 jmp PCINT0 ; PCINT0 Handler

... ... ... ; 

0x..44 jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x..46 RESET: ldi r16,high(RAMEND) ; Main program start

0x..47 out SPH,r16 ; Set Stack Pointer to top of RAM

0x..48 ldi r16,low(RAMEND)

0x..49 out SPL,r16

0x..4A sei ; Enable interrupts

0x..4B <instr>  xxx
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9.2 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

9.2.1 MCU Control Register – MCUCR

• Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash 
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot 
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support – Read-While-Write 
Self-Programming” on page 319 for details. To avoid unintentional changes of Interrupt Vector 
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE. 

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled 
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to 
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status 
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-
grammed, interrupts are disabled while executing from the Application section. If Interrupt Vectors 
are placed in the Application section and Boot Lock bit BLB12 is programed, interrupts are dis-
abled while executing from the Boot Loader section. Refer to the section “Boot Loader Support – 
Read-While-Write Self-Programming” on page 319 for details on Boot Lock bits.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR
Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 0 – IVCE: Interrupt Vector Change Enable
The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by 
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable 
interrupts, as explained in the IVSEL description above. See Code Example below.

Assembly Code Example

Move_interrupts:

; Get MCUCR

in  r16, MCUCR

mov  r17, r16

; Enable change of Interrupt Vectors

ori  r16, (1<<IVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section

ori  r17, (1<<IVSEL)

out  MCUCR, r17

ret

C Code Example

void Move_interrupts(void)

{

uchar  temp;

/* Get MCUCR*/

temp = MCUCR;

/* Enable change of Interrupt Vectors */

MCUCR = temp | (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = temp | (1<<IVSEL);

}
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10. I/O-Ports

10.1 Introduction
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. 
This means that the direction of one port pin can be changed without unintentionally changing 
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as 
input). Each output buffer has symmetrical drive characteristics with both high sink and source 
capability. All port pins have individually selectable pull-up resistors with a supply-voltage invari-
ant resistance. All I/O pins have protection diodes to both VCC and Ground as indicated in Figure 
10-1. Refer to “Electrical Characteristics” on page 361 for a complete list of parameters.

Figure 10-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However, 
when using the register or bit defines in a program, the precise form must be used. For example, 
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in “Register Description for I/O-Ports”.

Three I/O memory address locations are allocated for each port, one each for the Data Register 
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins 
I/O location is read only, while the Data Register and the Data Direction Register are read/write. 
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the 
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O”. Most port 
pins are multiplexed with alternate functions for the peripheral features on the device. How each 
alternate function interferes with the port pin is described in “Alternate Port Functions” on page 
70. Refer to the individual module sections for a full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the 
other pins in the port as general digital I/O.

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for 

Details

Pxn
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10.2 Ports as General Digital I/O
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 10-2 shows a func-
tional description of one I/O-port pin, here generically called Pxn.

Figure 10-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, 
SLEEP, and PUD are common to all ports.

10.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register 
Description for I/O-Ports” on page 88, the DDxn bits are accessed at the DDRx I/O address, the 
PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, 
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input 
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is 
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to 
be configured as an output pin

The port pins are tri-stated when reset condition becomes active, even if no clocks are running.

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN
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RDx: READ DDRx
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Q
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Pxn
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0

1

WRx

WPx: WRITE PINx REGISTER
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If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven 
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port 
pin is driven low (zero).

10.2.2 Toggling the Pin
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. 
Note that the SBI instruction can be used to toggle one single bit in a port.

10.2.3 Switching Between Input and Output
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high  ({DDxn, PORTxn} 
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output 
low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled state is fully acceptable, as 
a high-impedant environment will not notice the difference between a strong high driver and a 
pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-
ups in all ports. 

Switching between input with pull-up and output low generates the same problem. The user 
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} 
= 0b11) as an intermediate step.

Table 10-1 summarizes the control signals for the pin value.

10.2.4 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the 
PINxn Register bit. As shown in Figure 10-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value 
near the edge of the internal clock, but it also introduces a delay. Figure 10-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and 
minimum propagation delays are denoted tpd,max and tpd,min respectively.

Table 10-1. Port Pin Configurations

DDxn PORTxn PUD
(in MCUCR) I/O Pull-up Comment

0 0 X Input No
Default configuration after Reset.
Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)
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Figure 10-3. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch 
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the 
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock 
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed 
between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 10-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of 
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 10-4. Synchronization when Reading a Software Assigned Pin Value

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17
tpd
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The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define 
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin 
values are read back again, but as previously discussed, a nop instruction is included to be able 
to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 
as low and redefining bits 0 and 1 as strong high drivers.

10.2.5 Digital Input Enable and Sleep Modes
As shown in Figure 10-2, the digital input signal can be clamped to ground at the input of the 
schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in 
Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if 
some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt 
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various 
other alternate functions as described in “Alternate Port Functions” on page 70.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as 
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt 
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the 

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16, (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17, (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB, r16

out DDRB, r17

; Insert nop for synchronization

nop

; Read port pins

in r16, PINB

...

C Code Example(1)

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINB;

...
 69
4250G–CAN–09/05



above mentioned sleep modes, as the clamping in these sleep modes produces the requested 
logic change.

10.2.6 Unconnected Pins
If some pins are unused, it is recommended to ensure that these pins have a defined level. Even 
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital 
inputs are enabled (Reset, Active mode and Idle mode). The simplest method to ensure a 
defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will be 
disabled during reset. If low power consumption during reset is important, it is recommended to 
use an external pull-up or pull-down. Connecting unused pins directly to VCC or GND is not rec-
ommended, since this may cause excessive currents if the pin is accidentally configured as an 
output.

10.3 Alternate Port Functions
Most port pins have alternate functions in addition to being general digital I/Os. Figure 10-5
shows how the port pin control signals from the simplified Figure 10-2 can be overridden by 
alternate functions. The overriding signals may not be present in all port pins, but the figure 
serves as a generic description applicable to all port pins in the AVR microcontroller family.
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Figure 10-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, 
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

Table 10-2 summarizes the function of the overriding signals. The pin and port indexes from 
Figure 10-5 are not shown in the succeeding tables. The overriding signals are generated 
internally in the modules having the alternate function.
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The following subsections shortly describe the alternate functions for each port, and relate the 
overriding signals to the alternate function. Refer to the alternate function description for further 
details.

10.3.1 MCU Control Register – MCUCR

Table 10-2. Generic Description of Overriding Signals for Alternate Functions  

Signal Name Full Name Description

PUOE Pull-up Override 
Enable

If this signal is set, the pull-up enable is controlled by the PUOV 
signal. If this signal is cleared, the pull-up is enabled when 
{DDxn, PORTxn, PUD} = 0b010. 

PUOV Pull-up Override 
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is 
set/cleared, regardless of the setting of the DDxn, PORTxn, 
and PUD Register bits.

DDOE Data Direction 
Override Enable

If this signal is set, the Output Driver Enable is controlled by the 
DDOV signal. If this signal is cleared, the Output driver is 
enabled by the DDxn Register bit. 

DDOV Data Direction 
Override Value

If DDOE is set, the Output Driver is enabled/disabled when 
DDOV is set/cleared, regardless of the setting of the DDxn 
Register bit.

PVOE Port Value 
Override Enable

If this signal is set and the Output Driver is enabled, the port 
value is controlled by the PVOV signal. If PVOE is cleared, and 
the Output Driver is enabled, the port Value is controlled by the 
PORTxn Register bit.

PVOV Port Value 
Override Value

If PVOE is set, the port value is set to PVOV, regardless of the 
setting of the PORTxn Register bit.

PTOE Port Toggle 
Override Enable If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input 
Enable Override 
Enable

If this bit is set, the Digital Input Enable is controlled by the 
DIEOV signal. If this signal is cleared, the Digital Input Enable 
is determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital Input 
Enable Override 
Value

If DIEOE is set, the Digital Input is enabled/disabled when 
DIEOV is set/cleared, regardless of the MCU state (Normal 
mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the 
signal is connected to the output of the schmitt trigger but 
before the synchronizer. Unless the Digital Input is used as a 
clock source, the module with the alternate function will use its 
own synchronizer.

AIO Analog 
Input/Output

This is the Analog Input/output to/from alternate functions. The 
signal is connected directly to the pad, and can be used bi-
directionally.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR
Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 4 – PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and 
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” for more details about this feature.

10.3.2 Alternate Functions of Port A
The Port A has an alternate function as the address low byte and data lines for the External 
Memory Interface.

The Port A pins with alternate functions are shown in Table 10-3.

The alternate pin configuration is as follows:

• AD7 – Port A, Bit 7
AD7, External memory interface address 7 and Data 7.

• AD6 – Port A, Bit 6
AD6, External memory interface address 6 and Data 6.

• AD5 – Port A, Bit 5
AD5, External memory interface address 5 and Data 5.

• AD4 – Port A, Bit 4
AD4, External memory interface address 4 and Data 4.

• AD3 – Port A, Bit 3
AD3, External memory interface address 3 and Data 3.

• AD2 – Port A, Bit 2
AD2, External memory interface address 2 and Data 2.

• AD1 – Port A, Bit 1
AD1, External memory interface address 1 and Data 1.

• AD0 – Port A, Bit 0
AD0, External memory interface address 0 and Data 0.

Table 10-3. Port A Pins Alternate Functions

Port Pin Alternate Function

PA7 AD7 (External memory interface address and data bit 7)

PA6 AD6 (External memory interface address and data bit 6)

PA5 AD5 (External memory interface address and data bit 5)

PA4 AD4 (External memory interface address and data bit 4)

PA3 AD3 (External memory interface address and data bit 3)

PA2 AD2 (External memory interface address and data bit 2)

PA1 AD1 (External memory interface address and data bit 1)

PA0 AD0 (External memory interface address and data bit 0)
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Table 10-4 and Table 10-5 relates the alternate functions of Port A to the overriding signals 
shown in Figure 10-5 on page 71. 

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See “Exter-
nal Memory Interface” on page 26 for details.

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See “Exter-
nal Memory Interface” on page 26 for details.

Table 10-4. Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/AD7 PA6/AD6 PA5/AD5 PA4/AD4

PUOE SRE • 
(ADA(1) + WR)

SRE • 
(ADA(1) + WR)

SRE • 
(ADA(1) + WR)

SRE • 
(ADA(1) + WR)

PUOV 0 0 0 0

DDOE SRE SRE SRE SRE

DDOV WR + ADA WR + ADA WR + ADA WR + ADA

PVOE SRE SRE SRE SRE

PVOV A7 • ADA(1) + D7 
OUTPUT • WR

A6 • ADA(1) + D6 
OUTPUT • WR

A5 • ADA(1) + D5 
OUTPUT • WR

A4 • ADA(1) + D4 
OUTPUT • WR

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D7 INPUT D6 INPUT D5 INPUT D4 INPUT

AIO – – – –

Table 10-5. Overriding Signals for Alternate Functions in PA3..PA0

Signal Name PA3/AD3 PA2/AD2 PA1/AD1 PA0/AD0

PUOE SRE • 
(ADA(1) + WR)

SRE • 
(ADA(1) + WR)

SRE • 
(ADA(1) + WR)

SRE • 
(ADA(1) + WR)

PUOV 0 0 0 0

DDOE SRE SRE SRE SRE

DDOV WR + ADA WR + ADA WR + ADA WR + ADA

PVOE SRE SRE SRE SRE

PVOV A3 • ADA(1) + D3 
OUTPUT • WR

A2 • ADA(1) + D2 
OUTPUT • WR

A1 • ADA(1) + D1 
OUTPUT • WR

A0 • ADA(1) + D0 
OUTPUT • WR

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D3 INPUT D2 INPUT D1 INPUT D0 INPUT

AIO – – – –
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10.3.3 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 10-6.

The alternate pin configuration is as follows:

• OC0A/OC1C, Bit 7
OC0A, Output Compare Match A output. The PB7 pin can serve as an external output for the 
Timer/Counter0 Output Compare A. The pin has to be configured as an output (DDB7 set “one”) 
to serve this function. The OC0A pin is also the output pin for the PWM mode timer function.

OC1C, Output Compare Match C output. The PB7 pin can serve as an external output for the 
Timer/Counter1 Output Compare C. The pin has to be configured as an output (DDB7 set “one”) 
to serve this function. The OC1C pin is also the output pin for the PWM mode timer function.

• OC1B, Bit 6
OC1B, Output Compare Match B output. The PB6 pin can serve as an external output for the 
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set “one”) 
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

• OC1A, Bit 5
OC1A, Output Compare Match A output. The PB5 pin can serve as an external output for the 
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set “one”) 
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

• OC2A, Bit 4
OC2A, Output Compare Match A output. The PB4 pin can serve as an external output for the 
Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDB4 set “one”) 
to serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

• MISO – Port B, Bit 3
MISO, Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a 
master, this pin is configured as an input regardless of the setting of DDB3. When the SPI is 
enabled as a slave, the data direction of this pin is controlled by DDB3. When the pin is forced to 
be an input, the pull-up can still be controlled by the PORTB3 bit.

• MOSI – Port B, Bit 2

Table 10-6. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7 OC0A/OC1C (Output Compare and PWM Output A for Timer/Counter0 or Output Compare 
and PWM Output C for Timer/Counter1)

PB6 OC1B (Output Compare and PWM Output B for Timer/Counter1)

PB5 OC1A (Output Compare and PWM Output A for Timer/Counter1)

PB4 OC2A (Output Compare and PWM Output A for Timer/Counter2 )

PB3 MISO (SPI Bus Master Input/Slave Output)

PB2 MOSI (SPI Bus Master Output/Slave Input)

PB1 SCK (SPI Bus Serial Clock)

PB0 SS (SPI Slave Select input)
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MOSI, SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a 
slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI is 
enabled as a master, the data direction of this pin is controlled by DDB2. When the pin is forced 
to be an input, the pull-up can still be controlled by the PORTB2 bit.

• SCK – Port B, Bit 1
SCK, Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a 
slave, this pin is configured as an input regardless of the setting of DDB1. When the SPI is 
enabled as a master, the data direction of this pin is controlled by DDB1. When the pin is forced 
to be an input, the pull-up can still be controlled by the PORTB1 bit.

• SS – Port B, Bit 0
SS, Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an 
input regardless of the setting of DDB0. As a slave, the SPI is activated when this pin is driven 
low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDB0. 
When the pin is forced to be an input, the pull-up can still be controlled by the PORTB0 bit.

Table 10-7 and Table 10-8 relate the alternate functions of Port B to the overriding signals 
shown in Figure 10-5 on page 71. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the 
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 10-7 and Table 10-8 relates the alternate functions of Port B to the overriding signals 
shown in Figure 10-5 on page 71. 

Note: 1. See “Output Compare Modulator - OCM” on page 163 for details.

Table 10-7. Overriding Signals for Alternate Functions in PB7..PB4

Signal Name PB7/OC0A/OC1C PB6/OC1B PB5/OC1A PB4/OC2A

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC0A/OC1C 
ENABLE(1) OC1B ENABLE OC1A ENABLE OC2A ENABLE

PVOV OC0A/OC1C(1) OC1B OC1A OC2A

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –
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10.3.4 Alternate Functions of Port C
The Port C has an alternate function as the address high byte for the External Memory Interface.

The Port C pins with alternate functions are shown in Table 10-9.

The alternate pin configuration is as follows:

• A15/CLKO – Port C, Bit 7
A15, External memory interface address 15.

CLKO, Divided System Clock: The divided system clock can be output on the PC7 pin. The 
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the 
PORTC7 and DDC7 settings. It will also be output during reset.

Table 10-8. Overriding Signals for Alternate Functions in PB3..PB0

Signal Name PB3/MISO PB2/MOSI PB1/SCK PB0/SS

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB3 • PUD PORTB2 • PUD PORTB1 • PUD PORTB0 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SPI SLAVE 
OUTPUT

SPI MASTER 
OUTPUT SCK OUTPUT 0

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI SPI MASTER 
INPUT

SPI SLAVE 
INPUT • RESET SCK INPUT SPI SS

AIO – – – –

Table 10-9. Port C Pins Alternate Functions

Port Pin Alternate Function

PC7 A15/CLKO (External memory interface address 15 or Divided System 
Clock)

PC6 A14 (External memory interface address 14)

PC5 A13 (External memory interface address 13)

PC4 A12 (External memory interface address 12)

PC3 A11 (External memory interface address 11)

PC2 A10 (External memory interface address 10)

PC1 A9 (External memory interface address 9)

PC0 A8 (External memory interface address 8)
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• A14 – Port C, Bit 6
A14, External memory interface address 14.

• A13 – Port C, Bit 5
A13, External memory interface address 13.

• A12 – Port C, Bit 4
A12, External memory interface address 12.

• A11 – Port C, Bit 3
A11, External memory interface address 11.

• A10 – Port C, Bit 2
A10, External memory interface address 10.

• A9 – Port C, Bit 1
A9, External memory interface address 9.

• A8 – Port C, Bit 0
A8, External memory interface address 8.

Table 10-10 and Table 10-11 relate the alternate functions of Port C to the overriding signals 
shown in Figure 10-5 on page 71.

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

Table 10-10. Overriding Signals for Alternate Functions in PC7..PC4

Signal Name PC7/A15 PC6/A14 PC5/A13 PC4/A12

PUOE SRE • (XMM<1) SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

PUOV 0 0 0 0

DDOE CKOUT(1) +  
(SRE • (XMM<1)) SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

DDOV 1 1 1 1

PVOE CKOUT(1) +  
(SRE • (XMM<1)) SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

PVOV (A15 • CKOUT(1)) + 
(CLKO • CKOUT(1)) A14 A13 A12

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –
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10.3.5 Alternate Functions of Port D
The Port D pins with alternate functions are shown in Table 10-12.

The alternate pin configuration is as follows:

• T0/CLKO – Port D, Bit 7
T0, Timer/Counter0 counter source.

• RXCAN/T1 – Port D, Bit 6
RXCAN, CAN Receive Data (Data input pin for the CAN). When the CAN controller is enabled 
this pin is configured as an input regardless of the value of DDD6. When the CAN forces this pin 
to be an input, the pull-up can still be controlled by the PORTD6 bit.

T1, Timer/Counter1 counter source.

• TXCAN/XCK1 – Port D, Bit 5

Table 10-11. Overriding Signals for Alternate Functions in PC3..PC0

Signal Name PC3/A11 PC2/A10 PC1/A9 PC0/A8

PUOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

PUOV 0 0 0 0

DDOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

DDOV 1 1 1 1

PVOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

PVOV A11 A10 A9 A8

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –

Table 10-12. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 T0 (Timer/Counter0 Clock Input)

PD6 RXCAN/T1 (CAN Receive Pin or Timer/Counter1 Clock Input)

PD5 TXCAN/XCK1 (CAN Transmit Pin or USART1 External Clock Input/Output)

PD4 ICP1 (Timer/Counter1 Input Capture Trigger)

PD3 INT3/TXD1 (External Interrupt3 Input or UART1 Transmit Pin)

PD2 INT2/RXD1 (External Interrupt2 Input or UART1 Receive Pin)

PD1 INT1/SDA (External Interrupt1 Input or TWI Serial DAta)

PD0 INT0/SCL (External Interrupt0 Input or TWI Serial CLock)
 79
4250G–CAN–09/05



TXCAN, CAN Transmit Data (Data output pin for the CAN). When the CAN is enabled, this pin is 
configured as an output regardless of the value of DDD5.

XCK1, USART1 External clock. The Data Direction Register (DDD5) controls whether the clock 
is output (DDD5 set) or input (DDD45 cleared). The XCK1 pin is active only when the USART1 
operates in Synchronous mode.

• ICP1 – Port D, Bit 4
ICP1, Input Capture Pin1. The PD4 pin can act as an input capture pin for Timer/Counter1.

• INT3/TXD1 – Port D, Bit 3
INT3, External Interrupt source 3. The PD3 pin can serve as an external interrupt source to the 
MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is 
enabled, this pin is configured as an output regardless of the value of DDD3.

• INT2/RXD1 – Port D, Bit 2
INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt source to the 
MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is enabled 
this pin is configured as an input regardless of the value of DDD2. When the USART forces this 
pin to be an input, the pull-up can still be controlled by the PORTD2 bit.

• INT1/SDA – Port D, Bit 1
INT1, External Interrupt source 1. The PD1 pin can serve as an external interrupt source to the 
MCU.

SDA, Two-wire Serial Interface Data. When the TWEN bit in TWCR is set (one) to enable the 
Two-wire Serial Interface, pin PD1 is disconnected from the port and becomes the Serial Data 
I/O pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver 
with slew-rate limitation.

• INT0/SCL – Port D, Bit 0
INT0, External Interrupt source 0. The PD0 pin can serve as an external interrupt source to the 
MCU.

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the 
Two-wire Serial Interface, pin PD0 is disconnected from the port and becomes the Serial Clock 
I/O pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver 
with slew-rate limitation.
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Table 10-13 and Table 10-14 relates the alternate functions of Port D to the overriding signals 
shown in Figure 10-5 on page 71. 

Note: 1. When enabled, the Two-wire Serial Interface enables Slew-Rate controls on the output pins 
PD0 and PD1. This is not shown in this table. In addition, spike filters are connected between 
the AIO outputs shown in the port figure and the digital logic of the TWI module.

 

Table 10-13. Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/T0 PD6/T1/RXCAN PD5/XCK1/TXCAN PD4/ICP1

PUOE 0 RXCANEN TXCANEN + 0

PUOV 0 PORTD6 • PUD 0 0

DDOE 0 RXCANEN TXCANEN 0

DDOV 0 0 1 0

PVOE 0 0 TXCANEN + UMSEL1 0

PVOV 0 0
(XCK1 OUTPUT • 
UMSEL1 • TXCANEN) + 
(TXCAN • TXCANEN)

0

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI T0 INPUT T1 INPUT/RXCAN XCK1 INPUT ICP1 INPUT

AIO – – – –

Table 10-14. Overriding Signals for Alternate Functions in PD3..PD0(1)

Signal Name PD3/INT3/TXD1 PD2/INT2/RXD1 PD1/INT1/SDA PD0/INT0/SCL

PUOE TXEN1 RXEN1 TWEN TWEN

PUOV 0 PORTD2 • PUD PORTD1 • PUD PORTD0 • PUD

DDOE TXEN1 RXEN1 0 0

DDOV 1 0 0 0

PVOE TXEN1 0 TWEN TWEN

PVOV TXD1 0 SDA_OUT SCL_OUT

PTOE 0 0 0 0

DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INT0 ENABLE

DIEOV INT3 ENABLE INT2 ENABLE INT1 ENABLE INT0 ENABLE

DI INT3 INPUT INT2 INPUT/RXD1 INT1 INPUT INT0 INPUT

AIO – – SDA INPUT SCL INPUT
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10.3.6 Alternate Functions of Port E
The Port E pins with alternate functions are shown in Table 10-15.

The alternate pin configuration is as follows:

• PCINT7/ICP3 – Port E, Bit 7
INT7, External Interrupt source 7. The PE7 pin can serve as an external interrupt source.

ICP3, Input Capture Pin3: The PE7 pin can act as an input capture pin for Timer/Counter3.

• INT6/T3 – Port E, Bit 6
INT6, External Interrupt source 6. The PE6 pin can serve as an external interrupt source.

T3, Timer/Counter3 counter source.

• INT5/OC3C – Port E, Bit 5
INT5, External Interrupt source 5. The PE5 pin can serve as an External Interrupt source.

OC3C, Output Compare Match C output. The PE5 pin can serve as an External output for the 
Timer/Counter3 Output Compare C. The pin has to be configured as an output (DDE5 set “one”) 
to serve this function. The OC3C pin is also the output pin for the PWM mode timer function.

• INT4/OC3B – Port E, Bit 4
INT4, External Interrupt source 4. The PE4 pin can serve as an External Interrupt source.

OC3B, Output Compare Match B output. The PE4 pin can serve as an External output for the 
Timer/Counter3 Output Compare B. The pin has to be configured as an output (DDE4 set (one)) 
to serve this function. The OC3B pin is also the output pin for the PWM mode timer function.

• AIN1/OC3A – Port E, Bit 3
AIN1 – Analog Comparator Negative input. This pin is directly connected to the negative input of 
the Analog Comparator.

OC3A, Output Compare Match A output. The PE3 pin can serve as an External output for the 
Timer/Counter3 Output Compare A. The pin has to be configured as an output (DDE3 set “one”) 
to serve this function. The OC3A pin is also the output pin for the PWM mode timer function.

Table 10-15. Port E Pins Alternate Functions

Port Pin Alternate Function

PE7 INT7/ICP3 (External Interrupt 7 Input or Timer/Counter3 Input Capture Trigger)

PE6 INT6/ T3 (External Interrupt 6 Input or Timer/Counter3 Clock Input)

PE5 INT5/OC3C (External Interrupt 5 Input or Output Compare and PWM Output C for 
Timer/Counter3)

PE4 INT4/OC3B (External Interrupt4 Input or Output Compare and PWM Output B for 
Timer/Counter3)

PE3 AIN1/OC3A (Analog Comparator Negative Input or Output Compare and PWM Output A 
for Timer/Counter3)

PE2 AIN0/XCK0 (Analog Comparator Positive Input or USART0 external clock input/output)

PE1 PDO/TXD0 (Programming Data Output or UART0 Transmit Pin)

PE0 PDI/RXD0 (Programming Data Input or UART0 Receive Pin)
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• AIN0/XCK0 – Port E, Bit 2
AIN0 – Analog Comparator Positive input. This pin is directly connected to the positive input of 
the Analog Comparator.

XCK0, USART0 External clock. The Data Direction Register (DDE2) controls whether the clock 
is output (DDE2 set) or input (DDE2 cleared). The XCK0 pin is active only when the USART0 
operates in Synchronous mode.

• PDO/TXD0 – Port E, Bit 1
PDO, SPI Serial Programming Data Output. During Serial Program Downloading, this pin is 
used as data output line for the AT90CAN128.

TXD0, UART0 Transmit pin.

• PDI/RXD0 – Port E, Bit 0
PDI, SPI Serial Programming Data Input. During Serial Program Downloading, this pin is used 
as data input line for the AT90CAN128.

RXD0, USART0 Receive Pin. Receive Data (Data input pin for the USART0). When the 
USART0 receiver is enabled this pin is configured as an input regardless of the value of DDRE0. 
When the USART0 forces this pin to be an input, a logical one in PORTE0 will turn on the inter-
nal pull-up.

Table 10-16 and Table 10-17 relates the alternate functions of Port E to the overriding signals 
shown in Figure 10-5 on page 71. 

Table 10-16. Overriding Signals for Alternate Functions PE7..PE4

Signal Name PE7/INT7/ICP3 PE6/INT6/T3 PE5/INT5/OC3C PE4/INT4/OC3B

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 OC3C ENABLE OC3B ENABLE

PVOV 0 0 OC3C OC3B

PTOE 0 0 0 0

DIEOE INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE

DIEOV INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE

DI INT7 INPUT 
/ICP3 INPUT

INT6 INPUT 
/T3 INPUT INT5 INPUT INT4 INPUT

AIO – – – –
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Note: 1. AIN0D and AIN1D is described in “Digital Input Disable Register 1 – DIDR1” on page 270.

10.3.7 Alternate Functions of Port F
The Port F has an alternate function as analog input for the ADC as shown in Table 10-18. If 
some Port F pins are configured as outputs, it is essential that these do not switch when a con-
version is in progress. This might corrupt the result of the conversion. If the JTAG interface is 
enabled, the pull-up resistors on pins PF7 (TDI), PF5 (TMS) and PF4 (TCK) will be activated 
even if a reset occurs.

The alternate pin configuration is as follows:

• TDI, ADC7 – Port F, Bit 7
ADC7, Analog to Digital Converter, input channel 7.

Table 10-17. Overriding Signals for Alternate Functions in PE3..PE0

Signal Name PE3/AIN1/OC3A PE2/AIN0/XCK0 PE1/PDO/TXD0 PE0/PDI/RXD0

PUOE 0 0 TXEN0 RXEN0

PUOV 0 0 0 PORTE0 • PUD

DDOE 0 0 TXEN0 RXEN0

DDOV 0 0 1 0

PVOE OC3A ENABLE UMSEL0 TXEN0 0

PVOV OC3A XCK0 OUTPUT TXD0 0

PTOE 0 0 0 0

DIEOE AIN1D(1) AIN0D(1) 0 0

DIEOV 0 0 0 0

DI 0 XCK0 INPUT – RXD0

AIO AIN1 INPUT AIN0 INPUT – –

Table 10-18. Port F Pins Alternate Functions

Port Pin Alternate Function

PF7 ADC7/TDI (ADC input channel 7 or JTAG Data Input)

PF6 ADC6/TDO (ADC input channel 6 or JTAG Data Output)

PF5 ADC5/TMS (ADC input channel 5 or JTAG mode Select)

PF4 ADC4/TCK (ADC input channel 4 or JTAG ClocK)

PF3 ADC3 (ADC input channel 3)

PF2 ADC2 (ADC input channel 2)

PF1 ADC1 (ADC input channel 1)

PF0 ADC0 (ADC input channel 0)
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TDI, JTAG Test Data In. Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TCK, ADC6 – Port F, Bit 6
ADC6, Analog to Digital Converter, input channel 6.

TDO, JTAG Test Data Out. Serial output data from Instruction Register or Data Register. When 
the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TMS, ADC5 – Port F, Bit 5
ADC5, Analog to Digital Converter, input channel 5.

TMS, JTAG Test mode Select. This pin is used for navigating through the TAP-controller state 
machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TDO, ADC4 – Port F, Bit 4
ADC4, Analog to Digital Converter, input channel 4.

TCK, JTAG Test Clock. JTAG operation is synchronous to TCK. When the JTAG interface is 
enabled, this pin can not be used as an I/O pin.

• ADC3 – Port F, Bit 3
ADC3, Analog to Digital Converter, input channel 3.

• ADC2 – Port F, Bit 2
ADC2, Analog to Digital Converter, input channel 2.

• ADC1 – Port F, Bit 1
ADC1, Analog to Digital Converter, input channel 1.

• ADC0 – Port F, Bit 0
ADC0, Analog to Digital Converter, input channel 0.
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Table 10-19 and Table 10-20 relates the alternate functions of Port F to the overriding signals 
shown in Figure 10-5 on page 71.

Table 10-19. Overriding Signals for Alternate Functions in PF7..PF4

Signal Name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV JTAGEN JTAGEN JTAGEN JTAGEN

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0 SHIFT_IR + 
SHIFT_DR 0 0

PVOE JTAGEN JTAGEN JTAGEN JTAGEN

PVOV 0 TDO 0 0

PTOE 0 0 0 0

DIEOE JTAGEN + 
ADC7D

JTAGEN + 
ADC6D

JTAGEN + 
ADC5D

JTAGEN + 
ADC4D

DIEOV JTAGEN 0 JTAGEN JTAGEN

DI TDI – TMS TCK

AIO ADC7 INPUT ADC6 INPUT ADC5 INPUT ADC4 INPUT

Table 10-20. Overriding Signals for Alternate Functions in PF3..PF0

Signal Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PF0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE 0 0 0 0

DIEOE ADC3D ADC2D ADC1D ADC0D

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT
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10.3.8 Alternate Functions of Port G

The alternate pin configuration is as follows:

The alternate pin configuration is as follows:

• TOSC1 – Port G, Bit 4
TOSC2, Timer/Counter2 Oscillator pin 1. When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PG4 is disconnected from the port, and becomes the 
input of the inverting Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this 
pin, and the pin can not be used as an I/O pin. 

• TOSC2 – Port G, Bit 3
TOSC2, Timer/Counter2 Oscillator pin 2. When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PG3 is disconnected from the port, and becomes the 
inverting output of the Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this 
pin, and the pin can not be used as an I/O pin.

• ALE – Port G, Bit 2
ALE is the external data memory Address Latch Enable signal.

• RD – Port G, Bit 1
RD is the external data memory read control strobe.

• WR – Port G, Bit 0
WR is the external data memory write control strobe.

Table 10-21. Port G Pins Alternate Functions

Port Pin Alternate Function

PG4 TOSC1 (RTC Oscillator Timer/Counter2)

PG3 TOSC2 (RTC Oscillator Timer/Counter2)

PG2 ALE (Address Latch Enable to external memory)

PG1 RD (Read strobe to external memory)

PG0 WR (Write strobe to external memory)
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Table 10-21 and Table 10-22 relates the alternate functions of Port G to the overriding signals 
shown in Figure 10-5 on page 71.

10.4 Register Description for I/O-Ports

10.4.1 Port A Data Register – PORTA

Table 10-22. Overriding Signals for Alternate Function in PG4

Signal Name - - - PG4/TOSC1

PUOE AS2

PUOV 0

DDOE AS2

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE AS2

DIEOV EXCLK

DI –

AIO T/C2 OSC INPUT

Table 10-23. Overriding Signals for Alternate Functions in PG3:0

Signal Name PG3/TOSC2 PG2/ALE PG1/RD PG0/WR

PUOE AS2 • EXCLK SRE SRE SRE

PUOV 0 0 0 0

DDOE AS2 • EXCLK SRE SRE SRE

DDOV 0 1 1 1

PVOE 0 SRE SRE SRE

PVOV 0 ALE RD WR

PTOE 0 0 0 0

DIEOE AS2 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO T/C2 OSC OUTPUT – – –

Bit 7 6 5 4 3 2 1 0

PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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10.4.2 Port A Data Direction Register – DDRA

10.4.3 Port A Input Pins Address – PINA

10.4.4 Port B Data Register – PORTB

10.4.5 Port B Data Direction Register – DDRB

10.4.6 Port B Input Pins Address – PINB

10.4.7 Port C Data Register – PORTC

10.4.8 Port C Data Direction Register – DDRC

10.4.9 Port C Input Pins Address – PINC

Bit 7 6 5 4 3 2 1 0

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
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10.4.10 Port D Data Register – PORTD

10.4.11 Port D Data Direction Register – DDRD

10.4.12 Port D Input Pins Address – PIND

10.4.13 Port E Data Register – PORTE

10.4.14 Port E Data Direction Register – DDRE

10.4.15 Port E Input Pins Address – PINE

10.4.16 Port F Data Register – PORTF

10.4.17 Port F Data Direction Register – DDRF

Bit 7 6 5 4 3 2 1 0

PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 PORTE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 DDRE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 PINE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 PORTF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 DDRF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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10.4.18 Port F Input Pins Address – PINF

10.4.19 Port G Data Register – PORTG

10.4.20 Port G Data Direction Register – DDRG

10.4.21 Port G Input Pins Address – PING

Bit 7 6 5 4 3 2 1 0

PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 PINF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

– – – PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 PORTG
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – DDG4 DDG3 DDG2 DDG1 DDG0 DDRG
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – PING4 PING3 PING2 PING1 PING0 PING
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 N/A N/A N/A N/A N/A
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11. External Interrupts
The External Interrupts are triggered by the INT7:0 pins. Observe that, if enabled, the interrupts 
will trigger even if the INT7:0 pins are configured as outputs. This feature provides a way of gen-
erating a software interrupt. The External Interrupts can be triggered by a falling or rising edge or 
a low level. This is set up as indicated in the specification for the External Interrupt Control Reg-
isters – EICRA (INT3:0) and EICRB (INT7:4). When the external interrupt is enabled and is 
configured as level triggered, the interrupt will trigger as long as the pin is held low. Note that 
recognition of falling or rising edge interrupts on INT7:4 requires the presence of an I/O clock, 
described in “Clock Systems and their Distribution” on page 36. Low level interrupts and the 
edge interrupt on INT3:0 are detected asynchronously. This implies that these interrupts can be 
used for waking the part also from sleep modes other than Idle mode. The I/O clock is halted in 
all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed 
level must be held for some time to wake up the MCU. This makes the MCU less sensitive to 
noise. The changed level is sampled twice by the Watchdog Oscillator clock. The period of the 
Watchdog Oscillator is 1 µs (nominal) at 5.0V and 25°C. The frequency of the Watchdog Oscilla-
tor is voltage dependent as shown in the “Electrical Characteristics” on page 361. The MCU will 
wake up if the input has the required level during this sampling or if it is held until the end of the 
start-up time. The start-up time is defined by the SUT fuses as described in “System Clock” on 
page 36. If the level is sampled twice by the Watchdog Oscillator clock but disappears before the 
end of the start-up time, the MCU will still wake up, but no interrupt will be generated. The 
required level must be held long enough for the MCU to complete the wake up to trigger the level 
interrupt.

11.0.1 External Interrupt Control Register A – EICRA

• Bits 7..0 – ISC31, ISC30 – ISC01, ISC00: External Interrupt 3 - 0 Sense Control Bits
The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the 
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that 
activate the interrupts are defined in Table 11-1. Edges on INT3..INT0 are registered asynchro-
nously. Pulses on INT3:0 pins wider than the minimum pulse width given in Table 11-2 will 
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level 
interrupt is selected, the low level must be held until the completion of the currently executing 
instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an inter-
rupt request as long as the pin is held low. When changing the ISCn bit, an interrupt can occur. 
Therefore, it is recommended to first disable INTn by clearing its Interrupt Enable bit in the 
EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt flag should be 
cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the 
interrupt is re-enabled.

Bit 7 6 5 4 3 2 1 0

ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 EICRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Note: 1. n = 3, 2, 1 or 0. 
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt 
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

11.0.2 External Interrupt Control Register B – EICRB

• Bits 7..0 – ISC71, ISC70 - ISC41, ISC40: External Interrupt 7 - 4 Sense Control Bits
The External Interrupts 7 - 4 are activated by the external pins INT7:4 if the SREG I-flag and the 
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that 
activate the interrupts are defined in Table 11-3. The value on the INT7:4 pins are sampled 
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one 
clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an inter-
rupt. Observe that CPU clock frequency can be lower than the XTAL frequency if the XTAL 
divider is enabled. If low level interrupt is selected, the low level must be held until the comple-
tion of the currently executing instruction to generate an interrupt. If enabled, a level triggered 
interrupt will generate an interrupt request as long as the pin is held low.

Note: 1. n = 7, 6, 5 or 4. 
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt 
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

Table 11-1.  Interrupt Sense Control(1)

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request.

0 1 Reserved

1 0 The falling edge of INTn generates asynchronously an interrupt request.

1 1 The rising edge of INTn generates asynchronously an interrupt request.

Table 11-2. Asynchronous External Interrupt Characteristics

Symbol Parameter Condition Min Typ Max Units

tINT
Minimum pulse width for asynchronous 
external interrupt 50 ns

Bit 7 6 5 4 3 2 1 0

ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 EICRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 11-3.  Interrupt Sense Control(1)

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request.

0 1 Any logical change on INTn generates an interrupt request

1 0 The falling edge between two samples of INTn generates an interrupt request.

1 1 The rising edge between two samples of INTn generates an interrupt request.
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11.0.3 External Interrupt Mask Register – EIMSK

• Bits 7..0 – INT7 – INT0: External Interrupt Request 7 - 0 Enable
When an INT7 – INT0 bit is written to one and the I-bit in the Status Register (SREG) is set 
(one), the corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the 
External Interrupt Control Registers – EICRA and EICRB – defines whether the external inter-
rupt is activated on rising or falling edge or level sensed. Activity on any of these pins will trigger 
an interrupt request even if the pin is enabled as an output. This provides a way of generating a 
software interrupt.

11.0.4 External Interrupt Flag Register – EIFR

• Bits 7..0 – INTF7 - INTF0: External Interrupt Flags 7 - 0
When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0 becomes 
set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT7:0 in EIMSK, are 
set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine 
is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags are 
always cleared when INT7:0 are configured as level interrupt. Note that when entering sleep 
mode with the INT3:0 interrupts disabled, the input buffers on these pins will be disabled. This 
may cause a logic change in internal signals which will set the INTF3:0 flags. See “Digital Input 
Enable and Sleep Modes” on page 69 for more information.

Bit 7 6 5 4 3 2 1 0

INT7 INT6 INT5 INT4 INT3 INT2 INT1 IINT0 EIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 IINTF0 EIFR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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12. Timer/Counter3/1/0 Prescalers
Timer/Counter3, Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the 
Timer/Counters can have different prescaler settings. The description below applies to both 
Timer/Counter3, Timer/Counter1 and Timer/Counter0.

12.1 Overview
Most bit references in this section are written in general form. A lower case “n” replaces the 
Timer/Counter number.

12.1.1 Internal Clock Source
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This 
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system 
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a 
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or 
fCLK_I/O/1024.

12.1.2 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the 
Timer/Counter, and it is shared by Timer/Counter3, Timer/Counter1 and Timer/Counter0. Since 
the prescaler is not affected by the Timer/Counter’s clock select, the state of the prescaler will 
have implications for situations where a prescaled clock is used. One example of prescaling arti-
facts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The 
number of system clock cycles from when the timer is enabled to the first count occurs can be 
from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler 
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is 
connected to.

12.1.3 External Clock Source
An external clock source applied to the T3/T1/T0 pin can be used as Timer/Counter clock 
(clkT3/clkT1/clkT0). The T3/T1/T0 pin is sampled once every system clock cycle by the pin syn-
chronization logic. The synchronized (sampled) signal is then passed through the edge detector. 
Figure 12-1 shows a functional equivalent block diagram of the T3/T1/T0 synchronization and 
edge detector logic. The registers are clocked at the positive edge of the internal system clock 
(clkI/O). The latch is transparent in the high period of the internal system clock.

The edge detector generates one clkT3/clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or nega-
tive (CSn2:0 = 6) edge it detects.
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Figure 12-1. T3/T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles 
from an edge has been applied to the T3/T1/T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T3/T1/T0 has been stable for at 
least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is 
generated.

Each half period of the external clock applied must be longer than one system clock cycle to 
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50 % duty cycle. Since the edge detector uses 
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency 
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is 
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 12-2. Prescaler for Timer/Counter3, Timer/Counter1 and Timer/Counter0 (1)

Note: 1. The synchronization logic on the input pins (T0/T1/T3) is shown in Figure 12-1.
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12.2 Timer/Counter0/1/3 Prescalers Register Description

12.2.1 General Timer/Counter Control Register – GTCCR

• Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the 
value that is written to the PSR2 and PSR310 bits is kept, hence keeping the corresponding 
prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are halted 
and can be configured to the same value without the risk of one of them advancing during con-
figuration. When the TSM bit is written to zero, the PSR2 and PSR310 bits are cleared by 
hardware, and the Timer/Counters start counting simultaneously.

• Bit 0 – PSR310: Prescaler Reset Timer/Counter3, Timer/Counter1 and Timer/Counter0
When this bit is one, Timer/Counter3, Timer/Counter1 and Timer/Counter0 prescaler will be 
Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note 
that Timer/Counter3, Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset 
of this prescaler will affect these three timers.

Bit 7 6 5 4 3 2 1 0

TSM – – – – – PSR2 PSR310 GTCCR
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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13. 8-bit Timer/Counter0 with PWM
Timer/Counter0 is a general purpose, single channel, 8-bit Timer/Counter module. The main 
features are:

13.1 Features
• Single Channel Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• External Event Counter
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV0 and OCF0A)

13.2 Overview
Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 0. However, when using 
the register or bit defines in a program, the precise form must be used, i.e., TCNT0 for 
accessing Timer/Counter0 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A. However, when 
using the register or bit defines in a program, the precise form must be used, i.e., OCR0A for 
accessing Timer/Counter0 output compare channel A value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 13-1. For the actual 
placement of I/O pins, refer to “Pinout AT90CAN128 - TQFP” on page 4. CPU accessible I/O 
Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register 
and bit locations are listed in the “8-bit Timer/Counter Register Description” on page 108.

Figure 13-1. 8-bit Timer/Counter Block Diagram 
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13.2.1 Registers

The Timer/Counter (TCNT0) and Output Compare Register (OCR0A) are 8-bit registers. Inter-
rupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt 
Flag Register (TIFR0). All interrupts are individually masked with the Timer Interrupt Mask Reg-
ister (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on 
the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter 
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source 
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Register (OCR0A) is compared with the Timer/Counter 
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC0A). See “Output 
Compare Unit” on page 100. for details. The compare match event will also set the Compare 
Flag (OCF0A) which can be used to generate an Output Compare interrupt request.

13.2.2 Definitions
The following definitions are used extensively throughout the section:

13.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source 
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits 
located in the Timer/Counter Control Register (TCCR0A). For details on clock sources and pres-
caler, see “Timer/Counter3/1/0 Prescalers” on page 95.

13.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 
13-2 shows a block diagram of the counter and its surroundings.

Figure 13-2. Counter Unit Block Diagram

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the 
count sequence. The TOP value can be assigned to be the fixed value 0xFF 
(MAX) or the value stored in the OCR0A Register. The assignment is depen-
dent on the mode of operation.
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Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented 
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source, 
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the 
timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of 
whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or 
count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in 
the Timer/Counter Control Register (TCCR0A). There are close connections between how the 
counter behaves (counts) and how waveforms are generated on the Output Compare output 
OC0A. For more details about advanced counting sequences and waveform generation, see 
“Modes of Operation” on page 103.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by 
the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt.

13.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT0 with the Output Compare Register 
(OCR0A). Whenever TCNT0 equals OCR0A, the comparator signals a match. A match will set 
the Output Compare Flag (OCF0A) at the next timer clock cycle. If enabled (OCIE0A = 1 and 
Global Interrupt Flag in SREG is set), the Output Compare Flag generates an Output Compare 
interrupt. The OCF0A flag is automatically cleared when the interrupt is executed. Alternatively, 
the OCF0A flag can be cleared by software by writing a logical one to its I/O bit location. The 
Waveform Generator uses the match signal to generate an output according to operating mode 
set by the WGM01:0 bits and Compare Output mode (COM0A1:0) bits. The max and bottom sig-
nals are used by the Waveform Generator for handling the special cases of the extreme values 
in some modes of operation (See “Modes of Operation” on page 103.).
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Figure 13-3 shows a block diagram of the Output Compare unit. 

Figure 13-3. Output Compare Unit, Block Diagram

The OCR0A Register is double buffered when using any of the Pulse Width Modulation (PWM) 
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCR0A Compare 
Register to either top or bottom of the counting sequence. The synchronization prevents the 
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR0A Buffer Register, and if double buffering is 
disabled the CPU will access the OCR0A directly. 

13.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by 
writing a one to the Force Output Compare (FOC0A) bit. Forcing compare match will not set the 
OCF0A flag or reload/clear the timer, but the OC0A pin will be updated as if a real compare 
match had occurred (the COM0A1:0 bits settings define whether the OC0A pin is set, cleared or 
toggled). 

13.5.2 Compare Match Blocking by TCNT0 Write
All CPU write operations to the TCNT0 Register will block any compare match that occur in the 
next timer clock cycle, even when the timer is stopped. This feature allows OCR0A to be initial-
ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is 
enabled.

13.5.3 Using the Output Compare Unit
Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock 
cycle, there are risks involved when changing TCNT0 when using the Output Compare channel, 
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generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is 
downcounting.

The setup of the OC0A should be performed before setting the Data Direction Register for the 
port pin to output. The easiest way of setting the OC0A value is to use the Force Output Com-
pare (FOC0A) strobe bits in Normal mode. The OC0A Register keeps its value even when 
changing between Waveform Generation modes.

Be aware that the COM0A1:0 bits are not double buffered together with the compare value. 
Changing the COM0A1:0 bits will take effect immediately.

13.6 Compare Match Output Unit
The Compare Output mode (COM0A1:0) bits have two functions. The Waveform Generator 
uses the COM0A1:0 bits for defining the Output Compare (OC0A) state at the next compare 
match. Also, the COM0A1:0 bits control the OC0A pin output source. Figure 13-4 shows a sim-
plified schematic of the logic affected by the COM0A1:0 bit setting. The I/O Registers, I/O bits, 
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COM0A1:0 bits are shown. When referring to the 
OC0A state, the reference is for the internal OC0A Register, not the OC0A pin. If a system reset 
occur, the OC0A Register is reset to “0”.

Figure 13-4. Compare Match Output Unit, Schematic

13.6.1 Compare Output Function
The general I/O port function is overridden by the Output Compare (OC0A) from the Waveform 
Generator if either of the COM0A1:0 bits are set. However, the OC0A pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction 
Register bit for the OC0A pin (DDR_OC0A) must be set as output before the OC0A value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0A state before the 
output is enabled. Note that some COM0A1:0 bit settings are reserved for certain modes of 
operation. See “8-bit Timer/Counter Register Description” on page 108.
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13.6.2 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM0A1:0 bits differently in Normal, CTC, and PWM 
modes. For all modes, setting the COM0A1:0 = 0 tells the Waveform Generator that no action on 
the OC0A Register is to be performed on the next compare match. For compare output actions 
in the non-PWM modes refer to Table 13-2 on page 109. For fast PWM mode, refer to Table 13-
3 on page 109, and for phase correct PWM refer to Table 13-4 on page 110.

A change of the COM0A1:0 bits state will have effect at the first compare match after the bits are 
written. For non-PWM modes, the action can be forced to have immediate effect by using the 
FOC0A strobe bits.

13.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is 
defined by the combination of the Waveform Generation mode (WGM01:0) and Compare Output 
mode (COM0A1:0) bits. The Compare Output mode bits do not affect the counting sequence, 
while the Waveform Generation mode bits do. The COM0A1:0 bits control whether the PWM 
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM 
modes the COM0A1:0 bits control whether the output should be set, cleared, or toggled at a 
compare match (See “Compare Match Output Unit” on page 102.).

For detailed timing information refer to Figure 13-8, Figure 13-9, Figure 13-10 and Figure 13-11
in “Timer/Counter Timing Diagrams” on page 107.

13.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the counting 
direction is always up (incrementing), and no counter clear is performed. The counter simply 
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same 
timer clock cycle as the TCNT0 becomes zero. The TOV0 flag in this case behaves like a ninth 
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt 
that automatically clears the TOV0 flag, the timer resolution can be increased by software. There 
are no special cases to consider in the Normal mode, a new counter value can be written 
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will 
occupy too much of the CPU time.

13.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0A Register is used to 
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter 
value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence 
also its resolution. This mode allows greater control of the compare match output frequency. It 
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 13-5. The counter value (TCNT0) 
increases until a compare match occurs between TCNT0 and OCR0A, and then counter 
(TCNT0) is cleared.
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Figure 13-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the 
OCF0A flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the 
TOP value. However, changing TOP to a value close to BOTTOM when the counter is running 
with none or a low prescaler value must be done with care since the CTC mode does not have 
the double buffering feature. If the new value written to OCR0A is lower than the current value of 
TCNT0, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFF) and wrap around starting at 0x00 before the compare match can occur. 

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical 
level on each compare match by setting the Compare Output mode bits to toggle mode 
(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for 
the pin is set to output. The waveform generated will have a maximum frequency of fOC0A = 
fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following 
equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 flag is set in the same timer clock cycle that the 
counter counts from MAX to 0x00.

13.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high frequency 
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In 
non-inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare 
match between TCNT0 and OCR0A, and set at BOTTOM. In inverting Compare Output mode, 
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, 
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM 
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited 
for power regulation, rectification, and DAC applications. High frequency allows physically small 
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. 
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast 
PWM mode is shown in Figure 13-6. The TCNT0 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and 
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inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare 
matches between OCR0A and TCNT0.

Figure 13-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0A pin. 
Setting the COM0A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output 
can be generated by setting the COM0A1:0 to three (See Table 13-3 on page 109). The actual 
OC0A value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OC0A Register at the compare 
match between OCR0A and TCNT0, and clearing (or setting) the OC0A Register at the timer 
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM 
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will 
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result 
in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0 
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC0A to toggle its logical level on each compare match (COM0A1:0 = 1). The waveform 
generated will have a maximum frequency of fOC0A = fclk_I/O/2 when OCR0A is set to zero. This 
feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.
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13.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct PWM 
waveform generation option. The phase correct PWM mode is based on a dual-slope operation. 
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare match 
between TCNT0 and OCR0A while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation 
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control 
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct 
PWM mode the counter is incremented until the counter value matches MAX. When the counter 
reaches MAX, it changes the count direction. The TCNT0 value will be equal to MAX for one 
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 13-7. 
The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope 
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal 
line marks on the TCNT0 slopes represent compare matches between OCR0A and TCNT0.

Figure 13-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The 
interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM 
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the 
OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM. An inverted 
PWM output can be generated by setting the COM0A1:0 to three (See Table 13-4 on page 110). 
The actual OC0A value will only be visible on the port pin if the data direction for the port pin is 
set as output. The PWM waveform is generated by clearing (or setting) the OC0A Register at the 
compare match between OCR0A and TCNT0 when the counter increments, and setting (or 
clearing) the OC0A Register at compare match between OCR0A and TCNT0 when the counter 

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update
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decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM 
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the 
output will be continuously low and if set equal to MAX the output will be continuously high for 
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

13.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a 
clock enable signal in the following figures. The figures include information on when interrupt 
flags are set. Figure 13-8 contains timing data for basic Timer/Counter operation. The figure 
shows the count sequence close to the MAX value in all modes other than phase correct PWM 
mode.

Figure 13-8. Timer/Counter Timing Diagram, no Prescaling

Figure 13-9 shows the same timing data, but with the prescaler enabled.

Figure 13-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

fOCnxPCPWM
fclk_I/O
N 510⋅
------------------=

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
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Figure 13-10 shows the setting of OCF0A in all modes except CTC mode.

Figure 13-10. Timer/Counter Timing Diagram, Setting of OCF0A, with Prescaler (fclk_I/O/8)

Figure 13-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode.

Figure 13-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

13.9 8-bit Timer/Counter Register Description

13.9.1 Timer/Counter0 Control Register A – TCCR0A

• Bit 7 – FOC0A: Force Output Compare A
The FOC0A bit is only active when the WGM00 bit specifies a non-PWM mode. However, for 
ensuring compatibility with future devices, this bit must be set to zero when TCCR0A is written 
when operating in PWM mode. When writing a logical one to the FOC0A bit, an immediate com-
pare match is forced on the Waveform Generation unit. The OC0A output is changed according 
to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a strobe. Therefore it is 
the value present in the COM0A1:0 bits that determines the effect of the forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using 
OCR0A as TOP.

The FOC0A bit is always read as zero.

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 TCCR0A
Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 6, 3 – WGM01:0: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for the maximum (TOP) 
counter value, and what type of waveform generation to be used. Modes of operation supported 
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and 
two types of Pulse Width Modulation (PWM) modes. See Table 13-1 and “Modes of Operation” 
on page 103.

Note: 1. The CTC0 and PWM0 bit definition names are now obsolete. Use the WGM01:0 definitions. 
However, the functionality and location of these bits are compatible with previous versions of 
the timer.

• Bit 5:4 – COM01:0: Compare Match Output Mode
These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0 
bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected 
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin 
must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the 
WGM01:0 bit setting. Table 13-2 shows the COM0A1:0 bit functionality when the WGM01:0 bits 
are set to a normal or CTC mode (non-PWM).

Table 13-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM 
mode.

Table 13-1. Waveform Generation Mode Bit Description(1)

Mode WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter 
Mode of Operation TOP Update of 

OCR0A at
TOV0 Flag 
Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0A Immediate MAX

3 1 1 Fast PWM 0xFF TOP MAX

Table 13-2. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match

Table 13-3. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0
Clear OC0A on compare match.
Set OC0A at TOP

1 1
Set OC0A on compare match.
Clear OC0A at TOP
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Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 104 
for more details.

Table 13-4 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on 
page 106 for more details.

• Bit 2:0 – CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the 
counter even if the pin is configured as an output. This feature allows software control of the 
counting.

13.9.2 Timer/Counter0 Register – TCNT0

The Timer/Counter Register gives direct access, both for read and write operations, to the 
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the compare 
match on the following timer clock. Modifying the counter (TCNT0) while the counter is running, 
introduces a risk of missing a compare match between TCNT0 and the OCR0A Register.

Table 13-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0
Clear OC0A on compare match when up-counting.
Set OC0A on compare match when downcounting.

1 1
Set OC0A on compare match when up-counting.
Clear OC0A on compare match when downcounting.

Table 13-5. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

TCNT0[7:0] TCNT0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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13.9.3 Output Compare Register A – OCR0A

The Output Compare Register A contains an 8-bit value that is continuously compared with the 
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to 
generate a waveform output on the OC0A pin.

13.9.4 Timer/Counter0 Interrupt Mask Register – TIMSK0

• Bit 7..2 – Reserved Bits
These are reserved bits for future use.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable
When the OCIE0A bit is written to one, and the I-bit in the Status Register is set (one), the 
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed 
if a compare match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the 
Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable
When the TOIE0 bit is written to one, and the I-bit in the Status Register is set (one), the 
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an 
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 Inter-
rupt Flag Register – TIFR0.

13.9.5 Timer/Counter0 Interrupt Flag Register – TIFR0

• Bit 1 – OCF0A: Output Compare Flag 0 A
The OCF0A bit is set (one) when a compare match occurs between the Timer/Counter0 and the 
data in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing 
the corresponding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic 
one to the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare match Interrupt 
Enable), and OCF0A are set (one), the Timer/Counter0 Compare match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag
The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared 
by writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Inter-
rupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed. In 
phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at 
0x00.

Bit 7 6 5 4 3 2 1 0

OCR0A[7:0] OCR0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – – OCIE0A TOIE0 TIMSK0
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – – OCF0A TOV0 TIFR0
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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14. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)
The 16-bit Timer/Counter unit allows accurate program execution timing (event management), 
wave generation, and signal timing measurement. The main features are:

14.1 Features
• True 16-bit Design (i.e., Allows 16-bit PWM)
• Three independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1 for Timer/Counter1 - TOV3, 

OCF3A, OCF3B, and ICF3 for Timer/Counter3)

14.2 Overview
Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 1 or 3. However, when 
using the register or bit defines in a program, the precise form must be used, i.e., TCNT1 for 
accessing Timer/Counter1 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A, B or C. However, 
when using the register or bit defines in a program, the precise form must be used, i.e., 
OCRnA for accessing Timer/Countern output compare channel A value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 14-1. For the actual 
placement of I/O pins, refer to “Pinout AT90CAN128 - TQFP” on page 4. CPU accessible I/O 
Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register 
and bit locations are listed in the “16-bit Timer/Counter Register Description” on page 134.
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Figure 14-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 2-2 on page 4, Table 10-6 on page 75, and Table 10-15 on page 82 for 
Timer/Counter1 and 3 pin placement and description. 

14.2.1 Registers
The Timer/Counter (TCNTn), Output Compare Registers (OCRnx), and Input Capture Register 
(ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16-bit 
registers. These procedures are described in the section “Accessing 16-bit Registers” on page 
115. The Timer/Counter Control Registers (TCCRnx) are 8-bit registers and have no CPU 
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible 
in the Timer Interrupt Flag Register (TIFRn). All interrupts are individually masked with the Timer 
Interrupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on 
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter 
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uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source 
is selected. The output from the Clock Select logic is referred to as the timer clock (clkTn).

The double buffered Output Compare Registers (OCRnx) are compared with the Timer/Counter 
value at all time. The result of the compare can be used by the Waveform Generator to generate 
a PWM or variable frequency output on the Output Compare pin (OCnx). See “Output Compare 
Units” on page 122.. The compare match event will also set the Compare Match Flag (OCFnx) 
which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (See 
“Analog Comparator” on page 267.) The Input Capture unit includes a digital filtering unit (Noise 
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined 
by either the OCRnA Register, the ICRn Register, or by a set of fixed values. When using 
OCRnA as TOP value in a PWM mode, the OCRnA Register can not be used for generating a 
PWM output. However, the TOP value will in this case be double buffered allowing the TOP 
value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used 
as an alternative, freeing the OCRnA to be used as PWM output.

14.2.2 Definitions
The following definitions are used extensively throughout the section:

14.2.3 Compatibility
The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit 
AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version 
regarding:

• All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt 
Registers.

• Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.
• Interrupt Vectors.

The following control bits have changed name, but have same functionality and register location:

• PWMn0 is changed to WGMn0.
• PWMn1 is changed to WGMn1.
• CTCn is changed to WGMn2.

The following registers are added to the 16-bit Timer/Counter:

• Timer/Counter Control Register C (TCCRnC).
• Output Compare Register C, OCRnCH and OCRnCL, combined OCRnC.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65,535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count 
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF, 
or 0x03FF, or to the value stored in the OCRnA or ICRn Register. The assignment is 
dependent of the mode of operation.
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The 16-bit Timer/Counter has improvements that will affect the compatibility in some special 
cases.

The following bits are added to the 16-bit Timer/Counter Control Registers:

• COMnC1:0 are added to TCCRnA.
• FOCnA, FOCnB and FOCnC are added to TCCRnC.
• WGMn3 is added to TCCRnB.

Interrupt flag and mask bits for output compare unit C are added.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special 
cases.

14.3 Accessing 16-bit Registers
The TCNTn, OCRnx, and ICRn are 16-bit registers that can be accessed by the AVR CPU via 
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations. 
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit 
access. The same temporary register is shared between all 16-bit registers within each 16-bit 
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low 
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of 
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnx 16-bit 
registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low 
byte must be read before the high byte.
 115
4250G–CAN–09/05



14.3.1 Code Examples
The following code examples show how to access the 16-bit timer registers assuming that no 
interrupts updates the temporary register. The same principle can be used directly for accessing 
the OCRnx and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit 
access.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt 
occurs between the two instructions accessing the 16-bit register, and the interrupt code 
updates the temporary register by accessing the same or any other of the 16-bit timer registers, 
then the result of the access outside the interrupt will be corrupted. Therefore, when both the 
main code and the interrupt code update the temporary register, the main code must disable the 
interrupts during the 16-bit access.

Assembly Code Examples(1)

...

; Set TCNTn to 0x01FF

ldi r17,0x01

ldi r16,0xFF

sts TCNTnH,r17

sts TCNTnL,r16

; Read TCNTn into r17:r16

lds r16,TCNTnL

lds r17,TCNTnH

...

C Code Examples(1)

unsigned int i;

...

/* Set TCNTn to 0x01FF */

TCNTn = 0x1FF;
/* Read TCNTn into i */

i = TCNTn;

...
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The following code examples show how to do an atomic read of the TCNTn Register contents. 
Reading any of the OCRnx or ICRn Registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNTn:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNTn into r17:r16

lds r16,TCNTnL

lds r17,TCNTnH

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNTn(void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */

i = TCNTn;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}
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The following code examples show how to do an atomic write of the TCNTn Register contents. 
Writing any of the OCRnx or ICRn Registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNTn.

14.3.2 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written, 
then the high byte only needs to be written once. However, note that the same rule of atomic 
operation described previously also applies in this case.

14.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source 
is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits 
located in the Timer/Counter control Register B (TCCRnB). For details on clock sources and 
prescaler, see “Timer/Counter3/1/0 Prescalers” on page 95.

Assembly Code Example(1)

TIM16_WriteTCNTn:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNTn to r17:r16

sts TCNTnH,r17

sts TCNTnL,r16

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNTn(unsigned int i)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNTn to i */

TCNTn = i;

/* Restore global interrupt flag */

SREG = sreg;

}
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14.5 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. 
Figure 14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNTn by 1.

Direction Select between increment and decrement.

Clear Clear TCNTn (set all bits to zero).

clkTn Timer/Counter clock.

TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight 
bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an 
access to the TCNTnH I/O location, the CPU accesses the high byte temporary register (TEMP). 
The temporary register is updated with the TCNTnH value when the TCNTnL is read, and 
TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the 
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus. 
It is important to notice that there are special cases of writing to the TCNTn Register when the 
counter is counting that will give unpredictable results. The special cases are described in the 
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented 
at each timer clock (clkTn). The clkTn can be generated from an external or internal clock source, 
selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the 
timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of 
whether clkTn is present or not. A CPU write overrides (has priority over) all counter clear or 
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits 
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB). 
There are close connections between how the counter behaves (counts) and how waveforms 
are generated on the Output Compare outputs OCnx. For more details about advanced counting 
sequences and waveform generation, see “Modes of Operation” on page 125.
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The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by 
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

14.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give 
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICPn pin or alternatively, via the analog-comparator unit. The 
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 14-3. The elements of 
the block diagram that are not directly a part of the Input Capture unit are gray shaded.

Figure 14-3. Input Capture Unit Block Diagram

Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 IC Unit– not 
Timer/Counter3.

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively 
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge 
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter 
(TCNTn) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at 
the same system clock as the TCNTn value is copied into ICRn Register. If enabled (ICIEn = 1), 
the Input Capture Flag generates an Input Capture interrupt. The ICFn flag is automatically 
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cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by 
writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low 
byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied 
into the high byte temporary register (TEMP). When the CPU reads the ICRnH I/O location it will 
access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes 
the ICRn Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH I/O location 
before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers” 
on page 115.

14.6.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICPn). Only 
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the 
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog 
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register 
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag 
must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled 
using the same technique as for the Tn pin (Figure 12-1 on page 96). The edge detector is also 
identical. However, when the noise canceler is enabled, additional logic is inserted before the 
edge detector, which increases the delay by four system clock cycles. Note that the input of the 
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICRn to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.

14.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The 
noise canceler input is monitored over four samples, and all four must be equal for changing the 
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in 
Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the 
ICRn Register. The noise canceler uses the system clock and is therefore not affected by the 
prescaler.

14.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity 
for handling the incoming events. The time between two events is critical. If the processor has 
not read the captured value in the ICRn Register before the next event occurs, the ICRn will be 
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high 
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priority, the maximum interrupt response time is dependent on the maximum number of clock 
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is 
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after 
each capture. Changing the edge sensing must be done as early as possible after the ICRn
Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be 
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only, 
the clearing of the ICFn flag is not required (if an interrupt handler is used).

14.7 Output Compare Units
The 16-bit comparator continuously compares TCNTn with the Output Compare Register 
(OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output 
Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCFnx flag is automatically cleared 
when the interrupt is executed. Alternatively the OCFnx flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to 
generate an output according to operating mode set by the Waveform Generation mode 
(WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals 
are used by the Waveform Generator for handling the special cases of the extreme values in 
some modes of operation (See “Modes of Operation” on page 125.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e., 
counter resolution). In addition to the counter resolution, the TOP value defines the period time 
for waveforms generated by the Waveform Generator.

Figure 14-4 shows a block diagram of the Output Compare unit. The elements of the block dia-
gram that are not directly a part of the Output Compare unit are gray shaded.
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Figure 14-4. Output Compare Unit, Block Diagram

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation 
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the 
double buffering is disabled. The double buffering synchronizes the update of the OCRnx Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization 
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering 
is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCRnx directly. The content of the OCRnx (Buffer or Compare) 
Register is only changed by a write operation (the Timer/Counter does not update this register 
automatically as the TCNT1 and ICRn Register). Therefore OCRnx is not read via the high byte 
temporary register (TEMP). However, it is a good practice to read the low byte first as when 
accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be 
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be 
updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits, 
the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare 
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers” 
on page 115.

14.7.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by 
writing a one to the Force Output Compare (FOCnx) bit. Forcing compare match will not set the 
OCFnx flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare 
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match had occurred (the COMnx1:0 bits settings define whether the OCnx pin is set, cleared or 
toggled). 

14.7.2 Compare Match Blocking by TCNTn Write
All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer 
clock cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the 
same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

14.7.3 Using the Output Compare Unit
Since writing TCNTn in any mode of operation will block all compare matches for one timer clock 
cycle, there are risks involved when changing TCNTn when using any of the Output Compare 
channels, independent of whether the Timer/Counter is running or not. If the value written to 
TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP 
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF. 
Similarly, do not write the TCNTn value equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the 
port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-
pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when 
changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value. 
Changing the COMnx1:0 bits will take effect immediately.

14.8 Compare Match Output Unit
The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses 
the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next compare match. 
Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 14-5 shows a simplified 
schematic of the logic affected by the COMnx1:0 bit setting. The I/O Registers, I/O bits, and I/O 
pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR 
and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the OCnx
state, the reference is for the internal OCnx Register, not the OCnx pin. If a system reset occur, 
the OCnx Register is reset to “0”.
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Figure 14-5. Compare Match Output Unit, Schematic

14.8.1 Compare Output Function
The general I/O port function is overridden by the Output Compare (OCnx) from the Waveform 
Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction 
Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation 
mode, but there are some exceptions. Refer to Table 14-1, Table 14-2 and Table 14-3 for 
details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the out-
put is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of 
operation. See “16-bit Timer/Counter Register Description” on page 134.

The COMnx1:0 bits have no effect on the Input Capture unit.

14.8.2 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes. 
For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the 
OCnx Register is to be performed on the next compare match. For compare output actions in the 
non-PWM modes refer to Table 14-1 on page 135. For fast PWM mode refer to Table 14-2 on 
page 135, and for phase correct and phase and frequency correct PWM refer to Table 14-3 on 
page 136.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are 
written. For non-PWM modes, the action can be forced to have immediate effect by using the 
FOCnx strobe bits.

14.9 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is 
defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output 
mode (COMnx1:0) bits. The Compare Output mode bits do not affect the counting sequence, 
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while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes 
the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare 
match (See “Compare Match Output Unit” on page 124.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 133.

14.9.1 Normal Mode
The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting 
direction is always up (incrementing), and no counter clear is performed. The counter simply 
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the 
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in 
the same timer clock cycle as the TCNTn becomes zero. The TOVn flag in this case behaves 
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow 
interrupt that automatically clears the TOVn flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be 
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum 
interval between the external events must not exceed the resolution of the counter. If the interval 
between events are too long, the timer overflow interrupt or the prescaler must be used to 
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the 
Output Compare to generate waveforms in Normal mode is not recommended, since this will 
occupy too much of the CPU time.

14.9.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn Register 
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when 
the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 = 
12). The OCRnA or ICRn define the top value for the counter, hence also its resolution. This 
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-6. The counter value (TCNTn) 
increases until a compare match occurs with either OCRnA or ICRn, and then counter (TCNTn) 
is cleared.

Figure 14-6. CTC Mode, Timing Diagram
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An interrupt can be generated at each time the counter value reaches the TOP value by either 
using the OCFnA or ICFn flag according to the register used to define the TOP value. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, 
changing the TOP to a value close to BOTTOM when the counter is running with none or a low 
prescaler value must be done with care since the CTC mode does not have the double buffering 
feature. If the new value written to OCRnA or ICRn is lower than the current value of TCNTn, the 
counter will miss the compare match. The counter will then have to count to its maximum value 
(0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many 
cases this feature is not desirable. An alternative will then be to use the fast PWM mode using 
OCRnA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical 
level on each compare match by setting the Compare Output mode bits to toggle mode 
(COMnA1:0 = 1). The OCnA value will not be visible on the port pin unless the data direction for 
the pin is set to output (DDR_OCnA = 1). The waveform generated will have a maximum fre-
quency of fOCnA = fclk_I/O/2 when OCRnA is set to zero (0x0000). The waveform frequency is 
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn flag is set in the same timer clock cycle that the 
counter counts from MAX to 0x0000.

14.9.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a 
high frequency PWM waveform generation option. The fast PWM differs from the other PWM 
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts 
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is set on 
the compare match between TCNTn and OCRnx, and cleared at TOP. In inverting Compare 
Output mode output is cleared on compare match and set at TOP. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct 
and phase and frequency correct PWM modes that use dual-slope operation. This high fre-
quency makes the fast PWM mode well suited for power regulation, rectification, and DAC 
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or 
OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the max-
imum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can be 
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the 
fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 
14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer 
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 14-7. The figure 
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shows fast PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the 
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram 
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent compare matches between OCRnx and TCNTn. The OCnx interrupt flag will be 
set when a compare match occurs.

Figure 14-7. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition 
the OCnA or ICFn flag is set at the same timer clock cycle as TOVn is set when either OCRnA or 
ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or 
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the 
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx. 
Note that when using fixed TOP values the unused bits are masked to zero when any of the 
OCRnx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP 
value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low 
value when the counter is running with none or a low prescaler value, there is a risk that the new 
ICRn value written is lower than the current value of TCNTn. The result will then be that the 
counter will miss the compare match at the TOP value. The counter will then have to count to the 
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. 
The OCRnA Register however, is double buffered. This feature allows the OCRnA I/O location 
to be written anytime. When the OCRnA I/O location is written the value written will be put into 
the OCRnA Buffer Register. The OCRnA Compare Register will then be updated with the value 
in the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is done 
at the same timer clock cycle as the TCNTn is cleared and the TOVn flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using 
ICRn, the OCRnA Register is free to be used for generating a PWM output on OCnA. However, 
if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA 
as TOP is clearly a better choice due to its double buffer feature.
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In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. 
Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output 
can be generated by setting the COMnx1:0 to three (see Table  on page 135). The actual OCnx
value will only be visible on the port pin if the data direction for the port pin is set as output 
(DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at 
the compare match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at 
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM 
waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP 
will result in a constant high or low output (depending on the polarity of the output set by the 
COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1). The waveform 
generated will have a maximum frequency of fOCnA = fclk_I/O/2 when OCRnA is set to zero 
(0x0000). This feature is similar to the OCnA toggle in CTC mode, except the double buffer fea-
ture of the Output Compare unit is enabled in the fast PWM mode.

14.9.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3, 
10, or 11) provides a high resolution phase correct PWM waveform generation option. The 
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from 
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is 
cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the 
compare match while downcounting. In inverting Output Compare mode, the operation is 
inverted. The dual-slope operation has lower maximum operation frequency than single slope 
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes 
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined 
by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 
0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either 
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn
(WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the 
TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock 
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-8. The figure 
shows phase correct PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn
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value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The 
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on 
the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx inter-
rupt flag will be set when a compare match occurs.

Figure 14-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When 
either OCRnA or ICRn is used for defining the TOP value, the OCnA or ICFn flag is set accord-
ingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer 
value (at TOP). The interrupt flags can be used to generate an interrupt each time the counter 
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or 
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the 
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx. 
Note that when using fixed TOP values, the unused bits are masked to zero when any of the 
OCRnx Registers are written. As the third period shown in Figure 14-8 illustrates, changing the 
TOP actively while the Timer/Counter is running in the phase correct mode can result in an 
unsymmetrical output. The reason for this can be found in the time of update of the OCRnx Reg-
ister. Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This 
implies that the length of the falling slope is determined by the previous TOP value, while the 
length of the rising slope is determined by the new TOP value. When these two values differ the 
two slopes of the period will differ in length. The difference in length gives the unsymmetrical 
result on the output. 

It is recommended to use the phase and frequency correct mode instead of the phase correct 
mode when changing the TOP value while the Timer/Counter is running. When using a static 
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the 
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted 
PWM output can be generated by setting the COMnx1:0 to three (See Table  on page 136). The 
actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as 

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
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output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Regis-
ter at the compare match between OCRnx and TCNTn when the counter increments, and 
clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when 
the counter decrements. The PWM frequency for the output when using phase correct PWM can 
be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM 
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the 
output will be continuously low and if set equal to TOP the output will be continuously high for 
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

14.9.5 Phase and Frequency Correct PWM Mode
The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM 
mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct 
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM 
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the 
Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while 
upcounting, and set on the compare match while downcounting. In inverting Compare Output 
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the 
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM 
mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 14-
8 and Figure 14-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either 
ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and 
the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can 
be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value 
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The 
counter has then reached the TOP and changes the count direction. The TCNTn value will be 
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency 
correct PWM mode is shown on Figure 14-9. The figure shows phase and frequency correct 
PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx interrupt flag will be set when a 
compare match occurs.

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

RPFCPWM
TOP 1+( )log

2( )log-----------------------------------=
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Figure 14-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn
is used for defining the TOP value, the OCnA or ICFn flag set when TCNTn has reached TOP. 
The interrupt flags can then be used to generate an interrupt each time the counter reaches the 
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or 
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the 
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

As Figure 14-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising 
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore 
frequency correct.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using 
ICRn, the OCRnA Register is free to be used for generating a PWM output on OCnA. However, 
if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as 
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and 
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table  on 
page 136). The actual OCnx value will only be visible on the port pin if the data direction for the 
port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) 
the OCnx Register at the compare match between OCRnx and TCNTn when the counter incre-
ments, and clearing (or setting) the OCnx Register at compare match between OCRnx and 
TCNTn when the counter decrements. The PWM frequency for the output when using phase 
and frequency correct PWM can be calculated by the following equation:

OCRnx/TOP Update and
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

fOCnxPFCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=
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The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM 
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the 
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

14.10 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore shown as a 
clock enable signal in the following figures. The figures include information on when interrupt 
flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for 
modes utilizing double buffering). Figure 14-10 shows a timing diagram for the setting of OCFnx. 

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

Figure 14-11 shows the same timing data, but with the prescaler enabled. 

Figure 14-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (fclk_I/O/8)

Figure 14-12 shows the count sequence close to TOP in various modes. When using phase and 
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams 
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on. 
The same renaming applies for modes that set the TOVn flag at BOTTOM.

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
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Figure 14-12. Timer/Counter Timing Diagram, no Prescaling

Figure 14-13 shows the same timing data, but with the prescaler enabled. 

Figure 14-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

14.11 16-bit Timer/Counter Register Description

14.11.1 Timer/Counter1 Control Register A – TCCR1A

14.11.2 Timer/Counter3 Control Register A – TCCR3A

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 TCCR1A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 TCCR3A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 134
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128

• Bit 7:6 – COMnA1:0: Compare Output Mode for Channel A

• Bit 5:4 – COMnB1:0: Compare Output Mode for Channel B

• Bit 3:2 – COMnC1:0: Compare Output Mode for Channel C
The COMnA1:0, COMnB1:0 and COMnC1:0 control the Output Compare pins (OCnA, OCnB 
and OCnC respectively) behavior. If one or both of the COMnA1:0 bits are written to one, the 
OCnA output overrides the normal port functionality of the I/O pin it is connected to. If one or 
both of the COMnB1:0 bit are written to one, the OCnB output overrides the normal port func-
tionality of the I/O pin it is connected to. If one or both of the COMnC1:0 bit are written to one, 
the OCnC output overrides the normal port functionality of the I/O pin it is connected to. How-
ever, note that the Data Direction Register (DDR) bit corresponding to the OCnA, OCnB or 
OCnC pin must be set in order to enable the output driver.

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0 bits is 
dependent of the WGMn3:0 bits setting. Table 14-1 shows the COMnx1:0 bit functionality when 
the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 14-2 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast 
PWM mode.

Note: 1. A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and 
COMnA1/COMnB1/COMnC1 is set. In this case the compare match is ignored, but the set or 
clear is done at TOP. See “Fast PWM Mode” on page 127. for more details.

Table 14-1. Compare Output Mode, non-PWM

COMnA1/COMnB1/
COMnC1

COMnA0/COMnB0/
COMnC0 Description

0 0 Normal port operation, OCnA/OCnB/OCnC 
disconnected.

0 1 Toggle OCnA/OCnB/OCnC on Compare Match.

1 0 Clear OCnA/OCnB/OCnC on Compare Match (Set 
output to low level).

1 1 Set OCnA/OCnB/OCnC on Compare Match (Set 
output to high level).

Table 14-2. Compare Output Mode, Fast PWM (1)

COMnA1/COMnB1/
COMnC1

COMnA0/COMnB0/
COMnC0 Description

0 0 Normal port operation, OCnA/OCnB/OCnC 
disconnected.

0 1

WGMn3=0: Normal port operation, 
OCnA/OCnB/OCnC disconnected.
WGMn3=1: Toggle OCnA on Compare Match, 
OCnB/OCnC reserved.

1 0
Clear OCnA/OCnB/OCnC on Compare Match
Set OCnA/OCnB/OCnC at TOP

1 1
Set OCnA/OCnB/OCnC on Compare Match
Clear OCnA/OCnB/OCnC at TOP
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Table 14-3 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the phase 
correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCnA/OCnB/OCnC equals TOP and 
COMnA1/COMnB1/COMnC1 is set. See “Phase Correct PWM Mode” on page 129. for more 
details.

• Bit 1:0 – WGMn1:0: Waveform Generation Mode
Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting 
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 14-4. Modes of operation supported by the Timer/Counter 
unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types 
of Pulse Width Modulation (PWM) modes. (See “Modes of Operation” on page 125.).

Table 14-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct 
PWM(1)

COMnA1/COMnB1/
COMnC1

COMnA0/COMnB0/
COMnC0 Description

0 0 Normal port operation, OCnA/OCnB/OCnC 
disconnected.

0 1

WGMn3=0: Normal port operation, 
OCnA/OCnB/OCnC disconnected.
WGMn3=1: Toggle OCnA on Compare Match, 
OCnB/OCnC reserved.

1 0

Clear OCnA/OCnB/OCnC on Compare Match when 
up-counting.
Set OCnA/OCnB/OCnC on Compare Match when 
downcounting.

1 1

Set OCnA/OCnB/OCnC on Compare Match when up-
counting.
Clear OCnA/OCnB/OCnC on Compare Match when 
downcounting.
 136
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128
Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and 
location of these bits are compatible with previous versions of the timer.

14.11.3 Timer/Counter1 Control Register B – TCCR1B

14.11.4 Timer/Counter3 Control Register B – TCCR3B

• Bit 7 – ICNCn: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is 
activated, the input from the Input Capture pin (ICPn) is filtered. The filter function requires four 
successive equal valued samples of the ICPn pin for changing its output. The Input Capture is 
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICESn: Input Capture Edge Select

Table 14-4. Waveform Generation Mode Bit Description (1) 

Mode WGMn3 WGMn2
(CTCn)

WGMn1
(PWMn1)

WGMn0
(PWMn0)

Timer/Counter 
Mode of Operation TOP Update of 

OCRnx at
TOVn Flag 
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-
bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCRnA Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0 PWM, Phase and 
Frequency Correct ICRn BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and 
Frequency Correct OCRnA BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICRn TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCRnA TOP BOTTOM

12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICRn TOP TOP

15 1 1 1 1 Fast PWM OCRnA TOP TOP

Bit 7 6 5 4 3 2 1 0

ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30 TCCR3B
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a capture 
event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and 
when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the 
Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this 
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the 
TCCRnA and the TCCRnB Register), the ICPn is disconnected and consequently the Input Cap-
ture function is disabled.

• Bit 5 – Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be 
written to zero when TCCRnB is written.

• Bit 4:3 – WGMn3:2: Waveform Generation Mode
See TCCRnA Register description.

• Bit 2:0 – CSn2:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure 
14-10 and Figure 14-11.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the 
counter even if the pin is configured as an output. This feature allows software control of the 
counting.

14.11.5 Timer/Counter1 Control Register C – TCCR1C

Table 14-5. Clock Select Bit Description

CSn2 CSn1 CSn0 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on Tn pin. Clock on falling edge.

1 1 1 External clock source on Tn pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

FOC1A FOC1B FOC1C – – – – – TCCR1C
Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
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14.11.6 Timer/Counter3 Control Register C – TCCR3C

• Bit 7 – FOCnA: Force Output Compare for Channel A

• Bit 6 – FOCnB: Force Output Compare for Channel B

• Bit 5 – FOCnC: Force Output Compare for Channel C
The FOCnA/FOCnB/FOCnC bits are only active when the WGMn3:0 bits specifies a non-PWM 
mode. However, for ensuring compatibility with future devices, these bits must be set to zero 
when TCCRnA is written when operating in a PWM mode. When writing a logical one to the 
FOCnA/FOCnB/FOCnC bit, an immediate compare match is forced on the Waveform Genera-
tion unit. The OCnA/OCnB/OCnC output is changed according to its COMnx1:0 bits setting. 
Note that the FOCnA/FOCnB/FOCnC bits are implemented as strobes. Therefore it is the value 
present in the COMnx1:0 bits that determine the effect of the forced compare.

A FOCnA/FOCnB/FOCnC strobe will not generate any interrupt nor will it clear the timer in Clear 
Timer on Compare match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCnB/FOCnC bits are always read as zero.

14.11.7 Timer/Counter1 – TCNT1H and TCNT1L

14.11.8 Timer/Counter3 – TCNT3H and TCNT3L

The two Timer/Counter I/O locations (TCNTnH and TCNTnL, combined TCNTn) give direct 
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To 
ensure that both the high and low bytes are read and written simultaneously when the CPU 
accesses these registers, the access is performed using an 8-bit temporary high byte register 
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit 
Registers” on page 115.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a com-
pare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following timer clock 
for all compare units.

Bit 7 6 5 4 3 2 1 0

FOC3A FOC3B FOC3C – – – – – TCCR3C
Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TCNT3[15:8] TCNT3H

TCNT3[7:0] TCNT3L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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14.11.9 Output Compare Register A – OCR1AH and OCR1AL

14.11.10 Output Compare Register B – OCR1BH and OCR1BL

14.11.11 Output Compare Register C – OCR1CH and OCR1CL

14.11.12 Output Compare Register A – OCR3AH and OCR3AL

14.11.13 Output Compare Register B – OCR3BH and OCR3BL

14.11.14 Output Compare Register C – OCR3CH and OCR3CL

The Output Compare Registers contain a 16-bit value that is continuously compared with the 
counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to 
generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are 
written simultaneously when the CPU writes to these registers, the access is performed using an 
8-bit temporary high byte register (TEMP). This temporary register is shared by all the other 16-
bit registers. See “Accessing 16-bit Registers” on page 115.

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH
OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH
OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1C[15:8] OCR1CH
OCR1C[7:0] OCR1CL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR3A[15:8] OCR3AH
OCR3A[7:0] OCR3AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR3B[15:8] OCR3BH
OCR3B[7:0] OCR3BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR3C[15:8] OCR3CH
OCR3C[7:0] OCR3CL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 140
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128

14.11.15 Input Capture Register – ICR1H and ICR1L

14.11.16 Input Capture Register – ICR3H and ICR3L

The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the 
ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture 
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read 
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit 
temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit 
registers. See “Accessing 16-bit Registers” on page 115.

14.11.17 Timer/Counter1 Interrupt Mask Register – TIMSK1

14.11.18 Timer/Counter3 Interrupt Mask Register – TIMSK3

• Bit 7..6 – Reserved Bits
These bits are reserved for future use.

• Bit 5 – ICIEn: Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally 
enabled), the Timer/Countern Input Capture interrupt is enabled. The corresponding Interrupt 
Vector (See “Interrupts” on page 59.) is executed when the ICFn flag, located in TIFRn, is set.

• Bit 4 – Reserved Bit
This bit is reserved for future use.

• Bit 3 – OCIEnC: Output Compare C Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally 
enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The corresponding 
Interrupt Vector (See “Interrupts” on page 59.) is executed when the OCFnC flag, located in 
TIFRn, is set.

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H
ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR3[15:8] ICR3H
ICR3[7:0] ICR3L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE1 – OCIE1C OCIE1B OCIE1A TOIE1 TIMSK1
Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE3 – OCIE3C OCIE3B OCIE3A TOIE3 TIMSK3
Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2 – OCIEnB: Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally 
enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The corresponding 
Interrupt Vector (See “Interrupts” on page 59.) is executed when the OCFnB flag, located in 
TIFRn, is set.

• Bit 1 – OCIEnA: Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally 
enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The corresponding 
Interrupt Vector (See “Interrupts” on page 59.) is executed when the OCFnA flag, located in 
TIFRn, is set.

• Bit 0 – TOIEn: Timer/Counter Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally 
enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding Interrupt Vector 
(See “Interrupts” on page 59.) is executed when the TOVn flag, located in TIFRn, is set.

14.11.19 Timer/Counter1 Interrupt Flag Register – TIFR1

14.11.20 Timer/Counter3 Interrupt Flag Register – TIFR3

• Bit 7..6 – Reserved Bits
These bits are reserved for future use.

• Bit 5 – ICFn: Input Capture Flag
This flag is set when a capture event occurs on the ICPn pin. When the Input Capture Register 
(ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn flag is set when the 
counter reaches the TOP value.

ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, 
ICFn can be cleared by writing a logic one to its bit location.

• Bit 4 – Reserved Bit
This bit is reserved for future use.

• Bit 3 – OCFnC: Output Compare C Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output 
Compare Register C (OCRnC).

Note that a Forced Output Compare (FOCnC) strobe will not set the OCFnC flag.

OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is exe-
cuted. Alternatively, OCFnC can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

– – ICF1 – OCF1C OCF1B OCF1A TOV1 TIFR1
Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICF3 – OCF3C OCF3B OCF3A TOV3 TIFR3
Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2 – OCFnB: Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output 
Compare Register B (OCRnB).

Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB flag.

OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCFnB can be cleared by writing a logic one to its bit location.

• Bit 1 – OCFnA: Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output 
Compare Register A (OCRnA).

Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA flag.

OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCFnA can be cleared by writing a logic one to its bit location.

• Bit 0 – TOVn: Timer/Counter Overflow Flag
The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes, 
the TOVn flag is set when the timer overflows. Refer to Table 14-4 on page 137 for the TOVn
flag behavior when using another WGMn3:0 bit setting.

TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is executed. 
Alternatively, TOVn can be cleared by writing a logic one to its bit location.
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15. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The main 
features are:

15.1 Features
• Single Channel Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)
• Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

15.2 Overview
Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 2. However, when using 
the register or bit defines in a program, the precise form must be used, i.e., TCNT2 for 
accessing Timer/Counter2 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A. However, when 
using the register or bit defines in a program, the precise form must be used, i.e., OCR2A for 
accessing Timer/Counter2 output compare channel A value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 15-1. For the actual 
placement of I/O pins, refer to Figure 2-2 on page 4. CPU accessible I/O Registers, including I/O 
bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed 
in the “8-bit Timer/Counter Register Description” on page 155.
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Figure 15-1. 8-bit Timer/Counter2 Block Diagram 

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Inter-
rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register 
(TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2). 
TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from 
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by 
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock 
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the 
timer clock (clkT2).

The double buffered Output Compare Register (OCR2A) is compared with the Timer/Counter 
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC2A). See “Output 
Compare Unit” on page 147. for details. The compare match event will also set the compare flag 
(OCF2A) which can be used to generate an Output Compare interrupt request.
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15.2.1 Definitions
The following definitions are used extensively throughout the section:

15.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal synchronous or an external asynchronous 
clock source. The clock source is selected by the clock select logic which is controlled by the 
clock select (CS22:0) bits located in the Timer/Counter control register (TCCR2).The clock 
source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2 bit in the ASSR Register 
is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to 
TOSC1 and TOSC2 or directly from TOSC1. For details on asynchronous operation, see “Asyn-
chronous Status Register – ASSR” on page 158. For details on clock sources and prescaler, see 
“Timer/Counter2 Prescaler” on page 161.

15.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 
15-2 shows a block diagram of the counter and its surrounding environment.

Figure 15-2. Counter Unit Block Diagram

Figure 15-3.

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkT2 Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the 
count sequence. The TOP value can be assigned to be the fixed value 0xFF 
(MAX) or the value stored in the OCR2A Register. The assignment is depen-
dent on the mode of operation.
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Depending on the mode of operation used, the counter is cleared, incremented, or decremented 
at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source, 
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the 
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of 
whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or 
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in 
the Timer/Counter Control Register (TCCR2A). There are close connections between how the 
counter behaves (counts) and how waveforms are generated on the Output Compare output 
OC2A. For more details about advanced counting sequences and waveform generation, see 
“Modes of Operation” on page 149.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by 
the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

15.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT2 with the Output Compare Register 
(OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match will set 
the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled (OCIE2A = 1), the 
Output Compare Flag generates an Output Compare interrupt. The OCF2A flag is automatically 
cleared when the interrupt is executed. Alternatively, the OCF2A flag can be cleared by software 
by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to 
generate an output according to operating mode set by the WGM21:0 bits and Compare Output 
mode (COM2A1:0) bits. The max and bottom signals are used by the Waveform Generator for 
handling the special cases of the extreme values in some modes of operation (“Modes of Oper-
ation” on page 149).

Figure 15-4 shows a block diagram of the Output Compare unit. 

Figure 15-4. Output Compare Unit, Block Diagram

The OCR2A Register is double buffered when using any of the Pulse Width Modulation (PWM) 
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double 
buffering is disabled. The double buffering synchronizes the update of the OCR2A Compare 
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Register to either top or bottom of the counting sequence. The synchronization prevents the 
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR2A Buffer Register, and if double buffering is 
disabled the CPU will access the OCR2A directly. 

15.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by 
writing a one to the Force Output Compare (FOC2A) bit. Forcing compare match will not set the 
OCF2A flag or reload/clear the timer, but the OC2A pin will be updated as if a real compare 
match had occurred (the COM2A1:0 bits settings define whether the OC2A pin is set, cleared or 
toggled).

15.5.2 Compare Match Blocking by TCNT2 Write
All CPU write operations to the TCNT2 Register will block any compare match that occurs in the 
next timer clock cycle, even when the timer is stopped. This feature allows OCR2A to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is 
enabled.

15.5.3 Using the Output Compare Unit
Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock 
cycle, there are risks involved when changing TCNT2 when using the Output Compare channel, 
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2A value, the compare match will be missed, resulting in incorrect waveform 
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is 
downcounting.

The setup of the OC2A should be performed before setting the Data Direction Register for the 
port pin to output. The easiest way of setting the OC2A value is to use the Force Output Com-
pare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its value even when 
changing between Waveform Generation modes.

Be aware that the COM2A1:0 bits are not double buffered together with the compare value. 
Changing the COM2A1:0 bits will take effect immediately.

15.6 Compare Match Output Unit
The Compare Output mode (COM2A1:0) bits have two functions. The Waveform Generator 
uses the COM2A1:0 bits for defining the Output Compare (OC2A) state at the next compare 
match. Also, the COM2A1:0 bits control the OC2A pin output source. Figure 15-5 shows a sim-
plified schematic of the logic affected by the COM2A1:0 bit setting. The I/O Registers, I/O bits, 
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COM2A1:0 bits are shown. When referring to the 
OC2A state, the reference is for the internal OC2A Register, not the OC2A pin.
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Figure 15-5. Compare Match Output Unit, Schematic

15.6.1 Compare Output Function
The general I/O port function is overridden by the Output Compare (OC2A) from the Waveform 
Generator if either of the COM2A1:0 bits are set. However, the OC2A pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction 
Register bit for the OC2A pin (DDR_OC2A) must be set as output before the OC2A value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2A state before the 
output is enabled. Note that some COM2A1:0 bit settings are reserved for certain modes of 
operation. See “8-bit Timer/Counter Register Description” on page 155.

15.6.2 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM2A1:0 bits differently in normal, CTC, and PWM modes. 
For all modes, setting the COM2A1:0 = 0 tells the Waveform Generator that no action on the 
OC2A Register is to be performed on the next compare match. For compare output actions in 
the non-PWM modes refer to Table 15-2 on page 156. For fast PWM mode, refer to Table 15-3 
on page 156, and for phase correct PWM refer to Table 15-4 on page 157.

A change of the COM2A1:0 bits state will have effect at the first compare match after the bits are 
written. For non-PWM modes, the action can be forced to have immediate effect by using the 
FOC2A strobe bits.

15.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is 
defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Output 
mode (COM2A1:0) bits. The Compare Output mode bits do not affect the counting sequence, 
while the Waveform Generation mode bits do. The COM2A1:0 bits control whether the PWM 
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM 
modes the COM2A1:0 bits control whether the output should be set, cleared, or toggled at a 
compare match (See “Compare Match Output Unit” on page 148.).
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For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 153.

15.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting 
direction is always up (incrementing), and no counter clear is performed. The counter simply 
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same 
timer clock cycle as the TCNT2 becomes zero. The TOV2 flag in this case behaves like a ninth 
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt 
that automatically clears the TOV2 flag, the timer resolution can be increased by software. There 
are no special cases to consider in the Normal mode, a new counter value can be written 
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will 
occupy too much of the CPU time.

15.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used to 
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter 
value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence 
also its resolution. This mode allows greater control of the compare match output frequency. It 
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-6. The counter value (TCNT2) 
increases until a compare match occurs between TCNT2 and OCR2A, and then counter 
(TCNT2) is cleared.

Figure 15-6. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the 
OCF2A flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the 
TOP value. However, changing the TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not 
have the double buffering feature. If the new value written to OCR2A is lower than the current 
value of TCNT2, the counter will miss the compare match. The counter will then have to count to 
its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can 
occur.
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For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical 
level on each compare match by setting the Compare Output mode bits to toggle mode 
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for 
the pin is set to output. The waveform generated will have a maximum frequency of fOC2A = 
fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following 
equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 flag is set in the same timer clock cycle that the 
counter counts from MAX to 0x00.

15.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency 
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In 
non-inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare 
match between TCNT2 and OCR2A, and set at BOTTOM. In inverting Compare Output mode, 
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, 
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM 
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited 
for power regulation, rectification, and DAC applications. High frequency allows physically small 
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. 
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast 
PWM mode is shown in Figure 15-7. The TCNT2 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and 
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare 
matches between OCR2A and TCNT2.

Figure 15-7. Fast PWM Mode, Timing Diagram
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The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2A pin. 
Setting the COM2A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output 
can be generated by setting the COM2A1:0 to three (See Table 15-3 on page 156). The actual 
OC2A value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OC2A Register at the compare 
match between OCR2A and TCNT2, and clearing (or setting) the OC2A Register at the timer 
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM 
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will 
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result 
in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0 
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2A to toggle its logical level on each compare match (COM2A1:0 = 1). The waveform 
generated will have a maximum frequency of foc2A = fclk_I/O/2 when OCR2A is set to zero. This 
feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

15.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM 
waveform generation option. The phase correct PWM mode is based on a dual-slope operation. 
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare match 
between TCNT2 and OCR2A while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation 
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control 
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct 
PWM mode the counter is incremented until the counter value matches MAX. When the counter 
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one 
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. 
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope 
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal 
line marks on the TCNT2 slopes represent compare matches between OCR2A and TCNT2.

fOCnxPWM
fclk_I/O
N 256⋅
------------------=
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Figure 15-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The 
interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM 
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the 
OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM. An inverted 
PWM output can be generated by setting the COM2A1:0 to three (See Table 15-4 on page 157). 
The actual OC2A value will only be visible on the port pin if the data direction for the port pin is 
set as output. The PWM waveform is generated by clearing (or setting) the OC2A Register at the 
compare match between OCR2A and TCNT2 when the counter increments, and setting (or 
clearing) the OC2A Register at compare match between OCR2A and TCNT2 when the counter 
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM 
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the 
output will be continuously low and if set equal to MAX the output will be continuously high for 
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

15.8 Timer/Counter Timing Diagrams
The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2) 
is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by 
the Timer/Counter Oscillator clock. The figures include information on when interrupt flags are 
set. Figure 15-9 contains timing data for basic Timer/Counter operation. The figure shows the 
count sequence close to the MAX value in all modes other than phase correct PWM mode.
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Figure 15-9. Timer/Counter Timing Diagram, no Prescaling

Figure 15-10 shows the same timing data, but with the prescaler enabled.

Figure 15-10. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 15-11 shows the setting of OCF2A in all modes except CTC mode.

Figure 15-11. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8)
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Figure 15-12 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 15-12. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

15.9 8-bit Timer/Counter Register Description

15.9.1 Timer/Counter2 Control Register A– TCCR2A

• Bit 7 – FOC2A: Force Output Compare A
The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2A is written when 
operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare 
match is forced on the Waveform Generation unit. The OC2A output is changed according to its 
COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the 
value present in the COM2A1:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using 
OCR2A as TOP.

The FOC2A bit is always read as zero.

• Bit 6, 3 – WGM21:0: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for the maximum (TOP) 
counter value, and what type of waveform generation to be used. Modes of operation supported 
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and 

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 TCCR2A
Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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two types of Pulse Width Modulation (PWM) modes. See Table 15-1 and “Modes of Operation” 
on page 149.

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions. 
However, the functionality and location of these bits are compatible with previous versions of 
the timer.

• Bit 5:4 – COM2A1:0: Compare Match Output Mode A
These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0 
bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected 
to. However, note that the Data Direction Register (DDR) bit corresponding to OC2A pin must be 
set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the 
WGM21:0 bit setting. Table 15-2 shows the COM2A1:0 bit functionality when the WGM21:0 bits 
are set to a normal or CTC mode (non-PWM).

Table 15-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM 
mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 151 
for more details.

Table 15-1. Waveform Generation Mode Bit Description(1)

Mode
WGM21
(CTC2)

WGM20
(PWM2)

Timer/Counter Mode of 
Operation TOP

Update of 
OCR2A at

TOV2 Flag 
Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR2A Immediate MAX

3 1 1 Fast PWM 0xFF TOP MAX

Table 15-2. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Toggle OC2A on compare match.

1 0 Clear OC2A on compare match.

1 1 Set OC2A on compare match.

Table 15-3. Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0
Clear OC2A on compare match.
Set OC2A at TOP.

1 1
Set OC2A on compare match.
Clear OC2A at TOP.
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Table 15-4 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on 
page 152 for more details.

• Bit 2:0 – CS22:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 
15-5.

15.9.2 Timer/Counter2 Register – TCNT2

The Timer/Counter Register gives direct access, both for read and write operations, to the 
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the compare 
match on the following timer clock. Modifying the counter (TCNT2) while the counter is running, 
introduces a risk of missing a compare match between TCNT2 and the OCR2A Register.

15.9.3 Output Compare Register A – OCR2A

Table 15-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0
Clear OC2A on compare match when up-counting.
Set OC2A on compare match when downcounting.

1 1
Set OC2A on compare match when up-counting.
Clear OC2A on compare match when downcounting.

Table 15-5. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

TCNT2[7:0] TCNT2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR2A[7:0] OCR2A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The Output Compare Register A contains an 8-bit value that is continuously compared with the 
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to 
generate a waveform output on the OC2A pin.

15.10 Asynchronous operation of the Timer/Counter2

15.10.1 Asynchronous Status Register – ASSR

• Bit 7..5 – Reserved Bits
These bits are reserved for future use.

• Bit 4 – EXCLK: Enable External Clock Input
When EXCLK is written to one, and asynchronous clock is selected, the external clock input 
buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead 
of a 32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is 
selected. Note that the crystal Oscillator will only run when this bit is zero.

• Bit 3 – AS2: Asynchronous Timer/Counter2
When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O and the crystal 
Oscillator connected to the Timer/Counter2 Oscillator (TOSC) does nor run. When AS2 is written 
to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer/Counter2 
Oscillator (TOSC) or from external clock on TOSC1 depending on EXCLK setting. When the 
value of AS2 is changed, the contents of TCNT2, OCR2A, and TCCR2A might be corrupted.

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy
When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. 
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 1 – OCR2UB: Output Compare Register2 Update Busy
When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set. 
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set. 
When TCCR2A has been updated from the temporary storage register, this bit is cleared by 
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new 
value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is 
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When reading 
TCNT2, the actual timer value is read. When reading OCR2A or TCCR2A, the value in the tem-
porary storage register is read.

Bit 7 6 5 4 3 2 1 0

– – – EXCLK AS2 TCN2UB OCR2UB TCR2UB ASSR
Read/Write R R R R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0
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15.10.2 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of 
Timer/Counter2, the timer registers TCNT2, OCR2A, and TCCR2A might be corrupted. A 
safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.
b. Select clock source by setting AS2 and EXCLK as appropriate.
c. Write new values to TCNT2, OCR2A, and TCCR2A.
d. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.
e. Clear the Timer/Counter2 interrupt flags.
f. Enable interrupts, if needed.

• The Oscillator is optimized for use with a 32.768 kHz watch crystal. The CPU main clock 
frequency must be more than four times the Oscillator or external clock frequency.

• When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is transferred to 
a temporary register, and latched after two positive edges on TOSC1. The user should not 
write a new value before the contents of the temporary register have been transferred to its 
destination. Each of the three mentioned registers have their individual temporary register, 
which means that e.g. writing to TCNT2 does not disturb an OCR2A write in progress. To 
detect that a transfer to the destination register has taken place, the Asynchronous Status 
Register – ASSR has been implemented.

• When entering Power-save or Extended Standby mode after having written to TCNT2, 
OCR2A, or TCCR2A, the user must wait until the written register has been updated if 
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode 
before the changes are effective. This is particularly important if the Output Compare2 
interrupt is used to wake up the device, since the Output Compare function is disabled during 
writing to OCR2A or TCNT2. If the write cycle is not finished, and the MCU enters sleep 
mode before the OCR2UB bit returns to zero, the device will never receive a compare match 
interrupt, and the MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or Extended Standby 
mode, precautions must be taken if the user wants to re-enter one of these modes: The 
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the 
device will fail to wake up. If the user is in doubt whether the time before re-entering Power-
save mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle 
has elapsed:

a. Write a value to TCCR2A, TCNT2, or OCR2A.
b. Wait until the corresponding Update Busy flag in ASSR returns to zero.
c. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 
is always running, except in Power-down and Standby modes. After a Power-up Reset or 
wake-up from Power-down or Standby mode, the user should be aware of the fact that this 
Oscillator might take as long as one second to stabilize. The user is advised to wait for at 
least one second before using Timer/Counter2 after power-up or wake-up from Power-down 
or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after 
a wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no 
matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.
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• Description of wake up from Power-save mode when the timer is clocked asynchronously: 
When the interrupt condition is met, the wake up process is started on the following cycle of 
the timer clock, that is, the timer is always advanced by at least one before the processor can 
read the counter value. After wake-up, the MCU is halted for four cycles, it executes the 
interrupt routine, and resumes execution from the instruction following SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect 
result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be 
done through a register synchronized to the internal I/O clock domain. Synchronization takes 
place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O 
clock (clkI/O) again becomes active, TCNT2 will read as the previous value (before entering 
sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from 
Power-save mode is essentially unpredictable, as it depends on the wake-up time. The 
recommended procedure for reading TCNT2 is thus as follows: 

a. Write any value to either of the registers OCR2A or TCCR2A. 
b. Wait for the corresponding Update Busy Flag to be cleared. 
c. Read TCNT2. 

• During asynchronous operation, the synchronization of the interrupt flags for the 
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore 
advanced by at least one before the processor can read the timer value causing the setting of 
the interrupt flag. The Output Compare pin is changed on the timer clock and is not 
synchronized to the processor clock.

15.10.3 Timer/Counter2 Interrupt Mask Register – TIMSK2

• Bit 7..2 – Reserved Bits
These bits are reserved for future use.

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable
When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the 
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed 
if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is set in the 
Timer/Counter2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the 
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an 
overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter2 Interrupt 
Flag Register – TIFR2.

15.10.4 Timer/Counter2 Interrupt Flag Register – TIFR2

Bit 7 6 5 4 3 2 1 0

– – – – – – OCIE2A TOIE2 TIMSK2
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – – OCF2A TOV2 TIFR2
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 7..2 – Reserved Bits
These bits are reserved for future use.

• Bit 1 – OCF2A: Output Compare Flag 2 A
The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the 
data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when executing 
the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic 
one to the flag. When the I-bit in SREG, OCIE2 (Timer/Counter2 Compare match Interrupt 
Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag
The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared 
by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In 
PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

15.11 Timer/Counter2 Prescaler

Figure 15-13. Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main 
system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously 
clocked from the TOSC oscillator or TOSC1 pin. This enables use of Timer/Counter2 as a Real 
Time Counter (RTC).

A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an indepen-
dent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz 
crystal. Setting AS2 and resetting EXCLK enables the TOSC oscillator.
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Figure 15-14. Timer/Counter2 Crystal Oscillator Connections

A external clock can also be used using TOSC1 as input. Setting AS2 and EXCLK enables this 
configuration.

Figure 15-15. Timer/Counter2 External Clock Connections

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64, 
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected. 
Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to operate with a pre-
dictable prescaler. 

15.11.1 General Timer/Counter Control Register – GTCCR

• Bit 1 – PSR2: Prescaler Reset Timer/Counter2
When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared 
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous 
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by 
hardware if the TSM bit is set. Refer to the description of the “Bit 7 – TSM: Timer/Counter Syn-
chronization Mode” on page 97 for a description of the Timer/Counter Synchronization mode.

TOSC2 

TOSC1 

GND

12 - 22 pF

12 - 22 pF

 32.768 KHz

TOSC2 

TOSC1 

NC

 External
Clock
Signal

Bit 7 6 5 4 3 2 1 0

TSM – – – – – PSR2 PSR310 GTCCR
Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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16. Output Compare Modulator - OCM

16.1 Overview
Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 0 and 1. However, when 
using the register or bit defines in a program, the precise form must be used, i.e., TCNT0 for 
accessing Timer/Counter0 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A or C. However, 
when using the register or bit defines in a program, the precise form must be used, i.e., 
OCR0A for accessing Timer/Counter0 output compare channel A value and so on.

The Output Compare Modulator (OCM) allows generation of waveforms modulated with a carrier 
frequency. The modulator uses the outputs from the Output Compare Unit C of the 16-bit 
Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. For more details 
about these Timer/Counters see “16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)” 
on page 112 and “8-bit Timer/Counter0 with PWM” on page 98. 

Figure 16-1. Output Compare Modulator, Block Diagram

When the modulator is enabled, the two output compare channels are modulated together as 
shown in the block diagram (Figure 16-1).

16.2 Description
The Output Compare unit 1C and Output Compare unit 0A shares the PB7 port pin for output. 
The outputs of the Output Compare units (OC1C and OC0A) overrides the normal PORTB7 
Register when one of them is enabled (i.e., when COMnx1:0 is not equal to zero). When both 
OC1C and OC0A are enabled at the same time, the modulator is automatically enabled.

When the modulator is enabled the type of modulation (logical AND or OR) can be selected by 
the PORTB7 Register. Note that the DDRB7 controls the direction of the port independent of the 
COMnx1:0 bit setting.

The functional equivalent schematic of the modulator is shown on Figure 16-2. The schematic 
includes part of the Timer/Counter units and the port B pin 7 output driver circuit.

OC1C

Pin

OC0A / OC1C / PB7

Timer/Counter 1

Timer/Counter 0 OC0A
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Figure 16-2. Output Compare Modulator, Schematic

16.2.1 Timing Example
Figure 16-3 illustrates the modulator in action. In this example the Timer/Counter1 is set to oper-
ate in fast PWM mode (non-inverted) and Timer/Counter0 uses CTC waveform mode with toggle 
Compare Output mode (COMnx1:0 = 1).

Figure 16-3. Output Compare Modulator, Timing Diagram

In this example, Timer/Counter0 provides the carrier, while the modulating signal is generated 
by the Output Compare unit C of the Timer/Counter1.
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16.2.2 Resolution of the PWM Signal

The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction factor is 
equal to the number of system clock cycles of one period of the carrier (OC0A). In this example 
the resolution is reduced by a factor of two. The reason for the reduction is illustrated in Figure 
16-3 at the second and third period of the PB7 output when PORTB7 equals zero. The period 2 
high time is one cycle longer than the period 3 high time, but the result on the PB7 output is 
equal in both periods.
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17. Serial Peripheral Interface – SPI
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the 
AT90CAN128 and peripheral devices or between several AVR devices. The AT90CAN128 SPI 
includes the following features:

17.1 Features
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 17-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 2-2 on page 4, and Table 10-6 on page 75 for SPI pin placement. 

S
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The interconnection between Master and Slave CPUs with SPI is shown in Figure 17-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the 
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and 
Slave prepare the data to be sent in their respective shift Registers, and the Master generates 
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In 
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling 
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This 
must be handled by user software before communication can start. When this is done, writing a 
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight 
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of 
transmission flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an 
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or 
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be 
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long 
as the SS pin is driven high. In this state, software may update the contents of the SPI Data 
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin 
until the SS pin is driven low. As one byte has been completely shifted, the end of transmission 
flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is 
requested. The Slave may continue to place new data to be sent into SPDR before reading the 
incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 17-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before 
the entire shift cycle is completed. When receiving data, however, a received character must be 
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure 
correct sampling of the clock signal, the frequency of the SPI clock should never exceed fclkio/4.

SHIFT
ENABLE
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When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden 
according to Table 17-1. For more details on automatic port overrides, refer to “Alternate Port 
Functions” on page 70.

Note: 1. See “Alternate Functions of Port B” on page 75 for a detailed description of how to define the 
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a 
simple transmission.

Table 17-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
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DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the 
SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits 
for these pins. E.g. if MOSI is placed on pin PB2, replace DD_MOSI with DDB2 and DDR_SPI 
with DDRB.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

in r17,SPSR

sbrs r17,SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)));

}
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The following code examples show how to initialize the SPI as a Slave and how to perform a 
simple reception.

Note: 1. The example code assumes that the part specific header file is included.

17.2 SS Pin Functionality

17.2.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is 
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All 
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which 

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)));

/* Return data register */

return SPDR;

}
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means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin 
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous 
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately 
reset the send and receive logic, and drop any partially received data in the Shift Register.

17.2.2 Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the 
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI 
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin 
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin 
defined as an input, the SPI system interprets this as another master selecting the SPI as a 
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following 
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of 
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG 
is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the 
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master 
mode.

17.2.3 SPI Control Register – SPCR

• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and if the 
Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI 
operations.

• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic 
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared, 

Bit 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low 
when idle. Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL functionality is sum-
marized below:

• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or 
trailing (last) edge of SCK. Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL 
functionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have 
no effect on the Slave. The relationship between SCK and the clkIO frequency fclkio is shown in 
the following table:

Table 17-2. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 17-3. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 17-4. Relationship Between SCK and the Oscillator Frequency  

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fclkio/4
0 0 1 fclkio/16

0 1 0 fclkio/64

0 1 1 fclkio/128

1 0 0 fclkio/2
1 0 1 fclkio/8
1 1 0 fclkio/32

1 1 1 fclkio/64
 172
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128

17.2.4 SPI Status Register – SPSR

• Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE in 
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is 
in Master mode, this will also set the SPIF flag. SPIF is cleared by hardware when executing the 
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the 
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The 
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set, 
and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved Bits
These bits are reserved bits in the AT90CAN128 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI 
is in Master mode (see Table 17-4). This means that the minimum SCK period will be two CPU 
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fclkio/4 
or lower.

The SPI interface on the AT90CAN128 is also used for program memory and EEPROM down-
loading or uploading. See page 344 for serial programming and verification.

17.2.5 SPI Data Register – SPDR

• Bits 7:0 - SPD7:0: SPI Data
The SPI Data Register is a read/write register used for data transfer between the Register File 
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

17.3 Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are 
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 
17-3 and Figure 17-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
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nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing 
Table 17-2 and Table 17-3, as done below:

Figure 17-3. SPI Transfer Format with CPHA = 0

Figure 17-4. SPI Transfer Format with CPHA = 1

Table 17-5. CPOL Functionality

Leading Edge Trailing Edge SPI Mode

CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0

CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
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18. USART (USART0 and USART1)
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a 
highly flexible serial communication device. The main features are:

18.1 Features
• Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

18.2 Overview
Many registers and bit references in this section are written in general form.

• A lower case “n” replaces the USART number, in this case 0 or 1. However, when using the 
register or bit defines in a program, the precise form must be used, i.e., UDR0 for accessing 
USART0 I/O data value and so on.

18.3 Dual USART
The AT90CAN128 has two USART’s, USART0 and USART1. The functionality for both 
USART’s is described below. USART0 and USART1 have different I/O registers as shown in 
“Register Summary” on page 401. 

A simplified block diagram of the USARTn Transmitter is shown in Figure 18-1. CPU accessible 
I/O Registers and I/O pins are shown in bold.
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Figure 18-1. USARTn Block Diagram (1) 

Note: 1. Refer to Figure 2-2 on page 4, Table 10-15 on page 82, and Table 10-10 on page 78 for 
USARTn pin placement. 

The dashed boxes in the block diagram separate the three main parts of the USARTn (listed 
from the top): Clock Generator, Transmitter and Receiver. Control registers are shared by all 
units. The Clock Generation logic consists of synchronization logic for external clock input used 
by synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is 
only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a 
serial Shift Register, Parity Generator and Control logic for handling different serial frame for-
mats. The write buffer allows a continuous transfer of data without any delay between frames. 
The Receiver is the most complex part of the USARTn module due to its clock and data recovery 
units. The recovery units are used for asynchronous data reception. In addition to the recovery 
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level 
receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and 
can detect Frame Error, Data OverRun and Parity Errors.
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18.4 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. The 
USARTn supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USARTn 
Control and Status Register C (UCSRnC) selects between asynchronous and synchronous 
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the 
UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register 
for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or 
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 18-2 shows a block diagram of the clock generation logic.

Figure 18-2. USARTn Clock Generation Logic, Block Diagram

Signal description:

txn clk Transmitter clock (Internal Signal).

rxn clk Receiver base clock (Internal Signal).

xn cki Input from XCK pin (internal Signal). Used for synchronous slave 
operation.

xn cko Clock output to XCK pin (Internal Signal). Used for synchronous master 
operation.

fclkio System I/O Clock frequency.

18.4.1 Internal Clock Generation – Baud Rate Generator
Internal clock generation is used for the asynchronous and the synchronous master modes of 
operation. The description in this section refers to Figure 18-2.

The USARTn Baud Rate Register (UBRRn) and the down-counter connected to it function as a 
programmable prescaler or baud rate generator. The down-counter, running at system clock 
(fclkio), is loaded with the UBRRn value each time the counter has counted down to zero or 
when the UBRRnL Register is written. A clock is generated each time the counter reaches zero. 
This clock is the baud rate generator clock output (= fclkio/(UBRRn+1)). The Transmitter divides 
the baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator 
output is used directly by the Receiver’s clock and data recovery units. However, the recovery 
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units use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the 
UMSELn, U2Xn and DDR_XCKn bits.

Table 18-1 contains equations for calculating the baud rate (in bits per second) and for calculat-
ing the UBRRn value for each mode of operation using an internally generated clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)
BAUD Baud rate (in bits per second, bps).

fclkio System I/O Clock frequency.

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Table 18-9
(see page 198).

18.4.2 Double Speed Operation (U2X)
The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has 
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling 
the transfer rate for asynchronous communication. Note however that the Receiver will in this 
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock 
recovery, and therefore a more accurate baud rate setting and system clock are required when 
this mode is used. For the Transmitter, there are no downsides.

18.4.3 External Clock
External clocking is used by the synchronous slave modes of operation. The description in this 
section refers to Figure 18-2 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the 
chance of meta-stability. The output from the synchronization register must then pass through 
an edge detector before it can be used by the Transmitter and Receiver. This process intro-
duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency 
is limited by the following equation:

Table 18-1. Equations for Calculating Baud Rate Register Setting 

Operating Mode
Equation for Calculating Baud 

Rate (1)
Equation for Calculating 

UBRRn Value

Asynchronous Normal mode 
(U2Xn = 0)

Asynchronous Double Speed 
mode (U2Xn = 1)

Synchronous Master mode

BAUD
fCLKio

16 UBRRn 1+( )
------------------------------------------= UBRRn

fCLKio
16BAUD------------------------ 1–=

BAUD
fCLKio

8 UBRRn 1+( )
---------------------------------------= UBRRn

fCLKio
8BAUD-------------------- 1–=

BAUD
fCLKio

2 UBRRn 1+( )
---------------------------------------= UBRRn

fCLKio
2BAUD-------------------- 1–=

fXCKn
fCLKio

4----------------<
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Note that fclkio depends on the stability of the system clock source. It is therefore recommended 
to add some margin to avoid possible loss of data due to frequency variations.

18.4.4 Synchronous Clock Operation
When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input 
(Slave) or clock output (Master). The dependency between the clock edges and data sampling 
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the 
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 18-3. Synchronous Mode XCKn Timing.

The UCPOLn bit UCRSnC selects which XCKn clock edge is used for data sampling and which 
is used for data change. As Figure 18-3 shows, when UCPOLn is zero the data will be changed 
at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be 
changed at falling XCKn edge and sampled at rising XCKn edge.

18.5 Serial Frame
A serial frame is defined to be one character of data bits with synchronization bits (start and stop 
bits), and optionally a parity bit for error checking.

18.5.1 Frame Formats
The USARTn accepts all 30 combinations of the following as valid frame formats:

• 1 start bit
• 5, 6, 7, 8, or 9 data bits
• no, even or odd parity bit
• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits, 
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit 
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can 
be directly followed by a new frame, or the communication line can be set to an idle (high) state. 
Figure 18-4 illustrates the possible combinations of the frame formats. Bits inside brackets are 
optional.

RxDn / TxDn

XCKn

RxDn / TxDn

XCKnUCPOLn = 0

UCPOLn = 1

Sample

Sample
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Figure 18-4. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). 
An IDLE line must be high.

The frame format used by the USARTn is set by the UCSZn2:0, UPMn1:0 and USBSn bits in 
UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that changing 
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and 
Transmitter. 

The USARTn Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The 
USARTn Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection 
between one or two stop bits is done by the USARTn Stop Bit Select (USBSn) bit. The Receiver 
ignores the second stop bit. An FEn (Frame Error) will therefore only be detected in the cases 
where the first stop bit is zero.

18.5.2 Parity Bit Calculation
The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the 
result of the exclusive or is inverted. The relation between the parity bit and data bits is as 
follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

18.6 USART Initialization
The USARTn has to be initialized before any communication can take place. The initialization 
process normally consists of setting the baud rate, setting frame format and enabling the Trans-
mitter or the Receiver depending on the usage. For interrupt driven USARTn operation, the 
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the 
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no 
ongoing transmissions during the period the registers are changed. The TXCn flag can be used 
to check that the Transmitter has completed all transfers, and the RXCn flag can be used to 

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=
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check that there are no unread data in the receive buffer. Note that the TXCn flag must be 
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART0 initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling 
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter. 
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16 
Registers.

Note: 1. The example code assumes that the part specific header file is included.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and 
control registers, and for these types of applications the initialization code can be placed directly 
in the main routine, or be combined with initialization code for other I/O modules.

18.7 Data Transmission – USART Transmitter
The USARTn Transmitter is enabled by setting the Transmit Enable (TXENn) bit in the UCSRnB 
Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is overrid-
den by the USARTn and given the function as the Transmitter’s serial output. The baud rate, 
mode of operation and frame format must be set up once before doing any transmissions. If syn-

Assembly Code Example (1)

USART0_Init:

; Set baud rate

sts UBRR0H, r17

sts UBRR0L, r16

; Set frame format: 8data, no parity & 2 stop bits

ldi r16, (0<<UMSEL0)|(0<<UPM0)|(1<<USBS0)|(3<<UCSZ0)

sts UCSR0C, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN0)|(1<<TXEN0)

sts UCSR0B, r16

ret

C Code Example (1)

void USART0_Init (unsigned int baud)

{

/* Set baud rate */

UBRR0H = (unsigned char) (baud>>8);

UBRR0L = (unsigned char) baud;

/* Set frame format: 8data, no parity & 2 stop bits */

UCSR0C = (0<<UMSEL0) | (0<<UPM0) | (1<<USBS0) | (3<<UCSZ0);

/* Enable receiver and transmitter */

UCSR0B = (1<<RXEN0) | (1<<TXEN0);

}

 181
4250G–CAN–09/05



chronous operation is used, the clock on the XCKn pin will be overridden and used as 
transmission clock.

18.7.1 Sending Frames with 5 to 8 Data Bit
A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The 
CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the 
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new 
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or 
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is 
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register, 
U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART0 transmit function based on polling of the 
Data Register Empty (UDRE0) flag. When using frames with less than eight bits, the most signif-
icant bits written to the UDR0 are ignored. The USART0 has to be initialized before the function 
can be used. For the assembly code, the data to be sent is assumed to be stored in Register 
R16.

Note: 1. The example code assumes that the part specific header file is included. 

The function simply waits for the transmit buffer to be empty by checking the UDRE0 flag, before 
loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized, the 
interrupt routine writes the data into the buffer.

Assembly Code Example (1)

USART0_Transmit:

; Wait for empty transmit buffer

lds r17, UCSR0A

sbrs r17, UDRE0

rjmp USART0_Transmit

; Put data (r16) into buffer, sends the data

sts UDR0, r16

ret

C Code Example (1)

void USART0_Transmit (unsigned char data)

{

/* Wait for empty transmit buffer */

while ( ! ( UCSRA0 & (1<<UDRE0)));

/* Put data into buffer, sends the data */

UDR0 = data;

}
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18.7.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in UCS-
RnB before the low byte of the character is written to UDRn. The following code examples show 
a transmit function that handles 9-bit characters. For the assembly code, the data to be sent is 
assumed to be stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSR0B is static. For example, only the TXB80 bit of the UCSRB0 Register is 
used after initialization.

2. The example code assumes that the part specific header file is included.

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

18.7.3 Transmitter Flags and Interrupts
The USARTn Transmitter has two flags that indicate its state: USART Data Register Empty 
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

Assembly Code Example (1)(2)

USART0_Transmit:

; Wait for empty transmit buffer

lds r18, UCSR0A

sbrs r18, UDRE0

rjmp USART0_Transmit

; Copy 9th bit from r17-bit0 to TXB80 via T-bit of SREG

lds r18, UCSR0B

bst r17, 0

bld r18, TXB80

sts UCSR0B, r18

; Put LSB data (r16) into buffer, sends the data

sts UDR0, r16

ret

C Code Example (1)(2)

void USART0_Transmit (unsigned int data)

{

/* Wait for empty transmit buffer */

while ( !( UCSR0A & (1<<UDRE0)));

/* Copy 9th bit to TXB8 */

UCSR0B &= ~(1<<TXB80);

if ( data & 0x0100 )

UCSR0B |= (1<<TXB80);

/* Put data into buffer, sends the data */

UDR0 = data;

}
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The Data Register Empty (UDREn) flag indicates whether the transmit buffer is ready to receive 
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer 
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRBn is written to one, the 
USARTn Data Register Empty Interrupt will be executed as long as UDREn is set (provided that 
global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data 
transmission is used, the Data Register Empty interrupt routine must either write new data to 
UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new 
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) flag bit is set one when the entire frame in the Transmit Shift 
Register has been shifted out and there are no new data currently present in the transmit buffer. 
The TXCn flag bit is automatically cleared when a transmit complete interrupt is executed, or it 
can be cleared by writing a one to its bit location. The TXCn flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter 
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Complete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USARTn 
Transmit Complete Interrupt will be executed when the TXCn flag becomes set (provided that 
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn flag, this is done automatically when the interrupt 
is executed.

18.7.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled 
(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the 
first stop bit of the frame that is sent.

18.7.5 Disabling the Transmitter
The disabling of the Transmitter (setting the TXENn to zero) will not become effective until ongo-
ing and pending transmissions are completed, i.e., when the Transmit Shift Register and 
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter 
will no longer override the TxDn pin.

18.8 Data Reception – USART Receiver
The USARTn Receiver is enabled by writing the Receive Enable (RXENn) bit in the UCSRnB 
Register to one. When the Receiver is enabled, the normal pin operation of the RxDn pin is over-
ridden by the USARTn and given the function as the Receiver’s serial input. The baud rate, 
mode of operation and frame format must be set up once before any serial reception can be 
done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer clock.

18.8.1 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start 
bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register 
until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver. 
When the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift 
Register, the contents of the Shift Register will be moved into the receive buffer. The receive 
buffer can then be read by reading the UDRn I/O location.
 184
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128

The following code example shows a simple USART0 receive function based on polling of the 
Receive Complete (RXC0) flag. When using frames with less than eight bits the most significant 
bits of the data read from the UDR0 will be masked to zero. The USART0 has to be initialized 
before the function can be used.

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for data to be present in the receive buffer by checking the RXC0 flag, 
before reading the buffer and returning the value.

18.8.2 Receiving Frames with 9 Data Bits
If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCS-
RnB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn 
Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn I/O 
location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn, 
DORn and UPEn bits, which all are stored in the FIFO, will change.

Assembly Code Example (1)

USART0_Receive:

; Wait for data to be received

lds r18, UCSR0A

sbrs r18, RXC0

rjmp USART0_Receive

; Get and return received data from buffer

lds r16, UDR0

ret

C Code Example (1)

unsigned char USART0_Receive (void)

{

/* Wait for data to be received */

while ( ! (UCSR0A & (1<<RXC0)));

/* Get and return received data from buffer */

return UDR0;

}
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The following code example shows a simple USART0 receive function that handles both nine bit 
characters and the status bits.

Note: 1. The example code assumes that the part specific header file is included.

The receive function example reads all the I/O Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will 
be free to accept new data as early as possible.

Assembly Code Example (1)

USART0_Receive:

; Wait for data to be received

lds r18, UCSR0A

sbrs r18, RXC0

rjmp USART0_Receive

; Get status and 9th bit, then data from buffer

lds r17, UCSR0B

lds r16, UDR0

; If error, return -1

andi r18, (1<<FE0) | (1<<DOR0) | (1<<UPE0)

breq USART0_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART0_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example (1)

unsigned int USART0_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while ( ! (UCSR0A & (1<<RXC0)));

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSR0A;

resh = UCSR0B;

resl = UDR0;

/* If error, return -1 */

if ( status & (1<<FE0)|(1<<DOR0)|(1<<UPE0) )

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}
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18.8.3 Receive Complete Flag and Interrupt

The USARTn Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) flag indicates if there are unread data present in the receive 
buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive 
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXENn = 0), 
the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USARTn 
Receive Complete interrupt will be executed as long as the RXCn flag is set (provided that glo-
bal interrupts are enabled). When interrupt-driven data reception is used, the receive complete 
routine must read the received data from UDRn in order to clear the RXCn flag, otherwise a new 
interrupt will occur once the interrupt routine terminates.

18.8.4 Receiver Error Flags
The USARTn Receiver has three error flags: Frame Error (FEn), Data OverRun (DORn) and 
Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the error flags is 
that they are located in the receive buffer together with the frame for which they indicate the 
error status. Due to the buffering of the error flags, the UCSRnA must be read before the receive 
buffer (UDRn), since reading the UDRn I/O location changes the buffer read location. Another 
equality for the error flags is that they can not be altered by software doing a write to the flag 
location. However, all flags must be set to zero when the UCSRnA is written for upward compat-
ibility of future USART implementations. None of the error flags can generate interrupts.

The Frame Error (FEn) flag indicates the state of the first stop bit of the next readable frame 
stored in the receive buffer. The FEn flag is zero when the stop bit was correctly read (as one), 
and the FEn flag will be one when the stop bit was incorrect (zero). This flag can be used for 
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn flag 
is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all, except 
for the first, stop bits. For compatibility with future devices, always set this bit to zero when writ-
ing to UCSRnA.

The Data OverRun (DORn) flag indicates data loss due to a receiver buffer full condition. A Data 
OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in 
the Receive Shift Register, and a new start bit is detected. If the DORn flag is set there was one 
or more serial frame lost between the frame last read from UDRn, and the next frame read from 
UDRn. For compatibility with future devices, always write this bit to zero when writing to UCS-
RnA. The DORn flag is cleared when the frame received was successfully moved from the Shift 
Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity 
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For 
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more 
details see “Parity Bit Calculation” on page 180 and “Parity Checker” on page 187.

18.8.5 Parity Checker
The Parity Checker is active when the high USARTn Parity mode (UPMn1) bit is set. Type of 
Parity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the 
Parity Checker calculates the parity of the data bits in incoming frames and compares the result 
with the parity bit from the serial frame. The result of the check is stored in the receive buffer 
together with the received data and stop bits. The Parity Error (UPEn) flag can then be read by 
software to check if the frame had a Parity Error.
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The UPEn bit is set if the next character that can be read from the receive buffer had a Parity 
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is 
valid until the receive buffer (UDRn) is read.

18.8.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing 
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will 
no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be 
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

18.8.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be 
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal 
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn flag 
is cleared.

The following code example shows how to flush the receive buffer.

Note: 1. The example code assumes that the part specific header file is included.

18.9 Asynchronous Data Reception
The USARTn includes a clock recovery and a data recovery unit for handling asynchronous data 
reception. The clock recovery logic is used for synchronizing the internally generated baud rate 
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the 
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

18.9.1 Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 18-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times 
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-

Assembly Code Example (1)

USART0_Flush:

lds r16, UCSR0A

sbrs r16, RXC0

ret

lds r16, UDR0

rjmp USART0_Flush

C Code Example (1)

void USART0_Flush (void)

{

unsigned char dummy;

while (UCSR0A & (1<<RXC0) ) dummy = UDR0;

}
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izontal arrows illustrate the synchronization variation due to the sampling process. Note the 
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples 
denoted zero are samples done when the RxDn line is idle (i.e., no communication activity).

Figure 18-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the 
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in 
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the 
figure), to decide if a valid start bit is received. If two or more of these three samples have logical 
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts 
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is 
repeated for each start bit.

18.9.2 Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data 
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight 
states for each bit in Double Speed mode. Figure 18-6 shows the sampling of the data bits and 
the parity bit. Each of the samples is given a number that is equal to the state of the recovery 
unit.

Figure 18-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic 
value to the three samples in the center of the received bit. The center samples are emphasized 
on the figure by having the sample number inside boxes. The majority voting process is done as 
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1. 
If two or all three samples have low levels, the received bit is registered to be a logic 0. This 
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The 
recovery process is then repeated until a complete frame is received. Including the first stop bit. 
Note that the Receiver only uses the first stop bit of a frame.
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Figure 18-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit 
of the next frame.

Figure 18-7. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop 
bit is registered to have a logic 0 value, the Frame Error (FEn) flag will be set. 

A new high to low transition indicating the start bit of a new frame can come right after the last of 
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at 
point marked (A) in Figure 18-7. For Double Speed mode the first low level must be delayed to 
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational 
range of the Receiver.

18.9.3 Asynchronous Operational Range
The operational range of the Receiver is dependent on the mismatch between the received bit 
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too 
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see 
Table 18-2) base frequency, the Receiver will not be able to synchronize the frames to the start 
bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal 
receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed mode.

SF First sample number used for majority voting. SF = 8 for normal speed and  
SF = 4 for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and 
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to 
the receiver baud rate. 

Rfast is the ratio of the fastest incoming data rate that can be accepted in relation to the 
receiver baud rate.

Table 18-2 and Table 18-3 list the maximum receiver baud rate error that can be tolerated. Note 
that Normal Speed mode has higher toleration of baud rate variations.
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 190
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128
The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock 
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a 
resonator the system clock may differ more than 2% depending of the resonators tolerance. The 
second source for the error is more controllable. The baud rate generator can not always do an 
exact division of the system frequency to get the baud rate wanted. In this case an UBRRn value 
that gives an acceptable low error can be used if possible.

18.10 Multi-processor Communication Mode
Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering 
function of incoming frames received by the USARTn Receiver. Frames that do not contain 
address information will be ignored and not put into the receive buffer. This effectively reduces 
the number of incoming frames that has to be handled by the CPU, in a system with multiple 
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn 
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor 
Communication mode.

Table 18-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode 
(U2Xn = 0)

D
# (Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%) Recommended Max

Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 18-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode 
(U2Xn = 1)

D
# (Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%) Recommended Max

Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104,35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0
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18.10.1 MPCM Protocol
If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the Receiver is set up for frames with 
nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When 
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the 
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a 
master MCU. This is done by first decoding an address frame to find out which MCU has been 
addressed. If a particular slave MCU has been addressed, it will receive the following data 
frames as normal, while the other slave MCUs will ignore the received frames until another 
address frame is received.

18.10.2 Using MPCM
For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The 
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame 
(TXBn = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit charac-
ter frame format. 

The following procedure should be used to exchange data in Multi-processor Communication 
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in 
UCSRnA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. 
In the Slave MCUs, the RXCn flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If 
so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and 
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received. 
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets 
the MPCMn bit and waits for a new address frame from master. The process then 
repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the 
Receiver must change between using N and N+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver use the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit 
(USBSn = 1) since the first stop bit is used for indicating the frame type.
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18.11 USART Register Description

18.11.1 USART0 I/O Data Register – UDR0

18.11.2 USART1 I/O Data Register – UDR1

• Bit 7:0 – RxBn7:0: Receive Data Buffer (read access)
• Bit 7:0 – TxBn7:0: Transmit Data Buffer (write access)
The USARTn Transmit Data Buffer Register and USARTn Receive Data Buffer Registers share 
the same I/O address referred to as USARTn Data Register or UDRn. The Transmit Data Buffer 
Register (TXBn) will be the destination for data written to the UDRn Register location. Reading 
the UDRn Register location will return the contents of the Receive Data Buffer Register (RXBn).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to 
zero by the Receiver.

The transmit buffer can only be written when the UDREn flag in the UCSRnA Register is set. 
Data written to UDRn when the UDREn flag is not set, will be ignored by the USARTn Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter 
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the 
data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the 
receive buffer is accessed.

18.11.3 USART0 Control and Status Register A – UCSR0A

18.11.4 USART1 Control and Status Register A – UCSR1A

• Bit 7 – RXCn: USARTn Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive 
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive 
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn flag can be 
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

Bit 7 6 5 4 3 2 1 0

RXB0[7:0] UDR0 (Read)
TXB0[7:0] UDR0 (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXB1[7:0] UDR1 (Read)
TXB1[7:0] UDR1 (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 UCSR0A
Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 UCSR1A
Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
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• Bit 6 – TXCn: USARTn Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and 
there are no new data currently present in the transmit buffer (UDRn). The TXCn flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing 
a one to its bit location. The TXCn flag can generate a Transmit Complete interrupt (see descrip-
tion of the TXCIEn bit).

• Bit 5 – UDREn: USARTn Data Register Empty
The UDREn flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn is 
one, the buffer is empty, and therefore ready to be written. The UDREn flag can generate a Data 
Register Empty interrupt (see description of the UDRIEn bit).

UDREn is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame Error
This bit is set if the next character in the receive buffer had a Frame Error when received. I.e., 
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the 
receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one. 
Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun
This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive 
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a 
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this 
bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USARTn Parity Error
This bit is set if the next character in the receive buffer had a Parity Error when received and the 
Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer 
(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

• Bit 1 – U2Xn: Double the USARTn Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode
This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to 
one, all the incoming frames received by the USARnT Receiver that do not contain address 
information will be ignored. The Transmitter is unaffected by the MPCMn setting. For more 
detailed information see “Multi-processor Communication Mode” on page 191.

18.11.5 USART0 Control and Status Register B – UCSR0B
Bit 7 6 5 4 3 2 1 0

RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 UCSR0B
Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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18.11.6 USART1 Control and Status Register B – UCSR1B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXCn flag. A USARTn Receive Complete inter-
rupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG 
is written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXCn flag. A USARTn Transmit Complete inter-
rupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG 
is written to one and the TXCn bit in UCSRnA is set.

• Bit 5 – UDRIEn: USARTn Data Register Empty Interrupt Enable
Writing this bit to one enables interrupt on the UDREn flag. A Data Register Empty interrupt will 
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written 
to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable
Writing this bit to one enables the USARTn Receiver. The Receiver will override normal port 
operation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer 
invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable
Writing this bit to one enables the USARTn Transmitter. The Transmitter will override normal 
port operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn 
to zero) will not become effective until ongoing and pending transmissions are completed, i.e., 
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits 
(Character SiZe) in a frame the Receiver and Transmitter use. 

• Bit 1 – RXB8n: Receive Data Bit 8
RXB8n is the ninth data bit of the received character when operating with serial frames with nine 
data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames 
with nine data bits. Must be written before writing the low bits to UDRn.

18.11.7 USART0 Control and Status Register C – UCSR0C

Bit 7 6 5 4 3 2 1 0

RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 UCSR1B
Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 UCSR0C
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0
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18.11.8 USART1 Control and Status Register C – UCSR1C

• Bit 7 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, these bit must be written 
to zero when UCSRnC is written.

• Bit 6 – UMSELn: USARTn Mode Select
This bit selects between asynchronous and synchronous mode of operation.

• Bit 5:4 – UPMn1:0: Parity Mode
These bits enable and set type of parity generation and check. If enabled, the Transmitter will 
automatically generate and send the parity of the transmitted data bits within each frame. The 
Receiver will generate a parity value for the incoming data and compare it to the UPMn0 setting. 
If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

• Bit 3 – USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores 
this setting.

Bit 7 6 5 4 3 2 1 0

– UMSEL1 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPO1L UCSR1C
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 18-4. UMSELn Bit Settings

UMSELn Mode

0 Asynchronous Operation

1 Synchronous Operation

Table 18-5. UPMn Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 18-6. USBSn Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit
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• Bit 2:1 – UCSZn1:0: Character Size
The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits 
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is 
used. The UCPOLn bit sets the relationship between data output change and data input sample, 
and the synchronous clock (XCKn).

18.11.9 USART0 Baud Rate Registers – UBRR0L and UBRR0H

18.11.10 USART1 Baud Rate Registers – UBRR1L and UBRR1H

Table 18-7. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 18-8. UCPOLn Bit Settings

UCPOLn Transmitted Data Changed 
(Output of TxDn Pin)

Received Data Sampled 
(Input on RxDn Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRR0[11:8] UBRR0H
UBRR0[7:0] UBRR0L

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

– – – – UBRR1[11:8] UBRR1H
UBRR1[7:0] UBRR1L

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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• Bit 15:12 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be 
written to zero when UBRRnH is written.

• Bit 11:0 – UBRRn11:0: USARTn Baud Rate Register
This is a 12-bit register which contains the USARTn baud rate. The UBRRnH contains the four 
most significant bits, and the UBRRnL contains the eight least significant bits of the USARTn 
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud 
rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

18.12 Examples of Baud Rate Setting
For standard crystal, resonator and external oscillator frequencies, the most commonly used 
baud rates for asynchronous operation can be generated by using the UBRRn settings in Table 
18-9 up to Table 18-12. UBRRn values which yield an actual baud rate differing less than 0.5% 
from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the 
Receiver will have less noise resistance when the error ratings are high, especially for large 
serial frames (see “Asynchronous Operational Range” on page 190). The error values are calcu-
lated using the following equation:

Note: 1. UBRRn = 0, Error = 0.0%

Error[%] 1
BaudRateClosest Match

BaudRate--------------------------------------------------------– 
  100%•=

Table 18-9. Examples of UBRRn Settings for Commonly Frequencies

Baud 
Rate 
(bps)

fclkio = 1.0000 MHz fclkio = 1.8432 MHz fclkio = 2.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – – –

500k – – – – – – – – – – – –

1M – – – – – – – – – – – –

Max. (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 Kbps 125 kpbs 250 kbps
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Note: 1. UBRRn = 0, Error = 0.0%

Table 18-10. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud 
Rate 
(bps)

fclkio = 3.6864 MHz fclkio = 4.0000 MHz fclkio = 7.3728 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

500k – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max.(1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kpbs 921.6 kbps
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Note: 1. UBRRn = 0, Error = 0.0%

Table 18-11. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud 
Rate 
(bps)

fclkio = 8.0000 MHz fclkio = 10.000 MHz fclkio = 11.0592 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 -0.1% 259 0.2% 520 0.0% 287 0.0% 575 0.0%

4800 103 0.2% 207 0.2% 129 0.2% 259 0.2% 143 0.0% 287 0.0%

9600 51 0.2% 103 0.2% 64 0.2% 129 0.2% 71 0.0% 143 0.0%

14.4k 34 -0.8% 68 0.6% 42 0.9% 86 0.2% 47 0.0% 95 0.0%

19.2k 25 0.2% 51 0.2% 32 -1.4% 64 0.2% 35 0.0% 71 0.0%

28.8k 16 2.1% 34 -0.8% 21 -1.4% 42 0.9% 23 0.0% 47 0.0%

38.4k 12 0.2% 25 0.2% 15 1.8% 32 -1.4% 17 0.0% 35 0.0%

57.6k 8 -3.5% 16 2.1% 10 -1.5% 21 -1.4% 11 0.0% 23 0.0%

76.8k 6 -7.0% 12 0.2% 7 1.9% 15 1.8% 8 0.0% 17 0.0%

115.2k 3 8.5% 8 -3.5% 4 9.6% 10 -1.5% 5 0.0% 11 0.0%

230.4k 1 8.5% 3 8.5% 2 -16.8% 4 9.6% 2 0.0% 5 0.0%

250k 1 0.0% 3 0.0% 2 -33.3% 4 0.0% 2 -7.8% 5 -7.8%

500k 0 0.0% 1 0.0% – – 2 -33.3% – – 2 -7.8%

1M – – 0 0.0% – – – – – – – –

Max. (1) 0.5 Mbps 1 Mbps 625 kbps 1.25 Mbps 691.2 kbps 1.3824 Mbps
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Note: 1. UBRRn = 0, Error = 0.0%

Table 18-12. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud 
Rate 
(bps)

fclkio = 12.0000 MHz fclkio = 14.7456 MHz fclkio = 16.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 312 -0.2% 624 0.0% 383 0.0% 767 0.0% 416 -0.1% 832 0.0%

4800 155 0.2% 312 -0.2% 191 0.0% 383 0.0% 207 0.2% 416 -0.1%

9600 77 0.2% 155 0.2% 95 0.0% 191 0.0% 103 0.2% 207 0.2%

14.4k 51 0.2% 103 0.2% 63 0.0% 127 0.0% 68 0.6% 138 -0.1%

19.2k 38 0.2% 77 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

28.8k 25 0.2% 51 0.2% 31 0.0% 63 0.0% 34 -0.8% 68 0.6%

38.4k 19 -2.5% 38 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

57.6k 12 0.2% 25 0.2% 15 0.0% 31 0.0% 16 2.1% 34 -0.8%

76.8k 9 -2.7% 19 -2.5% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

115.2k 6 -8.9% 12 0.2% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

230.4k 2 11.3% 6 -8.9% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

250k 2 0.0% 5 0.0% 3 -7.8% 6 5.3% 3 0.0% 7 0.0%

500k – – 2 0.0% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0%

1M – – – – 0 -7.8% 1 -7.8% 0 0.0% 1 0.0%

Max. (1) 750 kbps 1.5 Mbps 921.6 kbps 1.8432 Mbps 1 Mbps 2 Mbps
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19. Two-wire Serial Interface

19.1 Features
• Simple yet Powerful and Flexible Communication Interface, only Two Bus Lines Needed
• Both Master and Slave Operation Supported
• Device can Operate as Transmitter or Receiver
• 7-bit Address Space allows up to 128 Different Slave Addresses
• Multi-master Arbitration Support
• Up to 400 kHz Data Transfer Speed
• Slew-rate Limited Output Drivers
• Noise Suppression Circuitry Rejects Spikes on Bus Lines
• Fully Programmable Slave Address with General Call Support
• Address Recognition Causes Wake-up when AVR is in Sleep Mode

19.2 Two-wire Serial Interface Bus Definition
The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The 
TWI protocol allows the systems designer to interconnect up to 128 different devices using only 
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All 
devices connected to the bus have individual addresses, and mechanisms for resolving bus 
contention are inherent in the TWI protocol.

Figure 19-1. TWI Bus Interconnection

19.2.1 TWI Terminology
The following definitions are frequently encountered in this section.

Device 1 Device 2 Device 3 Device n

SDA

SCL

........

R1 R2

VCC

Table 19-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The master also generates the 
SCL clock

Slave The device addressed by a master

Transmitter The device placing data on the bus

Receiver The device reading data from the bus
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19.2.2 Electrical Interconnection

As depicted in Figure 19-1, both bus lines are connected to the positive supply voltage through 
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector. 
This implements a wired-AND function which is essential to the operation of the interface. A low 
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level 
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line 
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any 
bus operation. 

The number of devices that can be connected to the bus is only limited by the bus capacitance 
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-wire Serial Interface Characteristics” on page 365. Two 
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz, 
and one valid for bus speeds up to 400 kHz.

19.3 Data Transfer and Frame Format

19.3.1 Transferring Bits
Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level 
of the data line must be stable when the clock line is high. The only exception to this rule is for 
generating start and stop conditions.

Figure 19-2. Data Validity

19.3.2 START and STOP Conditions
The master initiates and terminates a data transmission. The transmission is initiated when the 
master issues a START condition on the bus, and it is terminated when the master issues a 
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no 
other master should try to seize control of the bus. A special case occurs when a new START 
condition is issued between a START and STOP condition. This is referred to as a REPEATED 
START condition, and is used when the master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next 
STOP. This is identical to the START behaviour, and therefore START is used to describe both 
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As 
depicted below, START and STOP conditions are signalled by changing the level of the SDA 
line when the SCL line is high.

SDA

SCL

Data Stable Data Stable

Data Change
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Figure 19-3. START, REPEATED START and STOP Conditions

19.3.3 Address Packet Format
All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one 
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a slave 
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL 
(ACK) cycle. If the addressed slave is busy, or for some other reason can not service the mas-
ter’s request, the SDA line should be left high in the ACK clock cycle. The master can then 
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An 
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or 
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the 
designer, but the address 0000 000 is reserved for a general call. 

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK 
cycle. A general call is used when a master wishes to transmit the same message to several 
slaves in the system. When the general call address followed by a Write bit is transmitted on the 
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle. 
The following data packets will then be received by all the slaves that acknowledged the general 
call. Note that transmitting the general call address followed by a Read bit is meaningless, as 
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 19-4. Address Packet Format

19.3.4 Data Packet Format
All data packets transmitted on the TWI bus are 9 bits long, consisting of one data byte and an 
acknowledge bit. During a data transfer, the master generates the clock and the START and 
STOP conditions, while the receiver is responsible for acknowledging the reception. An 

SDA

SCL

START STOPREPEATED STARTSTOP START

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK
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Acknowledge (ACK) is signalled by the receiver pulling the SDA line low during the ninth SCL 
cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the receiver has 
received the last byte, or for some reason cannot receive any more bytes, it should inform the 
transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first. 

Figure 19-5. Data Packet Format

19.3.5 Combining Address and Data Packets Into a Transmission
A transmission basically consists of a START condition, a SLA+R/W, one or more data packets 
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement 
handshaking between the master and the slave. The slave can extend the SCL low period by 
pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the 
slave, or the slave needs extra time for processing between the data transmissions. The slave 
extending the SCL low period will not affect the SCL high period, which is determined by the 
master. As a consequence, the slave can reduce the TWI data transfer speed by prolonging the 
SCL duty cycle.

Figure 19-6 shows a typical data transmission. Note that several data bytes can be transmitted 
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 19-6. Typical Data Transmission

19.4 Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several masters. Special concerns have been taken 
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate 
a transmission at the same time. Two problems arise in multi-master systems:

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK
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• An algorithm must be implemented allowing only one of the masters to complete the 
transmission. All other masters should cease transmission when they discover that they have 
lost the selection process. This selection process is called arbitration. When a contending 
master discovers that it has lost the arbitration process, it should immediately switch to slave 
mode to check whether it is being addressed by the winning master. The fact that multiple 
masters have started transmission at the same time should not be detectable to the slaves, 
i.e., the data being transferred on the bus must not be corrupted. 

• Different masters may use different SCL frequencies. A scheme must be devised to 
synchronize the serial clocks from all masters, in order to let the transmission proceed in a 
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from 
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one 
from the master with the shortest high period. The low period of the combined clock is equal to 
the low period of the master with the longest low period. Note that all masters listen to the SCL 
line, effectively starting to count their SCL high and low time-out periods when the combined 
SCL line goes high or low, respectively.

Figure 19-7. SCL Synchronization between Multiple Masters

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting 
data. If the value read from the SDA line does not match the value the master had output, it has 
lost the arbitration. Note that a master can only lose arbitration when it outputs a high SDA value 
while another master outputs a low value. The losing master should immediately go to slave 
mode, checking if it is being addressed by the winning master. The SDA line should be left high, 
but losing masters are allowed to generate a clock signal until the end of the current data or 
address packet. Arbitration will continue until only one master remains, and this may take many 
bits. If several masters are trying to address the same slave, arbitration will continue into the 
data packet.
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Figure 19-8. Arbitration Between two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit
• A STOP condition and a data bit
• A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never 
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same 
number of data packets, otherwise the result of the arbitration is undefined.

19.5 Overview of the TWI Module
The TWI module is comprised of several submodules, as shown in Figure 19-9. All registers 
drawn in a thick line are accessible through the AVR data bus.
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Figure 19-9. Overview of the TWI Module

19.5.1 SCL and SDA Pins
These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a 
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike 
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR 
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as 
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need 
for external ones.

19.5.2 Bit Rate Generator Unit
This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status 
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the 
CPU clock frequency in the slave must be at least 16 times higher than the SCL frequency. Note 
that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock 
period. The SCL frequency is generated according to the following equation:

• TWBR = Value of the TWI Bit Rate Register
• TWPS = Value of the prescaler bits in the TWI Status Register

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than 10, the 
master may produce an incorrect output on SDA and SCL for the reminder of the byte. The prob-
lem occurs when operating the TWI in Master mode, sending Start + SLA + R/W to a slave (a 
slave does not need to be connected to the bus for the condition to happen).
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19.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and 
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted, 
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also 
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set 
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the 
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED 
START, and STOP conditions. The START/STOP controller is able to detect START and STOP 
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up 
if addressed by a master.

If the TWI has initiated a transmission as master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost 
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate 
status codes generated.

19.5.4 Address Match Unit
The Address Match unit checks if received address bytes match the 7-bit address in the TWI 
Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the 
TWAR is written to one, all incoming address bits will also be compared against the General Call 
address. Upon an address match, the Control Unit is informed, allowing correct action to be 
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR. 
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep 
mode, enabling the MCU to wake up if addressed by a master. If another interrupt (e.g., INT0) 
occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts opera-
tion and return to it’s idle state. If this cause any problems, ensure that TWI Address Match is the 
only enabled interrupt when entering Power-down.

19.5.5 Control Unit
The Control unit monitors the TWI bus and generates responses corresponding to settings in the 
TWI Control Register (TWCR). When an event requiring the attention of the application occurs 
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only 
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times, 
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT flag is set, the SCL line is held low. This allows the application 
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition
• After the TWI has transmitted SLA+R/W
• After the TWI has transmitted an address byte
• After the TWI has lost arbitration
• After the TWI has been addressed by own slave address or general call
• After the TWI has received a data byte
• After a STOP or REPEATED START has been received while still addressed as a slave
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• When a bus error has occurred due to an illegal START or STOP condition

19.6 TWI Register Description

19.6.1 TWI Bit Rate Register – TWBR

• Bits 7..0 – TWI Bit Rate Register
TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency 
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator 
Unit” on page 208 for calculating bit rates.

19.6.2 TWI Control Register – TWCR

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a 
master access by applying a START condition to the bus, to generate a receiver acknowledge, 
to generate a stop condition, and to control halting of the bus while the data to be written to the 
bus are written to the TWDR. It also indicates a write collision if data is attempted written to 
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job and expects application 
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the 
TWI interrupt vector. While the TWINT flag is set, the SCL low period is stretched. The TWINT 
flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag 
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this 
flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the ACK pulse. If the TWEA bit is written to one, the 
ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode. 

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire 
Serial Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one 
again.

• Bit 5 – TWSTA: TWI START Condition Bit

Bit 7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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The application writes the TWSTA bit to one when it desires to become a master on the Two-
wire Serial Bus. The TWI hardware checks if the bus is available, and generates a START con-
dition on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition 
is detected, and then generates a new START condition to claim the bus Master status. TWSTA 
must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit
Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire 
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In slave mode, setting the TWSTO bit can be used to recover from an error condition. 
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed 
Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is 
low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit
The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to 
one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the 
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI 
transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, this must be written to 
zero when TWCR is written.

• Bit 0 – TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT flag is high.

19.6.3 TWI Status Register – TWSR

• Bits 7..3 – TWS: TWI Status
These 5 bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different status 
codes are described later in this section. Note that the value read from TWSR contains both the 
5-bit status value and the 2-bit prescaler value. The application designer should mask the pres-
caler bits to zero when checking the Status bits. This makes status checking independent of 
prescaler setting. This approach is used in this datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit
This bit is reserved and will always read as zero.

Bit 7 6 5 4 3 2 1 0

TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR
Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0
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• Bits 1..0 – TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler. 

To calculate bit rates, see “Bit Rate Generator Unit” on page 208. The value of TWPS1..0 is 
used in the equation.

19.6.4 TWI Data Register – TWDR

In Transmit mode, TWDR contains the next byte to be transmitted. In receive mode, the TWDR 
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte. 
This occurs when the TWI interrupt flag (TWINT) is set by hardware. Note that the Data Register 
cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains sta-
ble as long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted 
in. TWDR always contains the last byte present on the bus, except after a wake up from a sleep 
mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case of a lost 
bus arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit is 
controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7..0 – TWD: TWI Data Register 
These eight bits constitute the next data byte to be transmitted, or the latest data byte received 
on the TWI Serial Bus.

19.6.5 TWI (Slave) Address Register – TWAR

• Bits 7..1 – TWA: TWI (Slave) Address Register 
These seven bits constitute the slave address of the TWI unit. The TWAR should be loaded with 
the 7-bit slave address to which the TWI will respond when programmed as a slave transmitter 
or receiver, and not needed in the master modes. In multimaster systems, TWAR must be set in 
masters which can be addressed as slaves by other masters.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

Table 19-2. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0
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TWGCE is used to enable recognition of the general call address (0x00). There is an associated 
address comparator that looks for the slave address (or general call address if enabled) in the 
received serial address. If a match is found, an interrupt request is generated. If set, this bit 
enables the recognition of a General Call given over the TWI Serial Bus.

19.7 Using the TWI
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like 
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based, 
the application software is free to carry on other operations during a TWI byte transfer. Note that 
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in 
SREG allow the application to decide whether or not assertion of the TWINT flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in 
order to detect actions on the TWI bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits application 
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current 
state of the TWI bus. The application software can then decide how the TWI should behave in 
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 19-10 is a simple example of how the application can interface to the TWI hardware. In 
this example, a master wishes to transmit a single data byte to a slave. This description is quite 
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behaviour is also presented.

Figure 19-10. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is done by 
writing a specific value into TWCR, instructing the TWI hardware to transmit a START 
condition. Which value to write is described later on. However, it is important that the 
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI 
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after 
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the application has cleared TWINT, the TWI will initiate transmission of the START 
condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and 
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that 
the START condition was successfully transmitted. If TWSR indicates otherwise, the 
application software might take some special action, like calling an error routine. 
Assuming that the status code is as expected, the application must load SLA+W into 
TWDR. Remember that TWDR is used both for address and data. After TWDR has 
been loaded with the desired SLA+W, a specific value must be written to TWCR, 
instructing the TWI hardware to transmit the SLA+W present in TWDR. Which value to 
write is described later on. However, it is important that the TWINT bit is set in the value 
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as 
long as the TWINT bit in TWCR is set. Immediately after the application has cleared 
TWINT, the TWI will initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and 
TWSR is updated with a status code indicating that the address packet has success-
fully been sent. The status code will also reflect whether a slave acknowledged the 
packet or not.

5. The application software should now examine the value of TWSR, to make sure that 
the address packet was successfully transmitted, and that the value of the ACK bit was 
as expected. If TWSR indicates otherwise, the application software might take some 
special action, like calling an error routine. Assuming that the status code is as 
expected, the application must load a data packet into TWDR. Subsequently, a specific 
value must be written to TWCR, instructing the TWI hardware to transmit the data 
packet present in TWDR. Which value to write is described later on. However, it is 
important that the TWINT bit is set in the value written. Writing a one to TWINT clears 
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set. 
Immediately after the application has cleared TWINT, the TWI will initiate transmission 
of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and 
TWSR is updated with a status code indicating that the data packet has successfully 
been sent. The status code will also reflect whether a slave acknowledged the packet 
or not.

7. The application software should now examine the value of TWSR, to make sure that 
the data packet was successfully transmitted, and that the value of the ACK bit was as 
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected, 
the application must write a specific value to TWCR, instructing the TWI hardware to 
transmit a STOP condition. Which value to write is described later on. However, it is 
important that the TWINT bit is set in the value written. Writing a one to TWINT clears 
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set. 
Immediately after the application has cleared TWINT, the TWI will initiate transmission 
of the STOP condition. Note that TWINT is NOT set after a STOP condition has been 
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. 
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT flag is 
set. The SCL line is pulled low until TWINT is cleared.
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• When the TWINT flag is set, the user must update all TWI Registers with the value relevant 

for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be 
transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been 
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a 
one to TWINT clears the flag. The TWI will then commence executing whatever operation 
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code 
below assumes that several definitions have been made for example by using include-files.

Assembly Code Example C Example Comments

1
ldi r16, (1<<TWINT)| 

(1<<TWSTA)| 
(1<<TWEN)

sts TWCR, r16

TWCR = (1<<TWINT)| 
(1<<TWSTA)| 
(1<<TWEN) Send START condition

2

wait1:
lds r16,TWCR
sbrs r16,TWINT
rjmp wait1

 
 
while (!(TWCR & (1<<TWINT))); Wait for TWINT flag set. This indicates that 

the START condition has been transmitted

3

lds r16,TWSR
andi r16, 0xF8
cpi r16, START
brne ERROR

 
if ((TWSR & 0xF8) != START)

ERROR();

Check value of TWI Status Register. Mask 
prescaler bits. If status different from START 
go to ERROR

ldi r16, SLA_W
sts TWDR, r16 
ldi r16, (1<<TWINT)| 

(1<<TWEN)
sts TWCR, r16

 
TWDR = SLA_W;
TWCR = (1<<TWINT)|(1<<TWEN);

Load SLA_W into TWDR Register. Clear 
TWINT bit in TWCR to start transmission of 
address

4

wait2:
lds r16,TWCR
sbrs r16,TWINT
rjmp wait2

 
 
while (!(TWCR & (1<<TWINT)));

Wait for TWINT flag set. This indicates that 
the SLA+W has been transmitted, and 
ACK/NACK has been received.

5

lds r16,TWSR
andi r16, 0xF8
cpi r16, MT_SLA_ACK
brne ERROR

 
if ((TWSR & 0xF8)!= MT_SLA_ACK)

ERROR();

Check value of TWI Status Register. Mask 
prescaler bits. If status different from 
MT_SLA_ACK go to ERROR

ldi r16, DATA
sts TWDR, r16
ldi r16, (1<<TWINT)| 

(1<<TWEN)
sts TWCR, r16

 
TWDR = DATA;
TWCR = (1<<TWINT)|(1<<TWEN); Load DATA into TWDR Register. Clear TWINT 

bit in TWCR to start transmission of data

6

wait3:
lds r16,TWCR
sbrs r16,TWINT
rjmp wait3

while (!(TWCR & (1<<TWINT)));
Wait for TWINT flag set. This indicates that 
the DATA has been transmitted, and 
ACK/NACK has been received.

7

lds r16,TWSR
andi r16, 0xF8
cpi r16, MT_DATA_ACK
brne ERROR

 
if ((TWSR & 0xF8)!=MT_DATA_ACK) 

ERROR();
Check value of TWI Status Register. Mask 
prescaler bits. If status different from 
MT_DATA_ACK go to ERROR

ldi r16, (1<<TWINT)| 
(1<<TWEN) | 
(1<<TWSTO)

sts TWCR, r16 

TWCR = (1<<TWINT)| 
(1<<TWEN) | 
(1<<TWSTO); Transmit STOP condition
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19.8 Transmission Modes
The TWI can operate in one of four major modes. These are named Master Transmitter (MT), 
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these 
modes can be used in the same application. As an example, the TWI can use MT mode to write 
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters 
are present in the system, some of these might transmit data to the TWI, and then SR mode 
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described 
along with figures detailing data transmission in each of the modes. These figures contain the 
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 19-12 to Figure 19-18, circles are used to indicate that the TWINT flag is set. The num-
bers in the circles show the status code held in TWSR, with the prescaler bits masked to zero. At 
these points, actions must be taken by the application to continue or complete the TWI transfer. 
The TWI transfer is suspended until the TWINT flag is cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial 
transfer are given in Table 19-3 to Table 19-6. Note that the prescaler bits are masked to zero in 
these tables.

19.8.1 Master Transmitter Mode
In the Master Transmitter mode, a number of data bytes are transmitted to a slave receiver (see 
Figure 19-11). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver 
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted, 
MR mode is entered. All the status codes mentioned in this section assume that the prescaler 
bits are zero or are masked to zero.
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Figure 19-11. Data Transfer in Master Transmitter Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to 
transmit a START condition and TWINT must be written to one to clear the TWINT flag. The TWI 
will then test the Two-wire Serial Bus and generate a START condition as soon as the bus 
becomes free. After a START condition has been transmitted, the TWINT flag is set by hard-
ware, and the status code in TWSR will be 0x08 (See Table 19-3). In order to enter MT mode, 
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit 
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing 
the following value to TWCR:

When SLA+W have been transmitted and an acknowledgment bit has been received, TWINT is 
set again and a number of status codes in TWSR are possible. Possible status codes in Master 
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes 
is detailed in Table 19-3. 

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is 
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not, 
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the 
transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing 
the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

Device 1 Device 2
Device 3 Device n

SDA

SCL

........

R1 R2

VCC

MASTER
TRANSMITTER

SLAVE
RECEIVER
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After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the 
same slave again, or a new slave without transmitting a STOP condition. Repeated START 
enables the master to switch between slaves, Master Transmitter mode and Master Receiver 
mode without losing control of the bus.

Table 19-3. Status Codes for Master Transmitter Mode
Status Code 
(TWSR) 
Prescaler Bits 
are 0

Status of the Two-wire Serial Bus 
and Two-wire Serial Interface 
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0x08 A START condition has been 
transmitted

Load SLA+W X 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START condition has 
been transmitted

Load SLA+W or 

Load SLA+R

X

X

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to master receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will be 
received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will be 
received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x28 Data byte has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will be 
received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x30 Data byte has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will be 
received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x38 Arbitration lost in SLA+W or data 
bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed 
slave mode entered
A START condition will be transmitted when the bus be-
comes free
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Figure 19-12. Formats and States in the Master Transmitter Mode

S SLA W A DATA A P

0x08 0x18 0x28

R SLA W

0x10

A P

0x20

P

0x30

A or A

0x38

A

Other master
continues A or A

0x38

Other master
continues

R

A

0x68

Other master
continues

0x78 0xB0 To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

S
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19.8.2 Master Receiver Mode
In the Master Receiver Mode, a number of data bytes are received from a slave transmitter (see 
Figure 19-13). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver 
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted, 
MR mode is entered. All the status codes mentioned in this section assume that the prescaler 
bits are zero or are masked to zero.

Figure 19-13. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to 
one to transmit a START condition and TWINT must be set to clear the TWINT flag. The TWI will 
then test the Two-wire Serial Bus and generate a START condition as soon as the bus becomes 
free. After a START condition has been transmitted, the TWINT flag is set by hardware, and the 
status code in TWSR will be 0x08 (See Table 19-3). In order to enter MR mode, SLA+R must be 
transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should be 
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-
ing value to TWCR:

When SLA+R have been transmitted and an acknowledgment bit has been received, TWINT is 
set again and a number of status codes in TWSR are possible. Possible status codes in Master 
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes 
is detailed in Table 19-12. Received data can be read from the TWDR Register when the TWINT 
flag is set high by hardware. This scheme is repeated until the last byte has been received. After 
the last byte has been received, the MR should inform the ST by sending a NACK after the last 
received data byte. The transfer is ended by generating a STOP condition or a repeated START 
condition. A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 1 X 1 0 X

Device 1 Device 2
Device 3 Device n

SDA

SCL

........

R1 R2

VCC

MASTER SLAVE
TRANSMITTERRECEIVER
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A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the 
same slave again, or a new slave without transmitting a STOP condition. Repeated START 
enables the master to switch between slaves, Master Transmitter mode and Master Receiver 
mode without losing control over the bus.

Figure 19-14. Formats and States in the Master Receiver Mode

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

S SLA R A DATA A

0x08 0x40 0x50

SLA R

0x10

A P

0x48

A or A

0x38

Other master
continues

0x38

Other master
continues

W

A

0x68

Other master
continues

0x78 0xB0 To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The 
prescaler bits are zero or masked to zero

PDATA A

0x58

A

RS
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19.8.3 Slave Receiver Mode
In the Slave Receiver mode, a number of data bytes are received from a master transmitter (see 
Figure 19-15). All the status codes mentioned in this section assume that the prescaler bits are 
zero or are masked to zero.

Figure 19-15. Data Transfer in Slave Receiver Mode

Table 19-4. Status Codes for Master Receiver Mode
Status Code 
(TWSR) 
Prescaler Bits 
are 0

Status of the Two-wire Serial Bus 
and Two-wire Serial Interface 
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0x08 A START condition has been 
transmitted

Load SLA+R X 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START condition has 
been transmitted

Load SLA+R or 

Load SLA+W

X

X

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to master transmitter mode

0x38 Arbitration lost in SLA+R or NOT 
ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed 
slave mode will be entered
A START condition will be transmitted when the bus
becomes free

0x40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO flag will 
be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO flag will 
be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

Device 1 Device 2
Device 3 Device n

SDA

SCL

........

R1 R2

VCC

MASTERSLAVE
TRANSMITTERRECEIVER
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To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond when 
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00), 
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable 
the acknowledgment of the device’s own slave address or the general call address. TWSTA and 
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own 
slave address (or the general call address if enabled) followed by the data direction bit. If the 
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After 
its own slave address and the write bit have been received, the TWINT flag is set and a valid 
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 19-5. 
The slave receiver mode may also be entered if arbitration is lost while the TWI is in the master 
mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA 
after the next received data byte. This can be used to indicate that the slave is not able to 
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave 
address. However, the Two-wire Serial Bus is still monitored and address recognition may 
resume at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily 
isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA 
bit is set, the interface can still acknowledge its own slave address or the general call address by 
using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep 
and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is cleared 
(by writing it to one). Further data reception will be carried out as normal, with the AVR clocks 
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may 
be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last byte 
present on the bus when waking up from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE
value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 0 1 0 0 0 1 0 X
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Table 19-5. Status Codes for Slave Receiver Mode  
Status Code 
(TWSR) 
Prescaler Bits 
are 0

Status of the Two-wire Serial Bus 
and Two-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as mas-
ter; own SLA+W has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x70 General call address has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as mas-
ter; General call address has been 
received; ACK has been 
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own 
SLA+W; data has been received; 
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own 
SLA+W; data has been received; 
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0x90 Previously addressed with 
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with 
general call; data has been 
received; NOT ACK has been 
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0xA0 A STOP condition or repeated 
START condition has been 
received while still addressed as 
slave

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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Figure 19-16. Formats and States in the Slave Receiver Mode

S SLA W A DATA A

0x60 0x80

0x88

A

0x68

Reception of the �
own slave address �
and one or more �
data bytes.  All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The 
prescaler bits are zero or masked to zero

P or SDATA A

0x80 0xA0

P or SA

A DATA A

0x70 0x90

0x98

A

0x78

P or SDATA A

0x90 0xA0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A
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19.8.4 Slave Transmitter Mode
In the Slave Transmitter mode, a number of data bytes are transmitted to a master receiver (see 
Figure 19-17). All the status codes mentioned in this section assume that the prescaler bits are 
zero or are masked to zero.

Figure 19-17. Data Transfer in Slave Transmitter Mode

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond when 
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00), 
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable 
the acknowledgment of the device’s own slave address or the general call address. TWSTA and 
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own 
slave address (or the general call address if enabled) followed by the data direction bit. If the 
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After 
its own slave address and the write bit have been received, the TWINT flag is set and a valid 
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 19-6. 
The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the 
Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State 0xC0 or state 0xC8 will be entered, depending on whether the master receiver 
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed slave 
mode, and will ignore the master if it continues the transfer. Thus the master receiver receives 
all “1” as serial data. State 0xC8 is entered if the master demands additional data bytes (by 
transmitting ACK), even though the slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the master).

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE
value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 0 1 0 0 0 1 0 X

Device 1 Device 2
Device 3 Device n

SDA

SCL

........

R1 R2

VCC

MASTERSLAVE
TRANSMITTER RECEIVER
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While TWEA is zero, the TWI does not respond to its own slave address. However, the Two-wire 
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA. 
This implies that the TWEA bit may be used to temporarily isolate the TWI from the Two-wire 
Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA 
bit is set, the interface can still acknowledge its own slave address or the general call address by 
using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep 
and the TWI will hold the SCL clock will low during the wake up and until the TWINT flag is 
cleared (by writing it to one). Further data transmission will be carried out as normal, with the 
AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the 
SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last byte 
present on the bus when waking up from these sleep modes.

Table 19-6. Status Codes for Slave Transmitter Mode
Status Code 
(TWSR) 
Prescaler Bits 
are 0

Status of the Two-wire Serial Bus 
and Two-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be received

0xB0 Arbitration lost in SLA+R/W as mas-
ter; own SLA+R has been 
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be received

0xB8 Data byte in TWDR has been 
transmitted; ACK has been 
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be received

0xC0 Data byte in TWDR has been 
transmitted; NOT ACK has been 
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0xC8 Last data byte in TWDR has been 
transmitted (TWEA = “0”); ACK has 
been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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Figure 19-18. Formats and States in the Slave Transmitter Mode

19.8.5 Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see Table 19-7.

Status 0xF8 indicates that no relevant information is available because the TWINT flag is not 
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus 
error occurs when a START or STOP condition occurs at an illegal position in the format frame. 
Examples of such illegal positions are during the serial transfer of an address byte, a data byte, 
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the 
TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the 
TWI to enter the not addressed slave mode and to clear the TWSTO flag (no other bits in TWCR 
are affected). The SDA and SCL lines are released, and no STOP condition is transmitted.

S SLA R A DATA A

0xA8 0xB8

A

0xB0

Reception of the �
own slave address �
and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = ’0’)

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The 
prescaler bits are zero or masked to zero

P or SDATA

0xC0

DATA A

A

0xC8

P or SAll 1’s

A

Table 19-7. Miscellaneous States
Status Code 
(TWSR) 
Prescaler Bits 
are 0

Status of the Two-wire Serial Bus 
and Two-wire Serial Interface 
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0xF8 No relevant state information 
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal START 
or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condition 
is sent on the bus. In all cases, the bus is released and 
TWSTO is cleared.
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19.8.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action. 
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves 
the following steps:

1. The transfer must be initiated
2. The EEPROM must be instructed what location should be read
3. The reading must be performed
4. The transfer must be finished

Note that data is transmitted both from master to slave and vice versa. The master must instruct 
the slave what location it wants to read, requiring the use of the MT mode. Subsequently, data 
must be read from the slave, implying the use of the MR mode. Thus, the transfer direction must 
be changed. The master must keep control of the bus during all these steps, and the steps 
should be carried out as an atomical operation. If this principle is violated in a multimaster sys-
tem, another master can alter the data pointer in the EEPROM between steps 2 and 3, and the 
master will read the wrong data location. Such a change in transfer direction is accomplished by 
transmitting a REPEATED START between the transmission of the address byte and reception 
of the data. After a REPEATED START, the master keeps ownership of the bus. The following 
figure shows the flow in this transfer.

Figure 19-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P
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19.9 Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simulta-
neously by one or more of them. The TWI standard ensures that such situations are handled in 
such a way that one of the masters will be allowed to proceed with the transfer, and that no data 
will be lost in the process. An example of an arbitration situation is depicted below, where two 
masters are trying to transmit data to a slave receiver.

Figure 19-20. An Arbitration Example

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same slave. In this 
case, neither the slave nor any of the masters will know about the bus contention.

• Two or more masters are accessing the same slave with different data or direction bit. In this 
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters 
trying to output a one on SDA while another master outputs a zero will lose the arbitration. 
Losing masters will switch to not addressed slave mode or wait until the bus is free and 
transmit a new START condition, depending on application software action.

• Two or more masters are accessing different slaves. In this case, arbitration will occur in the 
SLA bits. Masters trying to output a one on SDA while another master outputs a zero will lose 
the arbitration. Masters losing arbitration in SLA will switch to slave mode to check if they are 
being addressed by the winning master. If addressed, they will switch to SR or ST mode, 
depending on the value of the READ/WRITE bit. If they are not being addressed, they will 
switch to not addressed slave mode or wait until the bus is free and transmit a new START 
condition, depending on application software action.

Device 1 Device 2 Device 3
Device n

SDA

SCL

........

R1 R2

VCC

MASTER
TRANSMITTER

SLAVE
RECEIVER

SLAVE
RECEIVER
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This is summarized in Figure 19-21. Possible status values are given in circles.

Figure 19-21. Possible Status Codes Caused by Arbitration

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
0xB0

0x68 / 0x78

0x38

SLASTART Data STOP
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20. Controller Area Network - CAN
The Controller Area Network (CAN) protocol is a real-time, serial, broadcast protocol with a very 
high level of security. The AT90CAN128 CAN controller is fully compatible with the CAN Specifi-
cation 2.0 Part A and Part B. It delivers the features required to implement the kernel of the CAN 
bus protocol according to the ISO/OSI Reference Model: 

• The Data Link Layer 
- the Logical Link Control (LLC) sublayer 
- the Medium Access Control (MAC) sublayer 

• The Physical Layer 
- the Physical Signalling (PLS) sublayer 
- not supported - the Physical Medium Attach (PMA) 
- not supported - the Medium Dependent Interface (MDI) 

The CAN controller is able to handle all types of frames (Data, Remote, Error and Overload) and 
achieves a bitrate of 1 Mbit/s. 

20.1 Features
• Full Can Controller
• Fully Compliant with CAN Standard rev 2.0 A and rev 2.0 B
• 15 MOb (Message Object) with their own:

– 11 bits of Identifier Tag (rev 2.0 A), 29 bits of Identifier Tag (rev 2.0 B) 
– 11 bits of Identifier Mask (rev 2.0 A), 29 bits of Identifier Mask (rev 2.0 B) 
– 8 Bytes Data Buffer (Static Allocation)
– Tx, Rx, Frame Buffer or Automatic Reply Configuration
– Time Stamping

• 1 Mbit/s Maximum Transfer Rate at 8 MHz
• TTC Timer
• Listening Mode (for Spying or Autobaud)

20.2 CAN Protocol
The CAN protocol is an international standard defined in the ISO 11898 for high speed and ISO 
11519-2 for low speed.

20.2.1 Principles
CAN is based on a broadcast communication mechanism. This broadcast communication is 
achieved by using a message oriented transmission protocol. These messages are identified by 
using a message identifier. Such a message identifier has to be unique within the whole network 
and it defines not only the content but also the priority of the message.

The priority at which a message is transmitted compared to another less urgent message is 
specified by the identifier of each message. The priorities are laid down during system design in 
the form of corresponding binary values and cannot be changed dynamically. The identifier with 
the lowest binary number has the highest priority.

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by each node 
observing the bus level bit for bit. This happens in accordance with the "wired and" mechanism, 
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by which the dominant state overwrites the recessive state. The competition for bus allocation is 
lost by all nodes with recessive transmission and dominant observation. All the "losers" automat-
ically become receivers of the message with the highest priority and do not re-attempt 
transmission until the bus is available again.

20.2.2 Message Formats
The CAN protocol supports two message frame formats, the only essential difference being in 
the length of the identifier. The CAN standard frame, also known as CAN 2.0 A, supports a 
length of 11 bits for the identifier, and the CAN extended frame, also known as CAN 2.0 B, sup-
ports a length of 29 bits for the identifier.

20.2.2.1 Can Standard Frame

Figure 20-1. CAN Standard Frames

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)", this is fol-
lowed by the "Arbitration field" which consist of the identifier and the "Remote Transmission 
Request (RTR)" bit used to distinguish between the data frame and the data request frame 
called remote frame. The following "Control field" contains the "IDentifier Extension (IDE)" bit 
and the "Data Length Code (DLC)" used to indicate the number of following data bytes in the 
"Data field". In a remote frame, the DLC contains the number of requested data bytes. The "Data 
field" that follows can hold up to 8 data bytes. The frame integrity is guaranteed by the following 
"Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK 
slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as 
a dominant bit by the receivers which have at this time received the data correctly. Correct mes-
sages are acknowledged by the receivers regardless of the result of the acceptance test. The 
end of the message is indicated by "End Of Frame (EOF)". The "Intermission Frame Space 
(IFS)" is the minimum number of bits separating consecutive messages. If there is no following 
bus access by any node, the bus remains idle.
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ID10..0

Interframe
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DLC4..0
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del.
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20.2.2.2 CAN Extended Frame

Figure 20-2. CAN Extended Frames

A message in the CAN extended frame format is likely the same as a message in CAN standard 
frame format. The difference is the length of the identifier used. The identifier is made up of the 
existing 11-bit identifier (base identifier) and an 18-bit extension (identifier extension). The dis-
tinction between CAN standard frame format and CAN extended frame format is made by using 
the IDE bit which is transmitted as dominant in case of a frame in CAN standard frame format, 
and transmitted as recessive in the other case.

20.2.2.3 Format Co-existence
As the two formats have to co-exist on one bus, it is laid down which message has higher priority 
on the bus in the case of bus access collision with different formats and the same identifier / 
base identifier: The message in CAN standard frame format always has priority over the mes-
sage in extended format.

There are three different types of CAN modules available:

– 2.0A - Considers 29 bit ID as an error
– 2.0B Passive - Ignores 29 bit ID messages
– 2.0B Active - Handles both 11 and 29 bit ID Messages

20.2.3 CAN Bit Timing
To ensure correct sampling up to the last bit, a CAN node needs to re-synchronize throughout 
the entire frame. This is done at the beginning of each message with the falling edge SOF and 
on each recessive to dominant edge.

20.2.3.1 Bit Construction
One CAN bit time is specified as four non-overlapping time segments. Each segment is con-
structed from an integer multiple of the Time Quantum. The Time Quantum or TQ is the smallest 
discrete timing resolution used by a CAN node.
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IDT28..18

Interframe
Space

CRC
del.

ACK
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Figure 20-3. CAN Bit Construction

20.2.3.2 Synchronization Segment
The first segment is used to synchronize the various bus nodes.

On transmission, at the start of this segment, the current bit level is output. If there is a bit state 
change between the previous bit and the current bit, then the bus state change is expected to 
occur within this segment by the receiving nodes.

20.2.3.3 Propagation Time Segment
This segment is used to compensate for signal delays across the network.

This is necessary to compensate for signal propagation delays on the bus line and through the 
transceivers of the bus nodes.

20.2.3.4 Phase Segment 1
Phase Segment 1 is used to compensate for edge phase errors.

This segment may be lengthened during re-synchronization.

20.2.3.5 Sample Point
The sample point is the point of time at which the bus level is read and interpreted as the value 
of the respective bit. Its location is at the end of Phase Segment 1 (between the two Phase 
Segments).

20.2.3.6 Phase Segment 2
This segment is also used to compensate for edge phase errors.

This segment may be shortened during re-synchronization, but the length has to be at least as 
long as the Information Processing Time (IPT) and may not be more than the length of Phase 
Segment 1.

20.2.3.7 Information Processing Time
It is the time required for the logic to determine the bit level of a sampled bit.

Time Quantum
(producer)

Nominal CAN Bit Time

Segments
(producer) SYNC_SEG PROP_SEG PHASE_SEG_1 PHASE_SEG_2

propagation
delay

Segments
(consumer)

SYNC_SEG PROP_SEG PHASE_SEG_1 PHASE_SEG_2

Sample Point

Transmission Point
(producer)

CAN Frame
(producer)
 235
4250G–CAN–09/05



The IPT begins at the sample point, is measured in TQ and is fixed at 2TQ for the Atmel CAN. 
Since Phase Segment 2 also begins at the sample point and is the last segment in the bit time, 
PS2 minimum shall not be less than the IPT.

20.2.3.8 Bit Lengthening
As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Segment 2 
may be shortened to compensate for oscillator tolerances. If, for example, the transmitter oscilla-
tor is slower than the receiver oscillator, the next falling edge used for resynchronization may be 
delayed. So Phase Segment 1 is lengthened in order to adjust the sample point and the end of 
the bit time.

20.2.3.9 Bit Shortening
If, on the other hand, the transmitter oscillator is faster than the receiver one, the next falling 
edge used for resynchronization may be too early. So Phase Segment 2 in bit N is shortened in 
order to adjust the sample point for bit N+1 and the end of the bit time

20.2.3.10 Synchronization Jump Width
The limit to the amount of lengthening or shortening of the Phase Segments is set by the Resyn-
chronization Jump Width.

This segment may not be longer than Phase Segment 2.

20.2.3.11 Programming the Sample Point
Programming of the sample point allows "tuning" of the characteristics to suit the bus.

Early sampling allows more Time Quanta in the Phase Segment 2 so the Synchronization Jump 
Width can be programmed to its maximum. This maximum capacity to shorten or lengthen the 
bit time decreases the sensitivity to node oscillator tolerances, so that lower cost oscillators such 
as ceramic resonators may be used.

Late sampling allows more Time Quanta in the Propagation Time Segment which allows a 
poorer bus topology and maximum bus length.

20.2.3.12 Synchronization
Hard synchronization occurs on the recessive-to-dominant transition of the start bit. The bit time 
is restarted from that edge. 

Re-synchronization occurs when a recessive-to-dominant edge doesn't occur within the Syn-
chronization Segment in a message. 

20.2.4 Arbitration
The CAN protocol handles bus accesses according to the concept called “Carrier Sense Multiple 
Access with Arbitration on Message Priority”.

During transmission, arbitration on the CAN bus can be lost to a competing device with a higher 
priority CAN Identifier. This arbitration concept avoids collisions of messages whose transmis-
sion was started by more than one node simultaneously and makes sure the most important 
message is sent first without time loss.

The bus access conflict is resolved during the arbitration field mostly over the identifier value. If a 
data frame and a remote frame with the same identifier are initiated at the same time, the data 
frame prevails over the remote frame (c.f. RTR bit). 
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Figure 20-4. Bus Arbitration

20.2.5 Errors
The CAN protocol signals any errors immediately as they occur. Three error detection mecha-
nisms are implemented at the message level and two at the bit level:

20.2.5.1 Error at Message Level
• Cyclic Redundancy Check (CRC) 

The CRC safeguards the information in the frame by adding redundant check bits at the 
transmission end. At the receiver these bits are re-computed and tested against the received 
bits. If they do not agree there has been a CRC error. 

• Frame Check 
This mechanism verifies the structure of the transmitted frame by checking the bit fields 
against the fixed format and the frame size. Errors detected by frame checks are designated 
"format errors". 

• ACK Errors 
As already mentioned frames received are acknowledged by all receivers through positive 
acknowledgement. If no acknowledgement is received by the transmitter of the message an 
ACK error is indicated. 

20.2.5.2 Error at Bit Level
• Monitoring 

The ability of the transmitter to detect errors is based on the monitoring of bus signals. Each 
node which transmits also observes the bus level and thus detects differences between the 
bit sent and the bit received. This permits reliable detection of global errors and errors local to 
the transmitter. 

• Bit Stuffing 
The coding of the individual bits is tested at bit level. The bit representation used by CAN is 
"Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit coding. The 
synchronization edges are generated by means of bit stuffing.

20.2.5.3 Error Signalling
If one or more errors are discovered by at least one node using the above mechanisms, the cur-
rent transmission is aborted by sending an "error flag". This prevents other nodes accepting the 
message and thus ensures the consistency of data throughout the network. After transmission 
of an erroneous message that has been aborted, the sender automatically re-attempts 
transmission.

node A
TXCAN

node B
TXCAN

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0SOFSOF RTR IDE

CAN bus

- - - - - - - - -

Arbitration lost

Node A loses the bus

Node B wins the bus
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20.3 CAN Controller
The CAN controller implemented into AT90CAN128 offers V2.0B Active.

This full-CAN controller provides the whole hardware for convenient acceptance filtering and 
message management. For each message to be transmitted or received this module contains 
one so called message object in which all information regarding the message (e.g. identifier, 
data bytes etc.) are stored.

During the initialization of the peripheral, the application defines which messages are to be sent 
and which are to be received. Only if the CAN controller receives a message whose identifier 
matches with one of the identifiers of the programmed (receive-) message objects the message 
is stored and the application is informed by interrupt. Another advantage is that incoming remote 
frames can be answered automatically by the full-CAN controller with the corresponding data 
frame. In this way, the CPU load is strongly reduced compared to a basic-CAN solution.

Using full-CAN controller, high baudrates and high bus loads with many messages can be 
handled.

Figure 20-5. CAN Controller Structure
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20.4 CAN Channel

20.4.1 Configuration
The CAN channel can be in:

• Enabled mode
In this mode:

– the CAN channel (internal TXDCAN & RXDCAN) is enabled,
– the input clock is enabled.

• Standby mode
In standby mode:

– the transmitter constantly provides a recessive level (on internal TXDCAN) and the 
receiver is disabled,

– input clock is enabled,
– the registers and pages remain accessible.

• Listening mode
This mode is transparent for the CAN channel:

– enables a hardware loop back, internal TXDCAN on internal RXDCAN
– provides a recessive level on TXDCAN pin
– does not disable RXDCAN
– freezes TEC and REC error counters

Figure 20-6. Listening Mode

20.4.2 Bit Timing
FSM’s (Finite State Machine) of the CAN channel need to be synchronous to the time quantum. 
So, the input clock for bit timing is the clock used into CAN channel FSM’s. 

Field and segment abbreviations:

• BRP: Baud Rate Prescaler.
• TQ: Time Quantum (output of Baud Rate Prescaler).
• SYNS: SYNchronization Segment is 1 TQ long.
• PRS: PRopagation time Segment is programmable to be 1, 2, ..., 8 TQ long.
• PHS1: PHase Segment 1 is programmable to be 1, 2, ..., 8 TQ long.
• PHS2: PHase Segment 2 is programmable to be ≤ PHS1 and ≥ INFORMATION 

PROCESSING TIME.
• INFORMATION PROCESSING TIME is 2 TQ.
• SJW: (Re) Synchronization Jump Width is programmable between 1 and min(4, PHS1).

1

0

PD5 TXDcan

PD6 RXDcan

internal
TXDcan

internal
RXDcan

LISTEN
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The total number of TQ in a bit time has to be programmed at least from 8 to 25.

Figure 20-7. Sample and Transmission Point 

Figure 20-8. General Structure of a Bit Period

20.4.3 Baud Rate
The baud rate selection is made by Tbit calculation:

Tbit(1) = Tsyns + Tprs + Tphs1 + Tphs2

1. Tsyns = 1 x Tscl = (BRP[5..0]+ 1)/clkIO (= 1TQ) 
2. Tprs = (1 to 8) x Tscl = (PRS[2..0]+ 1) x Tscl 
3. Tphs1 = (1 to 8) x Tscl = (PHS1[2..0]+ 1) x Tscl 
4. Tphs2 = (1 to 8) x Tscl = (PHS2[2..0](2)+ 1) x Tscl 
5. Tsjw = (1 to 4) x Tscl = (SJW[1..0]+ 1) x Tscl

Notes: 1. The total number of Tscl (Time Quanta) in a bit time must be between 8 to 25.
2. PHS2[2..0] 2 is programmable to be ≤ PHS1[2..0] and ≥ 1.

Bit Timing

Sample
Point

Transmission
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Prescaler BRP

PRS (3-bit length) 

SJW (2-bit length) 

PHS1 (3-bit length) 

PHS2 (3-bit length) 
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FCAN

Data

Tscl (TQ)

1/CLKIO
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Tbit
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5.  Synchronization Segment: SYNS
Tsyns=1xTscl (fixed)

Notes:   1.  Phase error < 0
2.  Phase error > 0
3.  Phase error > 0
4.  Phase error < 0

or or
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20.4.4 Fault Confinement

(c.f. Section 20.7 ”Error Management” on page 245).

20.4.5 Overload Frame
An overload frame is sent by setting an overload request (OVRQ). After the next reception, the 
CAN channel sends an overload frame in accordance with the CAN specification. A status or 
flag is set (OVRF) as long as the overload frame is sent.

Figure 20-9. Overload Frame

20.5 Message Objects
The MOb is a CAN frame descriptor. It contains all information to handle a CAN frame. This 
means that a MOb has been outlined to allow to describe a CAN message like an object. The set 
of MObs is the front end part of the “mailbox” where the messages to send and/or to receive are 
pre-defined as well as possible to decrease the work load of the software.

The MObs are numbered from 0 up to 14 (no MOb [15]). They are independent but priority is 
given to the lower one in case of multi matching. The operating modes are:

– Disabled mode 
– Transmit mode
– Receive mode
– Automatic reply
– Frame buffer receive mode

20.5.1 Operating Modes
Every MOb has its own fields to control the operating mode. There is no default mode after 
RESET. Before enabling the CAN peripheral, each MOb must be configured (ex: disabled mode 
- CONMOB=00). 

Ident "A" Cmd Message Data "A" CRC InterframeA Ident "B"

Overload   Frame

Overload   FrameRXCDAN 

Setting OVRQ bit

OVFG bit

Resetting OVRQ bit

TXCDAN 

OVRQ bit

Instructions

Table 20-1. MOb Configuration 

MOb Configuration Reply Valid RTR Tag Operating Mode

0 0 x x Disabled

0 1
x 0 Tx Data Frame

x 1 Tx Remote Frame

1 0

x 0 Rx Data Frame

0
1

Rx Remote Frame

1 Rx Remote Frame then, Tx Data Frame (reply)

1 1 x x Frame Buffer Receive Mode
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20.5.1.1 Disabled
In this mode, the MOb is “free”.

20.5.1.2 Tx Data & Remote Frame
1. Several fields must be initialized before sending:

– Identifier tag (IDT)
– Identifier extension (IDE)
– Remote transmission request (RTRTAG)
– Data length code (DLC)
– Reserved bit(s) tag (RBnTAG)
– Data bytes of message (MSG)

2. The MOb is ready to send a data or a remote frame when the MOb configuration is set 
(CONMOB).

3. Then, the CAN channel scans all the MObs in Tx configuration, finds the MOb having the 
highest priority and tries to send it.

4. When the transmission is completed the TXOK flag is set (interrupt).
5. All the parameters and data are available in the MOb until a new initialization.

20.5.1.3 Rx Data & Remote Frame
1. Several fields must be initialized before receiving:

– Identifier tag (IDT)
– Identifier mask (IDMSK)
– Identifier extension (IDE)
– Identifier extension mask (IDEMSK)
– Remote transmission request (RTRTAG)
– Remote transmission request mask (RTRMSK)
– Data length code (DLC)
– Reserved bit(s) tag (RBnTAG)

2. The MOb is ready to receive a data or a remote frame when the MOb configuration is set 
(CONMOB).

3. When a frame identifier is received on CAN network, the CAN channel scans all the MObs 
in receive mode, tries to find the MOb having the highest priority which is matching. 

4. On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the incoming 
(frame) values.

5. Once the reception is completed, the data bytes of the received message are stored (not 
for remote frame) in the data buffer of the matched MOb and the RXOK flag is set 
(interrupt).

6. All the parameters and data are available in the MOb until a new initialization.

20.5.1.4 Automatic Reply
A reply (data frame) to a remote frame can be automatically sent after reception of the expected 
remote frame.

1. Several fields must be initialized before receiving the remote frame:
– (c.f. Section 20.5.1.3 ”Rx Data & Remote Frame” on page 242)
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2. When a remote frame matches, automatically the RTRTAG and the reply valid bit (RPLV) 

are reset. No flag (or interrupt) is set at this time. Since the CAN data buffer has not been 
used by the incoming remote frame, the MOb is then ready to be in transmit mode without 
any more setting. The IDT, the IDE, the other tags and the DLC of the received remote 
frame are used for the reply.

3. When the transmission of the reply is completed the TXOK flag is set (interrupt).
4. All the parameters and data are available in the MOb until a new initialization.

20.5.1.5 Frame Buffer Receive Mode
This mode is useful to receive multi frames. The priority between MObs offers a management for 
these incoming frames. One set MObs (including non-consecutive MObs) is created when the 
MObs are set in this mode. Due to the mode setting, only one set is possible. A frame buffer 
completed flag (or interrupt) - BXOK - will rise only when all the MObs of the set will have 
received their dedicated CAN frame.

1. MObs in frame buffer receive mode need to be initialized as MObs in standard receive mode.
2. The MObs are ready to receive data (or a remote) frames when their respective configura-

tions are set (CONMOB).
3. When a frame identifier is received on CAN network, the CAN channel scans all the MObs 

in receive mode, tries to find the MOb having the highest priority which is matching.
4. On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the incoming 

(frame) values.
5. Once the reception is completed, the data bytes of the received message are stored (not for 

remote frame) in the data buffer of the matched MOb and the RXOK flag is set (interrupt).
6. When the reception in the last MOb of the set is completed, the frame buffer completed 

BXOK flag is set (interrupt). BXOK flag can be cleared only if all CONMOB fields of the set 
have been re-written before.

7. All the parameters and data are available in the MObs until a new initialization.

20.5.2 Acceptance Filter
Upon a reception hit (i.e., a good comparison between the ID + RTR + RBn + IDE received and an 
IDT+ RTRTAG + RBnTAG + IDE specified while taking the comparison mask into account) the IDT 
+ RTRTAG + RBnTAG + IDE received are updated in the MOb (written over the registers).

Figure 20-10. Acceptance Filter Block Diagram

CANIDM Registers (MOb[i])

IDMSK RTRMSK IDEMSK

=

CANIDT Registers & CANCDMOB (MOb[i])

ID &RB RTRTAG IDE
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ID &RB RTR IDE
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1
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Note: Examples: 
To accept only ID = 0x317 in part A. To accept ID from 0x310 up to 0x317 in part A. 
- ID MSK = 111 1111 1111 b - ID MSK = 111 1111 1000 b 
- ID TAG = 011 0001 0111 b - ID TAG = 011 0001 0xxx b 

20.5.3 MOb Page
Every MOb is mapped into a page to save place. The page number is the MOb number. This 
page number is set in CANPAGE register. The number 15 is reserved for factory tests.

CANHPMOB register gives the MOb having the highest priority in CANSIT registers. It is format-
ted to provide a direct entry for CANPAGE register. Because CANHPMOB codes CANSIT 
registers, it will be only updated if the corresponding enable bits (ENRX, ENTX, ENERR) are 
enabled (c.f. Figure 20-14).

20.5.4 CAN Data Buffers
To preserve register allocation, the CAN data buffer is seen such as a FIFO (with address 
pointer accessible) into a MOb selection.This also allows to reduce the risks of un-controlled 
accesses.

There is one FIFO per MOb. This FIFO is accessed into a MOb page thanks to the CAN mes-
sage register.

The data index (INDX) is the address pointer to the required data byte. The data byte can be 
read or write. The data index is automatically incremented after every access if the AINC* bit is 
reset. A roll-over is implemented, after data index=7 it is data index=0.

The first byte of a CAN frame is stored at the data index=0, the second one at the data index=1, 
...

20.6 CAN Timer
A programmable 16-bit timer is used for message stamping and time trigger communication 
(TTC).

Figure 20-11. CAN Timer Block Diagram
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20.6.1 Prescaler

An 8-bit prescaler is initialized by CANTCON register. It receives the clkIO frequency divided by 
8. It provides clkCANTIM frequency to the CAN Timer if the CAN controller is enabled.

TclkCANTIM = TclkIO x 8 x (CANTCON [7:0] + 1)

20.6.2 16-bit Timer
This timer starts counting from 0x0000 when the CAN controller is enabled (ENFG bit). When 
the timer rolls over from 0xFFFF to 0x0000, an interrupt is generated (OVRTIM).

20.6.3 Time Triggering
Two synchronization modes are implemented for TTC (TTC bit):

– synchronization on Start of Frame (SYNCTTC=0),
– synchronization on End of Frame (SYNCTTC=1).

In TTC mode, a frame is sent once, even if an error occurs.

20.6.4 Stamping Message
The capture of the timer value is done in the MOb which receives or sends the frame. All man-
aged MOb are stamped, the stamping of a received (sent) frame occurs on RxOk (TXOK).

20.7 Error Management

20.7.1 Fault Confinement
The CAN channel may be in one of the three following states:

• Error active (default): 
The CAN channel takes part in bus communication and can send an active error frame when 
the CAN macro detects an error.

• Error passive: 
The CAN channel cannot send an active error frame. It takes part in bus communication, but 
when an error is detected, a passive error frame is sent. Also, after a transmission, an error 
passive unit will wait before initiating further transmission.

• Bus off: 
The CAN channel is not allowed to have any influence on the bus.

For fault confinement, a transmit error counter (TEC) and a receive error counter (REC) are 
implemented. BOFF and ERRP bits give the information of the state of the CAN channel. Setting 
BOFF to one may generate an interrupt.
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Figure 20-12. Line Error Mode

Note: More than one REC/TEC change may apply during a given message transfer.

20.7.2 Error Types
• BERR: Bit error. The bit value which is monitored is different from the bit value sent.

Note: Exceptions: 
- Recessive bit sent monitored as dominant bit during the arbitration field and the acknowl-
edge slot. 
- Detecting a dominant bit during the sending of an error frame.

• SERR: Stuff error. Detection of more than five consecutive bit with the same polarity.
• CERR: CRC error (Rx only). The receiver performs a CRC check on every destuffed received 

message from the start of frame up to the data field. If this checking does not match with the 
destuffed CRC field, an CRC error is set.

• FERR: Form error. The form error results from one (or more) violations of the fixed form of 
the following bit fields:

– CRC delimiter
– acknowledgement delimiter
– end-of-frame
– error delimiter
– overload delimiter

• AERR: Acknowledgment error (Tx only). No detection of the dominant bit in the acknowledge 
slot.
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Figure 20-13. Error Detection Procedures in a Data Frame

20.7.3 Error Setting
The CAN channel can detect some errors on the CAN network.

• In transmission: 
The error is set at MOb level.

• In reception: 
- The identified has matched: 
 The error is set at MOb level. 
- The identified has not or not yet matched: 
The error is set at general level. 

After detecting an error, the CAN channel sends an error frame on network. If the CAN channel 
detects an error frame on network, it sends its own error frame.

20.8 Interrupts

20.8.1 Interrupt organization
The different interrupts are:

• Interrupt on receive completed OK,
• Interrupt on transmit completed OK,
• Interrupt on error (bit error, stuff error, crc error, form error, acknowledge error),
• Interrupt on frame buffer full,
• Interrupt on “Bus Off” setting,
• Interrupt on overrun of CAN timer.

The general interrupt enable is provided by ENIT bit and the specific interrupt enable for CAN 
timer overrun is provided by ENORVT bit.
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Figure 20-14. CAN Controller Interrupt Structure

20.8.2 Interrupt Behavior
When an interrupt occurs, the corresponding bit is set in the CANSITn or CANGIT registers.

To acknowledge a MOb interrupt, the corresponding bits of CANSTMOB register (RXOK, 
TXOK,...) must be cleared by the software application. This operation needs a read-modify-write 
software routine.

To acknowledge a general interrupt, the corresponding bits of CANGIT register (BXOK, BOF-
FIT,...) must be cleared by the software application. This operation is made writing a logical one 
in these interrupt flags (writing a logical zero doesn’t change the interrupt flag value).

OVRTIM interrupt flag is reset as the other interrupt sources of CANGIT register and is also 
reset entering in its dedicated interrupt handler.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error will also 
be raised. Consequently, two consecutive interrupts can occur, both due to the same error.

When a MOb error occurs and is set in its own CANSTMOB register, no general error is set in 
CANGIT register.

TXOK[i]CANSTMOB.6

RXOK[i]CANSTMOB.5

BERR[i]CANSTMOB.4

SERR[i]CANSTMOB.3

CERR[i]CANSTMOB.2

FERR[i]CANSTMOB.1

AERR[i]CANSTMOB.0

BXOKCANGIT.4

SERGCANGIT.3

CERGCANGIT.2

FERGCANGIT.1

AERGCANGIT.0

BOFFICANGIT.6

ENTX

CANGIE.4

ENRX

CANGIE.5

ENERR

CANGIE.3

ENBX

CANGIE.2

ENERG

CANGIE.1

ENBOFF

CANGIE.6

IEMOB[i]

CANIE 1/2

ENIT

CANGIE.7

ENOVRT

CANGIE.0

SIT[i]

CANSIT 1/2

CANIT

CANGIT.7

CAN IT

OVR IT

i=0

i=14

OVRTIMCANGIT.5
 248
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128
20.9 CAN Register Description

Figure 20-15. Registers Organization

General Control
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General Interrupt

Bit Timing 1
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20.10 General CAN Registers

20.10.1 CAN General Control Register - CANGCON

• Bit 7 – ABRQ: Abort Request
This is not an auto resettable bit.

– 0 - no request.
– 1 - abort request: a reset of CANEN1 and CANEN2 registers is done. The pending 

communications are immediately disabled and the on-going one will be normally 
terminated, setting the appropriate status flags.  
Note that CONCDMOB register remain unchanged.

• Bit 6 – OVRQ: Overload Frame Request
This is not an auto resettable bit.

– 0 - no request.
– 1 - overload frame request: send an overload frame after the next received frame.

The overload frame can be traced observing OVFG in CANGSTA register (c.f. Figure 20-9 on 
page 241).

• Bit 5 – TTC: Time Trigger Communication
– 0 - no TTC.
– 1- TTC mode.

• Bit 4 – SYNTTC: Synchronization of TTC
This bit is only used in TTC mode.

– 0 - the TTC timer is caught on SOF.
– 1 - the TTC timer is caught on the last bit of the EOF.

• Bit 3 – LISTEN: Listening Mode
– 0 - no listening mode.
– 1 - listening mode.

• Bit 2 – TEST: Test Mode
– 0 - no test mode
– 1 - test mode: intend for factory testing and not for customer use.

Note: CAN may malfunction if this bit is set.

• Bit 1 – ENA/STB: Enable / Standby Mode
Because this bit is a command and is not immediately effective, the ENFG bit in CANGSTA reg-
ister gives the true state of the chosen mode.

Bit 7 6 5 4 3 2 1 0

ABRQ OVRQ TTC SYNTTC LISTEN TEST ENA/STB SWRES CANGCON
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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– 0 - standby mode: the on-going communication is normally terminated and the CAN 

channel is frozen (the CONMOB bits of every MOb do not change). The transmitter 
constantly provides a recessive level. In this mode, the receiver is not enabled but all the 
registers and mailbox remain accessible from CPU.

– 1 - enable mode: the CAN channel enters in enable mode once 11 recessive bits has 
been read. 

• Bit 0 – SWRES: Software Reset Request
This auto resettable bit only resets the CAN controller.

– 0 - no reset
– 1 - reset: this reset is “ORed” with the hardware reset.

20.10.2 CAN General Status Register - CANGSTA

• Bit 7 – Reserved Bit
This bit is reserved for future use. 

• Bit 6 – OVFG: Overload Frame Flag
This flag does not generate an interrupt.

– 0 - no overload frame.
– 1 - overload frame: set by hardware as long as the produced overload frame is sent.

• Bit 5 – Reserved Bit
This bit is reserved for future use.

• Bit 4 – TXBSY: Transmitter Busy
This flag does not generate an interrupt.

– 0 - transmitter not busy.
– 1 - transmitter busy: set by hardware as long as a frame (data, remote, overload or 

error frame) or an ACK field is sent. Also set when an inter frame space is sent.

• Bit 3 – RXBSY: Receiver Busy
This flag does not generate an interrupt.

– 0 - receiver not busy
– 1 - receiver busy: set by hardware as long as a frame is received or monitored.

• Bit 2 – ENFG: Enable Flag
This flag does not generate an interrupt.

– 0 - CAN controller disable: because an enable/disable command is not immediately 
effective, this status gives the true state of the chosen mode.

– 1 - CAN controller enable.

Bit 7 6 5 4 3 2 1 0

- OVFG - TXBSY RXBSY ENFG BOFF ERRP CANGSTA
Read/Write - R - R R R R R

Initial Value - 0 - 0 0 0 0 0
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• Bit 1 – BOFF: Bus Off Mode
BOFF gives the information of the state of the CAN channel. Only entering in bus off mode gen-
erates the BOFFIT interrupt.

– 0 - no bus off mode.
– 1 - bus off mode.

• Bit 0 – ERRP: Error Passive Mode
ERRP gives the information of the state of the CAN channel. This flag does not generate an 
interrupt.

– 0 - no error passive mode.
– 1 - error passive mode.

20.10.3 CAN General Interrupt Register - CANGIT

• Bit 7 – CANIT: General Interrupt Flag
This is a read only bit.

– 0 - no interrupt.
– 1 - CAN interrupt: image of all the CAN controller interrupts except for OVRTIM 

interrupt. This bit can be used for polling method.

• Bit 6 – BOFFIT: Bus Off Interrupt Flag
Writing a logical one resets this interrupt flag. BOFFIT flag is only set when the CAN enters in 
bus off mode (coming from error passive mode).

– 0 - no interrupt.
– 1 - bus off interrupt when the CAN enters in bus off mode.

• Bit 5 – OVRTIM: Overrun CAN Timer
Writing a logical one resets this interrupt flag. Entering in CAN timer overrun interrupt handler 
also reset this interrupt flag

– 0 - no interrupt.
– 1 - CAN timer overrun interrupt: set when the CAN timer switches from 0xFFFF to 0.

• Bit 4 – BXOK: Frame Buffer Receive Interrupt
Writing a logical one resets this interrupt flag. BXOK flag can be cleared only if all CONMOB 
fields of the MOb’s of the buffer have been re-written before.

– 0 - no interrupt.
– 1 - burst receive interrupt: set when the frame buffer receive is completed.

• Bit 3 – SERG: Stuff Error General
Writing a logical one resets this interrupt flag.

– 0 - no interrupt.

Bit 7 6 5 4 3 2 1 0

CANIT BOFFIT OVRTIM BXOK SERG CERG FERG AERG CANGIT
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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– 1 - stuff error interrupt: detection of more than 5 consecutive bits with the same 

polarity. 

• Bit 2 – CERG: CRC Error General
Writing a logical one resets this interrupt flag.

– 0 - no interrupt.
– 1 - CRC error interrupt: the CRC check on destuffed message does not fit with the 

CRC field.

• Bit 1 – FERG: Form Error General
Writing a logical one resets this interrupt flag.

– 0 - no interrupt.
– 1 - form error interrupt: one or more violations of the fixed form in the CRC delimiter, 

acknowledgment delimiter or EOF.

• Bit 0 – AERG: Acknowledgment Error General
Writing a logical one resets this interrupt flag.

– 0 - no interrupt.
– 1 - acknowledgment error interrupt: no detection of the dominant bit in acknowledge 

slot.

20.10.4 CAN General Interrupt Enable Register - CANGIE

• Bit 7 – ENIT: Enable all Interrupts (Except for CAN Timer Overrun Interrupt)
– 0 - interrupt disabled.
– 1- CANIT interrupt enabled.

• Bit 6 – ENBOFF: Enable Bus Off Interrupt
– 0 - interrupt disabled.
– 1- bus off interrupt enabled.

• Bit 5 – ENRX: Enable Receive Interrupt
– 0 - interrupt disabled.
– 1- receive interrupt enabled.

• Bit 4 – ENTX: Enable Transmit Interrupt
– 0 - interrupt disabled.
– 1- transmit interrupt enabled.

• Bit 3 – ENERR: Enable MOb Errors Interrupt
– 0 - interrupt disabled.
– 1- MOb errors interrupt enabled.

Bit 7 6 5 4 3 2 1 0

ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRT CANGIE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2 – ENBX: Enable Frame Buffer Interrupt
– 0 - interrupt disabled.
– 1- frame buffer interrupt enabled.

• Bit 1 – ENERG: Enable General Errors Interrupt
– 0 - interrupt disabled.
– 1- general errors interrupt enabled.

• Bit 0 – ENOVRT: Enable CAN Timer Overrun Interrupt
– 0 - interrupt disabled.
– 1- CAN timer interrupt overrun enabled.

20.10.5 CAN Enable MOb Registers -  
CANEN2 and CANEN1

• Bits 14:0 - ENMOB14:0: Enable MOb
This bit provides the availability of the MOb. 
It is set to one when the MOb is enabled (i.e. CONMOB1:0 of CANCDMOB register). 
Once TXOK or RXOK is set to one (TXOK for automatic reply), the corresponding ENMOB is 
reset. ENMOB is also set to zero configuring the MOb in disabled mode, applying abortion or 
standby mode.

– 0 - message object disabled: MOb available for a new transmission or reception.
– 1 - message object enabled: MOb in use.

• Bit 15 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANIE1 is written.

20.10.6 CAN Enable Interrupt MOb Registers -  
CANIE2 and CANIE1

Bit 7 6 5 4 3 2 1 0

ENMOB7 ENMOB6 ENMOB5 ENMOB4 ENMOB3 ENMOB2 ENMOB1 ENMOB0 CANEN2
- ENMOB14 ENMOB13 ENMOB12 ENMOB11 ENMOB10 ENMOB9 ENMOB8 CANEN1

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Read/Write - R R R R R R R

Initial Value - 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

IEMOB7 IEMOB6 IEMOB5 IEMOB4 IEMOB3 IEMOB2 IEMOB1 IEMOB0 CANIE2
- IEMOB14 IEMOB13 IEMOB12 IEMOB11 IEMOB10 IEMOB9 IEMOB8 CANIE1

Bit 15 14 13 12 11 10 9 8

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Read/Write - R/W R/W R/W R/W R/W R/W R/W

Initial Value - 0 0 0 0 0 0 0
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• Bits 14:0 - IEMOB14:0: Interrupt Enable by MOb

– 0 - interrupt disabled.
– 1 - MOb interrupt enabled

Note: Example: CANIE2 = 0000 1100b : enable of interrupts on MOb 2 & 3.

• Bit 15 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANIE1 is written.

20.10.7 CAN Status Interrupt MOb Registers - CANSIT2 and CANSIT1

• Bits 14:0 - SIT14:0: Status of Interrupt by MOb
– 0 - no interrupt.
– 1- MOb interrupt.

Note: Example: CANSIT2 = 0010 0001b : MOb 0 & 5 interrupts.

• Bit 15 – Reserved Bit
This bit is reserved for future use.

20.10.8 CAN Bit Timing Register 1 - CANBT1

• Bit 7– Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANBT1 is written.

• Bit 6:1 – BRP5:0: Baud Rate Prescaler
The period of the CAN controller system clock Tscl is programmable and determines the individ-
ual bit timing.

• Bit 0 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANBT1 is written.

Bit 7 6 5 4 3 2 1 0

SIT7 SIT6 SIT5 SIT4 SIT3 SIT2 SIT1 SIT0 CANSIT2
- SIT14 SIT13 SIT12 SIT11 SIT10 SIT9 SIT8 CANSIT1

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Read/Write - R R R R R R R

Initial Value - 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 - CANBT1
Read/Write - R/W R/W R/W R/W R/W R/W -

Initial Value - 0 0 0 0 0 0 -

Tscl =
BRP[5:0] + 1
clkIO frequency
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20.10.9 CAN Bit Timing Register 2 - CANBT2

• Bit 7– Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANBT2 is written.

• Bit 6:5 – SJW1:0: Re-Synchronization Jump Width
To compensate for phase shifts between clock oscillators of different bus controllers, the control-
ler must re-synchronize on any relevant signal edge of the current transmission. 
The synchronization jump width defines the maximum number of clock cycles. A bit period may 
be shortened or lengthened by a re-synchronization.

• Bit 4 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANBT2 is written.

• Bit 3:1 – PRS2:0: Propagation Time Segment
This part of the bit time is used to compensate for the physical delay times within the network. It 
is twice the sum of the signal propagation time on the bus line, the input comparator delay and 
the output driver delay.

• Bit 0 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANBT2 is written.

20.10.10 CAN Bit Timing Register 3 - CANBT3

• Bit 7– Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANBT3 is written.

• Bit 6:4 – PHS22:0: Phase Segment 2
This phase is used to compensate for phase edge errors. This segment may be shortened by 
the re-synchronization jump width. PHS2[2..0] shall be ≥1 and ≤PHS1[2..0] (c.f. Section 20.2.3 
”CAN Bit Timing” on page 234 and Section 20.4.3 ”Baud Rate” on page 240).

Bit 7 6 5 4 3 2 1 0

- SJW1 SJW0 - PRS2 PRS1 PRS0 - CANBT2
Read/Write - R/W R/W - R/W R/W R/W -

Initial Value - 0 0 - 0 0 0 -

Tsjw = Tscl x (SJW [1:0] +1)

Tprs = Tscl x (PRS [2:0] + 1)

Bit 7 6 5 4 3 2 1 0

- PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP CANBT3
Read/Write - R/W R/W R/W R/W R/W R/W R/W

Initial Value - 0 0 0 0 0 0 0

Tphs2 = Tscl x (PHS2 [2:0] + 1)
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• Bit 3:1 – PHS12:0: Phase Segment 1
This phase is used to compensate for phase edge errors. This segment may be lengthened by 
the re-synchronization jump width. 

• Bit 0 – SMP: Sample Point(s)
– 0 - once, at the sample point.
– 1 - three times, the threefold sampling of the bus is the sample point and twice over 

a distance of a 1/2 period of the Tscl. The result corresponds to the majority decision 
of the three values.

20.10.11 CAN Timer Control Register - CANTCON

• Bit 7:0 – TPRSC7:0: CAN Timer Prescaler
Prescaler for the CAN timer upper counter range 0 to 255. It provides the clock to the CAN timer 
if the CAN controller is enabled.

TclkCANTIM = TclkIO x 8 x (CANTCON [7:0] + 1)

20.10.12 CAN Timer Registers - CANTIML and CANTIMH

• Bits 15:0 - CANTIM15:0: CAN Timer Count
CAN timer counter range 0 to 65,535.

20.10.13 CAN TTC Timer Registers - CANTTCL and CANTTCH

• Bits 15:0 - TIMTTC15:0: TTC Timer Count
CAN TTC timer counter range 0 to 65,535.

Tphs1 = Tscl x (PHS1 [2:0] + 1)

Bit 7 6 5 4 3 2 1 0

TPRSC7 TPRSC6 TPRSC5 TPRSC4 TPRSC3 TPRSC2 TRPSC1 TPRSC0 CANTCON
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

CANTIM7 CANTIM6 CANTIM5 CANTIM4 CANTIM3 CANTIM2 CANTIM1 CANTIM0 CANTIML
CANTIM15 CANTIM14 CANTIM13 CANTIM12 CANTIM11 CANTIM10 CANTIM9 CANTIM8 CANTIMH

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TIMTTC7 TIMTTC6 TIMTTC5 TIMTTC4 TIMTTC3 TIMTTC2 TIMTTC1 TIMTTC0 CANTTCL
TIMTTC15 TIMTTC14 TIMTTC13 TIMTTC12 TIMTTC11 TIMTTC10 TIMTTC9 TIMTTC8 CANTTCH

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
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20.10.14 CAN Transmit Error Counter Register - CANTEC

• Bit 7:0 – TEC7:0: Transmit Error Count
CAN transmit error counter range 0 to 255.

20.10.15 CAN Receive Error Counter Register - CANREC

• Bit 7:0 – REC7:0: Receive Error Count
CAN receive error counter range 0 to 255.

20.10.16 CAN Highest Priority MOb Register - CANHPMOB

• Bit 7:4 – HPMOB3:0: Highest Priority MOb Number
MOb having the highest priority in CANSIT registers. 
If CANSIT = 0 (no MOb), the return value is 0xF.

• Bit 3:0 – CGP3:0: CAN General Purpose Bits
These bits can be pre-programmed to match with the wanted configuration of the CANPAGE 
register (i.e., AINC and INDX2:0 setting).

20.10.17 CAN Page MOb Register - CANPAGE

• Bit 7:4 – MOBNB3:0: MOb Number
Selection of the MOb number, the available numbers are from 0 to 14.

• Bit 3 – AINC: Auto Increment of the FIFO CAN Data Buffer Index (Active Low)
– 0 - auto increment of the index (default value).
– 1- no auto increment of the index.

• Bit 2:0 – INDX2:0: FIFO CAN Data Buffer Index
Byte location of the CAN data byte into the FIFO for the defined MOb.

Bit 7 6 5 4 3 2 1 0

TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0 CANTEC
Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0 CANREC
Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

HPMOB3 HPMOB2 HPMOB1 HPMOB0 CGP3 CGP2 CGP1 CGP0 CANHPMOB
Read/Write R R R R R/W R/W R/W R/W

Initial Value 1 1 1 1 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MOBNB3 MOBNB2 MOBNB1 MOBNB0 AINC INDX2 INDX1 INDX0 CANPAGE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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20.11 MOb Registers
The MOb registers has no initial (default) value after RESET.

20.11.1 CAN MOb Status Register - CANSTMOB

• Bit 7 – DLCW: Data Length Code Warning
The incoming message does not have the DLC expected. Whatever the frame type, the DLC 
field of the CANCDMOB register is updated by the received DLC.

• Bit 6 – TXOK: Transmit OK
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine 
on the whole CANSTMOB register.

The communication enabled by transmission is completed. TxOK rises at the end of EOF field. 
When the controller is ready to send a frame, if two or more message objects are enabled as 
producers, the lower MOb index (0 to 14) is supplied first.

• Bit 5 – RXOK: Receive OK
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine 
on the whole CANSTMOB register.

The communication enabled by reception is completed. RxOK rises at the end of the 6th bit of 
EOF field. In case of two or more message object reception hits, the lower MOb index (0 to 14) 
is updated first.

• Bit 4 – BERR: Bit Error (Only in Transmission)
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine 
on the whole CANSTMOB register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the 
acknowledge slot detecting a dominant bit during the sending of an error frame.

• Bit 3 – SERR: Stuff Error
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine 
on the whole CANSTMOB register.

Detection of more than five consecutive bits with the same polarity. This flag can generate an 
interrupt.

• Bit 2 – CERR: CRC Error
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine 
on the whole CANSTMOB register.

The receiver performs a CRC check on every de-stuffed received message from the start of 
frame up to the data field. If this checking does not match with the de-stuffed CRC field, a CRC 
error is set.

Bit 7 6 5 4 3 2 1 0

DLCW TXOK RXOK BERR SERR CERR FERR AERR CANSTMOB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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• Bit 1 – FERR: Form Error
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine 
on the whole CANSTMOB register.

The form error results from one or more violations of the fixed form in the following bit fields:

• CRC delimiter.
• Acknowledgment delimiter.
• EOF

• Bit 0 – AERR: Acknowledgment Error
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine 
on the whole CANSTMOB register.

No detection of the dominant bit in the acknowledge slot.

20.11.2 CAN MOb Control and DLC Register - CANCDMOB

• Bit 7:6 – CONMOB1:0: Configuration of Message Object
These bits set the communication to be performed (no initial value after RESET).

– 00 - disable.
– 01 - enable transmission.
– 10 - enable reception.
– 11 - enable frame buffer reception

These bits are not cleared once the communication is performed. The user must re-write the 
configuration to enable a new communication.

• This operation is necessary to be able to reset the BXOK flag.
• This operation also set the corresponding bit in the CANEN registers.

• Bit 5 – RPLV: Reply Valid
Used in the automatic reply mode after receiving a remote frame.

– 0 - reply not ready.
– 1 - reply ready and valid.

• Bit 4 – IDE: Identifier Extension
IDE bit of the remote or data frame to send. 
This bit is updated with the corresponding value of the remote or data frame received.

– 0 - CAN standard rev 2.0 A (identifiers length = 11 bits).
– 1 - CAN standard rev 2.0 B (identifiers length = 29 bits).

• Bit 3:0 – DLC3:0: Data Length Code
Number of Bytes in the data field of the message. 

Bit 7 6 5 4 3 2 1 0

CONMOB1 CONMOB0 RPLV IDE DLC3 DLC2 DLC1 DLC0 CANCDMOB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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DLC field of the remote or data frame to send. The range of DLC is from 0 up to 8. If DLC field >8 
then effective DLC=8.

This field is updated with the corresponding value of the remote or data frame received. If the 
expected DLC differs from the incoming DLC, a DLC warning appears in the CANSTMOB 
register.

20.11.3 CAN Identifier Tag Registers -  
CANIDT1, CANIDT2, CANIDT3, and CANIDT4

V2.0 part A

V2.0 part B

V2.0 part A

• Bit 31:21 – IDT10:0: Identifier Tag
Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.

• Bit 20:3 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written 
to zero when CANIDTn are written.

When a remote or data frame is received, these bits do not operate in the comparison but they 
are updated with un-predicted values.

• Bit 2 – RTRTAG: Remote Transmission Request Tag
RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received. In case 
of Automatic Reply mode, this bit is automatically reset before sending the response.

• Bit 1 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANIDTn are written.

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

- - - - - RTRTAG - RB0TAG CANIDT4
- - - - - - - - CANIDT3

IDT2 IDT1 IDT0 - - - - - CANIDT2
IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 IDT4 IDT3 CANIDT1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

IDT4 IDT3 IDT2 IDT1 IDT0 RTRTAG RB1TAG RB0TAG CANIDT4
IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 CANIDT3
IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 CANIDT2
IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 CANIDT1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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When a remote or data frame is received, this bit does not operate in the comparison but it is 
updated with un-predicted values.

• Bit 0 – RB0TAG: Reserved Bit 0 Tag
RB0 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

V2.0 part B

• Bit 31:3 – IDT28:0: Identifier Tag
Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.

• Bit 2 – RTRTAG: Remote Transmission Request Tag
RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received. In case 
of Automatic Reply mode, this bit is automatically reset before sending the response.

• Bit 1 – RB1TAG: Reserved Bit 1 Tag
RB1 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

• Bit 0 – RB0TAG: Reserved Bit 0 Tag
RB0 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

20.11.4 CAN Identifier Mask Registers -  
CANIDM1, CANIDM2, CANIDM3, and CANIDM4

V2.0 part A

V2.0 part B

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

- - - - - RTRMSK - IDEMSK CANIDM4
- - - - - - - - CANIDM3

IDMSK2 IDMSK1 IDMSK0 - - - - - CANIDM2
IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 IDMSK4 IDMSK3 CANIDM1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

IDMSK4 IDMSK3 IDMSK2 IDMSK1 IDMSK0 RTRMSK - IDEMSK CANIDM4
IDMSK12 IDMSK11 IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 CANIDM3
IDMSK20 IDMSK19 IDMSK18 IDMSK17 IDMSK16 IDMSK15 IDMSK14 IDMSK13 CANIDM2
IDMSK28 IDMSK27 IDMSK26 IDMSK25 IDMSK24 IDMSK23 IDMSK22 IDMSK21 CANIDM1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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V2.0 part A

• Bit 31:21 – IDMSK10:0: Identifier Mask
– 0 - comparison true forced
– 1 - bit comparison enabled.

• Bit 20:3 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written 
to zero when CANIDMn are written.

• Bit 2 – RTRMSK: Remote Transmission Request Mask
– 0 - comparison true forced
– 1 - bit comparison enabled.

• Bit 1 – Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when CANIDTn are written.

• Bit 0 – IDEMSK: Identifier Extension Mask
– 0 - comparison true forced
– 1 - bit comparison enabled.

V2.0 part B

• Bit 31:3 – IDMSK28:0: Identifier Mask
– 0 - comparison true forced
– 1 - bit comparison enabled.

• Bit 2 – RTRMSK: Remote Transmission Request Mask
– 0 - comparison true forced
– 1 - bit comparison enabled.

• Bit 1 – Reserved Bit
Writing zero in this bit is recommended.

• Bit 0 – IDEMSK: Identifier Extension Mask
– 0 - comparison true forced
– 1 - bit comparison enabled.

20.11.5 CAN Time Stamp Registers - CANSTML and CANSTMH

• Bits 15:0 - TIMSTM15:0: Time Stamp Count
CAN time stamp counter range 0 to 65,535.

Bit 7 6 5 4 3 2 1 0

TIMSTM7 TIMSTM6 TIMSTM5 TIMSTM4 TIMSTM3 TIMSTM2 TIMSTM1 TIMSTM0 CANSTML
TIMSTM15 TIMSTM14 TIMSTM13 TIMSTM12 TIMSTM11 TIMSTM10 TIMSTM9 TIMSTM8 CANSTMH

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value - - - - - - - -
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20.11.6 CAN Data Message Register - CANMSG

• Bit 7:0 – MSG7:0: Message Data
This register contains the CAN data byte pointed at the page MOb register.

After writing in the page MOb register, this byte is equal to the specified message location of the 
pre-defined identifier + index. If auto-incrementation is used, at the end of the data register writ-
ing or reading cycle, the index is auto-incremented. 
The range of the counting is 8 with no end of loop (0, 1,..., 7, 0,...).

20.12 Examples of CAN Baud Rate Setting

The CAN bus requires very accurate timing especially for high baud rates. It is recommended to 
use only an external crystal for CAN operations.

(Refer to “Bit Timing” on page 239 for timing description and page 255 to page 256 for “CAN Bit 
Timing Registers”). 

Bit 7 6 5 4 3 2 1 0

MSG 7 MSG 6 MSG 5 MSG 4 MSG 3 MSG 2 MSG 1 MSG 0 CANMSG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -

Table 20-2. Examples of CAN Baud Rate Settings for Commonly Frequencies  

fclkio 

(MHz)

CAN 
Baud 
Rate 
(Kbps)

Description Segments Registers

Sampling
Point

TQ
(µs)

Tbit
(TQ)

Tprs
(TQ)

Tph1
(TQ)

Tph2
(TQ)

Tsjw
(TQ) CANBT1 CANBT2 CANBT3

 
16.000

1000 75 %
0.0625 16 7 4 4 1 0x00 0x0C 0x37

0.125 8 3 2 2 1 0x02 0x04 0x13

500 75 %
0.125 16 7 4 4 1 0x02 0x0C 0x37

0.250 8 3 2 2 1 0x06 0x04 0x13

250 75 %
0.250 16 7 4 4 1 0x06 0x0C 0x37

0.500 8 3 2 2 1 0x0E 0x04 0x13

200 75 %
0.3125 16 7 4 4 1 0x08 0x0C 0x37

0.625 8 3 2 2 1 0x12 0x04 0x13

125 75 %
0.500 16 7 4 4 1 0x0E 0x0C 0x37

1.000 8 3 2 2 1 0x1E 0x04 0x13

100 75 %
0.625 16 7 4 4 1 0x12 0x0C 0x37

1.250 8 3 2 2 1 0x26 0x04 0x13
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12.000

1000 75 %
0.083333 12 5 3 3 1 0x00 0x08 0x25

x -  -  -  n o    d a t a -  -  -

500 75 %
0.166666 12 5 3 3 1 0x02 0x08 0x25

0.250 8 3 2 2 1 0x04 0x04 0x13

250 75 %
0.250 16 7 4 4 1 0x04 0x0C 0x37

0.500 8 3 2 2 1 0x0A 0x04 0x13

200 75 %
0.250 20 8 6 5 1 0x04 0x0E 0x4B

0.416666 12 5 3 3 1 0x08 0x08 0x25

125 75 %
0.500 16 7 4 4 1 0x0A 0x0C 0x37

1.000 8 3 2 2 1 0x16 0x04 0x13

100 75 %
0.500 20 8 6 5 1 0x0A 0x0E 0x4B

0.833333 12 5 3 3 1 0x12 0x08 0x25

 8.000

1000 75 %
x -  -  -  n o    d a t a -  -  -

0.125 8 3 2 2 1 0x00 0x04 0x13

500 75 %
0.125 16 7 4 4 1 0x00 0x0C 0x37

0.250 8 3 2 2 1 0x02 0x04 0x13

250 75 %
0.250 16 7 4 4 1 0x02 0x0C 0x37

0.500 8 3 2 2 1 0x06 0x04 0x13

200 75 %
0.250 20 8 6 5 1 0x02 0x0E 0x4B

0.625 8 3 2 2 1 0x08 0x04 0x13

125 75 %
0.500 16 7 4 4 1 0x06 0x0C 0x37

1.000 8 3 2 2 1 0x0E 0x04 0x13

100 75 %
0.625 16 7 4 4 1 0x08 0x0C 0x37

1.250 8 3 2 2 1 0x12 0x04 0x13

Table 20-2. Examples of CAN Baud Rate Settings for Commonly Frequencies  (Continued)

fclkio 

(MHz)

CAN 
Baud 
Rate 
(Kbps)

Description Segments Registers

Sampling
Point

TQ
(µs)

Tbit
(TQ)

Tprs
(TQ)

Tph1
(TQ)

Tph2
(TQ)

Tsjw
(TQ) CANBT1 CANBT2 CANBT3
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6.000

1000 -  -  -  n o t    a p p l i c a b l e -  -  -

500 75 %
0.166666 12 5 3 3 1 0x00 0x08 0x25

x -  -  -  n o    d a t a -  -  -

250 75 %
0.333333 12 5 3 3 1 0x02 0x08 0x25

0.500 8 3 2 2 1 0x04 0x04 0x13

200 80 %
0.333333 15 7 4 3 1 0x02 0x0C 0x35

0.500 10 4 3 2 1 0x04 0x06 0x23

125 75 %
0.500 16 7 4 4 1 0x04 0x0C 0x37

1.000 8 3 2 2 1 0x0A 0x04 0x13

100 75 %
0.500 20 8 6 5 1 0x04 0x0E 0x4B

0.833333 12 5 3 3 1 0x08 0x08 0x25

4.000

1000 -  -  -  n o t    a p p l i c a b l e -  -  -

500 75 %
x -  -  -  n o    d a t a -  -  -

0.250 8 3 2 2 1 0x00 0x04 0x13

250 75 %
0.250 16 7 4 4 1 0x00 0x0C 0x37

0.500 8 3 2 2 1 0x02 0x04 0x13

200 75 %
0.250 20 8 6 5 1 0x00 0x0E 0x4B

x -  -  -  n o    d a t a -  -  -

125 75 %
0.500 16 7 4 4 1 0x02 0x0C 0x37

1.000 8 3 2 2 1 0x06 0x04 0x13

100 75 %
0.500 20 8 6 5 1 0x02 0x0E 0x4B

1.250 8 3 2 2 1 0x08 0x04 0x13

Table 20-2. Examples of CAN Baud Rate Settings for Commonly Frequencies  (Continued)

fclkio 

(MHz)

CAN 
Baud 
Rate 
(Kbps)

Description Segments Registers

Sampling
Point

TQ
(µs)

Tbit
(TQ)

Tprs
(TQ)

Tph1
(TQ)

Tph2
(TQ)

Tsjw
(TQ) CANBT1 CANBT2 CANBT3
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21. Analog Comparator
The Analog Comparator compares the input values on the positive pin AIN0 and negative pin 
AIN1.

21.1 Overview
When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin AIN1, 
the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger the 
Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate inter-
rupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on comparator 
output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is shown 
in Figure 21-1.

Figure 21-1. Analog Comparator Block Diagram(1)(2)

Notes: 1. ADC multiplexer output: see Table 21-2 on page 269.
2. Refer to Figure 2-2 on page 4 and Table 10-15 on page 82 for Analog Comparator pin 

placement.

21.2 Analog Comparator Register Description

21.2.1 ADC Control and Status Register B – ADCSRB

• Bit 6 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the 
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written 
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed 
description of this bit, see “Analog Comparator Multiplexed Input” on page 269. 

ACBG

BANDGAP
REFERENCE

ADC
MULTIPLEXER

OUTPUT

ACME
ADEN

T/C1 INPUT CAPTURE

Bit 7 6 5 4 3 2 1 0

- ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB
Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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21.2.2 Analog Comparator Control and Status Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit 
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in 
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be 
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is 
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog 
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-
ator. See “Internal Voltage Reference” on page 55.

• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The 
synchronization introduces a delay of 1 - 2 clock cycles. 

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined 
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set 
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the 
input capture front-end logic, making the comparator utilize the noise canceler and edge select 
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection 
between the Analog Comparator and the input capture function exists. To make the comparator 
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask 
Register (TIMSK1) must be set.

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
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• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The 
different settings are shown in Table 21-1.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by 
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the 
bits are changed.

21.3 Analog Comparator Multiplexed Input
It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be 
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in 
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX 
select the input pin to replace the negative input to the Analog Comparator, as shown in Table 
21-2. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog 
Comparator.

Table 21-1. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Table 21-2. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7
 269
4250G–CAN–09/05



21.3.1 Digital Input Disable Register 1 – DIDR1

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is 
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-
ten logic one to reduce power consumption in the digital input buffer.

Bit 7 6 5 4 3 2 1 0

– – – – – – AIN1D AIN0D DIDR1
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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22. Analog to Digital Converter - ADC

22.1 Features
• 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ± 2 LSB Absolute Accuracy
• 65 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• Eight Multiplexed Single Ended Input Channels
• Seven Differential input channels
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 2.56 V ADC Reference Voltage
• Free Running or Single Conversion Mode
• ADC Start Conversion by Auto Triggering on Interrupt Sources
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

The AT90CAN128 features a 10-bit successive approximation ADC. The ADC is connected to 
an 8-channel Analog Multiplexer which allows eight single-ended voltage inputs constructed 
from the pins of Port F. The single-ended voltage inputs refer to 0V (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs 
(ADC1, ADC0 and ADC3, ADC2) are equipped with a programmable gain stage, providing 
amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the differential input voltage 
before the A/D conversion. Seven differential analog input channels share a common negative 
terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1x 
or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can be 
expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is 
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 22-1.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than ±
0.3V from VCC. See the paragraph “ADC Noise Canceler” on page 278 on how to connect this 
pin.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.
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Figure 22-1. Analog to Digital Converter Block Schematic

22.2 Operation
The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on 
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the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V reference voltage may be con-
nected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal 
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve 
noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in 
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can 
be selected as single ended inputs to the ADC. A selection of ADC input pins can be selected as 
positive and negative inputs to the differential amplifier.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and 
input channel selections will not go into effect until ADEN is set. The ADC does not consume 
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power 
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and 
ADCL. By default, the result is presented right adjusted, but can optionally be presented left 
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read 
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data 
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers 
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is 
read, neither register is updated and the result from the conversion is lost. When ADCH is read, 
ADC access to the ADCH and ADCL Registers is re-enabled. 

The ADC has its own interrupt which can be triggered when a conversion completes. The ADC 
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt 
will trigger even if the result is lost.

22.3 Starting a Conversion
A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC. 
This bit stays high as long as the conversion is in progress and will be cleared by hardware 
when the conversion is completed. If a different data channel is selected while a conversion is in 
progress, the ADC will finish the current conversion before performing the channel change. 

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is 
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is 
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS 
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal, 
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal is still set when the conversion completes, a new 
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an interrupt flag will be set even if the specific 
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus 
be triggered without causing an interrupt. However, the interrupt flag must be cleared in order to 
trigger a new conversion at the next interrupt event. 
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Figure 22-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon 
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by 
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive 
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to 
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be 
read as one during a conversion, independently of how the conversion was started.

22.4 Prescaling and Conversion Timing

Figure 22-3. ADC Prescaler
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kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the 
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency 
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA. 
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit 
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously 
reset when ADEN is low.
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When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion 
starts at the following rising edge of the ADC clock cycle. See “Differential Channels” on page 
276 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched 
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is 
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion 
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new 
conversion will be initiated on the first rising ADC clock edge. 

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures 
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold 
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 22-1.

Figure 22-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 22-5. ADC Timing Diagram, Single Conversion
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Figure 22-6. ADC Timing Diagram, Auto Triggered Conversion

Figure 22-7. ADC Timing Diagram, Free Running Conversion

22.4.1 Differential Channels
When using differential channels, certain aspects of the conversion need to be taken into 
consideration. 

Differential conversions are synchronized to the internal clock CKADC2 equal to half the ADC 
clock frequency. This synchronization is done automatically by the ADC interface in such a way 
that the sample-and-hold occurs at a specific phase of CKADC2. A conversion initiated by the 
user (i.e., all single conversions, and the first free running conversion) when CKADC2 is low will 
take the same amount of time as a single ended conversion (13 ADC clock cycles from the next 
prescaled clock cycle). A conversion initiated by the user when CKADC2 is high will take 14 ADC 
clock cycles due to the synchronization mechanism. In Free Running mode, a new conversion is 

Table 22-1. ADC Conversion Time
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initiated immediately after the previous conversion completes, and since CKADC2 is high at this 
time, all automatically started (i.e., all but the first) Free Running conversions will take 14 ADC 
clock cycles.

If differential channels are used and conversions are started by Auto Triggering, the ADC must 
be switched off between conversions. When Auto Triggering is used, the ADC prescaler is reset 
before the conversion is started. Since the stage is dependent of a stable ADC clock prior to the 
conversion, this conversion will not be valid. By disabling and then re-enabling the ADC between 
each conversion (writing ADEN in ADCSRA to “0” then to “1”), only extended conversions are 
performed. The result from the extended conversions will be valid. See “Prescaling and Conver-
sion Timing” on page 274 for timing details.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequencies may 
be subjected to non-linear amplification. An external low-pass filter should be used if the input 
signal contains higher frequency components than the gain stage bandwidth. Note that the ADC 
clock frequency is independent of the gain stage bandwidth limitation. E.g. the ADC clock period 
may be 6 µs, allowing a channel to be sampled at 12 kSPS, regardless of the bandwidth of this 
channel.

22.5 Changing Channel or Reference Selection
The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary 
register to which the CPU has random access. This ensures that the channels and reference 
selection only takes place at a safe point during the conversion. The channel and reference 
selection is continuously updated until a conversion is started. Once the conversion starts, the 
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in 
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after 
ADSC is written. The user is thus advised not to write new channel or reference selection values 
to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special 
care must be taken when updating the ADMUX Register, in order to control which conversion 
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the 
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based 
on the old or the new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC 
conversion.

Special care should be taken when changing differential channels. Once a differential channel 
has been selected, the stage may take as much as 125 µs to stabilize to the new value. Thus 
conversions should not be started within the first 125 µs after selecting a new differential chan-
nel. Alternatively, conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing 
ADC reference (by changing the REFS1:0 bits in ADMUX).
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22.5.1 ADC Input Channels
When changing channel selections, the user should observe the following guidelines to ensure 
that the correct channel is selected:

• In Single Conversion mode, always select the channel before starting the conversion. The 
channel selection may be changed one ADC clock cycle after writing one to ADSC. However, 
the simplest method is to wait for the conversion to complete before changing the channel 
selection.

• In Free Running mode, always select the channel before starting the first conversion. The 
channel selection may be changed one ADC clock cycle after writing one to ADSC. However, 
the simplest method is to wait for the first conversion to complete, and then change the 
channel selection. Since the next conversion has already started automatically, the next 
result will reflect the previous channel selection. Subsequent conversions will reflect the new 
channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accu-
racy due to the required settling time for the automatic offset cancellation circuitry. The user 
should preferably disregard the first conversion result.

22.5.2 ADC Voltage Reference
The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single 
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as 
either AVCC, internal 2.56V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is gener-
ated from the internal bandgap reference (VBG) through an internal amplifier. In either case, the 
external AREF pin is directly connected to the ADC, and the reference voltage can be made 
more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can 
also be measured at the AREF pin with a high impedant voltmeter. Note that VREF is a high 
impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other 
reference voltage options in the application, as they will be shorted to the external voltage. If no 
external voltage is applied to the AREF pin, the user may switch between AVCC and 2.56V as 
reference selection. The first ADC conversion result after switching reference voltage source 
may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AVCC than indi-
cated in Table 27-5 on page 369. 

22.6 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode to reduce noise 
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC 
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be 
used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion 
mode must be selected and the ADC conversion complete interrupt must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once 
the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt 
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If 
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another interrupt wakes up the CPU before the ADC conversion is complete, that inter-
rupt will be executed, and an ADC Conversion Complete interrupt request will be 
generated when the ADC conversion completes. The CPU will remain in active mode 
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle 
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.

If the ADC is enabled in such sleep modes and the user wants to perform differential conver-
sions, the user is advised to switch the ADC off and on after waking up from sleep to prompt an 
extended conversion to get a valid result.

22.6.1 Analog Input Circuitry
The analog input circuitry for single ended channels is illustrated in Figure 22-8. An analog 
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the 
source must drive the S/H capacitor through the series resistance (combined resistance in the 
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or 
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the 
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources 
with slowly varying signals, since this minimizes the required charge transfer to the S/H 
capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although 
source impedances of a few hundred kΩ or less is recommended.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either 
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised 
to remove high frequency components with a low-pass filter before applying the signals as 
inputs to the ADC.

Figure 22-8. Analog Input Circuitry

22.6.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of 
analog measurements. If conversion accuracy is critical, the noise level can be reduced by 
applying the following techniques:
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1. Keep analog signal paths as short as possible. Make sure analog tracks run over the 
analog ground plane, and keep them well away from high-speed switching digital 
tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply voltage via 
an LC network as shown in Figure 22-9.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.
4. If any ADC port pins are used as digital outputs, it is essential that these do not switch 

while a conversion is in progress.

Figure 22-9. ADC Power Connections

22.6.3 Offset Compensation Schemes
The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential mea-
surements as much as possible. The remaining offset in the analog path can be measured 
directly by selecting the same channel for both differential inputs. This offset residue can be then 
subtracted in software from the measurement results. Using this kind of software based offset 
correction, offset on any channel can be reduced below one LSB.

22.6.4 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps 
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1. 

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition 
(at 0.5 LSB). Ideal value: 0 LSB.
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Figure 22-10. Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last 
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum). 
Ideal value: 0 LSB

Figure 22-11. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum 
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0 
LSB.
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Figure 22-12. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval 
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 22-13. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes, 
a range of input voltages (1 LSB wide) will code to the same value. Always ± 0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to 
an ideal transition for any code. This is the compound effect of offset, gain error, differential 
error, non-linearity, and quantization error. Ideal value: ± 0.5 LSB.

22.7 ADC Conversion Result
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC 
Result Registers (ADCL, ADCH). 
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For single ended conversion, the result is:

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see 
Table 22-3 on page 285 and Table 22-4 on page 286). 0x000 represents analog ground, and 
0x3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is:

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin, 
GAIN the selected gain factor and VREF the selected voltage reference. The result is presented 
in two’s complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user 
wants to perform a quick polarity check of the result, it is sufficient to read the MSB of the result 
(ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is posi-
tive. Figure 22-14 shows the decoding of the differential input range.

Table 82 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is 
selected with a reference voltage of VREF.

Figure 22-14. Differential Measurement Range
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Example 1:

– ADMUX = 0xED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result) 
– Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV. 
– ADCR = 512 * 10 * (300 - 500) / 2560 = -400 = 0x270 
– ADCL will thus read 0x00, and ADCH will read 0x9C. 

Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02.
Example 2:

– ADMUX = 0xFB (ADC3 - ADC2, 1x gain, 2.56V reference, left adjusted result) 
– Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV. 
– ADCR = 512 * 1 * (300 - 500) / 2560 = -41 = 0x029.
– ADCL will thus read 0x40, and ADCH will read 0x0A. 

Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29.

Table 22-2. Correlation Between Input Voltage and Output Codes

VADCn Read code Corresponding decimal value

 VADCm + VREF /GAIN 0x1FF 511

VADCm + 0.999 VREF /GAIN 0x1FF 511

VADCm + 0.998 VREF /GAIN 0x1FE 510

... ... ...

VADCm + 0.001 VREF /GAIN 0x001 1

VADCm 0x000 0

VADCm - 0.001 VREF /GAIN 0x3FF -1

... ... ...

VADCm - 0.999 VREF /GAIN 0x201 -511

VADCm - VREF /GAIN 0x200 -512
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22.8 ADC Register Description

22.8.1 ADC Multiplexer Selection Register – ADMUX

• Bit 7:6 – REFS1:0: Reference Selection Bits
These bits select the voltage reference for the ADC, as shown in Table 22-3. If these bits are 
changed during a conversion, the change will not go in effect until this conversion is complete 
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external 
reference voltage is being applied to the AREF pin.

•  Bit 5 – ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register. 
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the 
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see “The ADC Data Register – ADCL and ADCH” on 
page 288.

• Bits 4:0 – MUX4:0: Analog Channel Selection Bits
The value of these bits selects which combination of analog inputs are connected to the ADC. 
These bits also select the gain for the differential channels. See Table 22-4 for details. If these 
bits are changed during a conversion, the change will not go in effect until this conversion is 
complete (ADIF in ADCSRA is set).

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-3. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor on AREF pin

1 0 Reserved

1 1 Internal 2.56V Voltage Reference with external capacitor on AREF pin
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Table 22-4. Input Channel and Gain Selections  

MUX4..0 Single Ended 
Input

Positive Differential 
Input

Negative Differential 
Input Gain

00000 ADC0

N/A

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000

N/A

(ADC0 / ADC0 / 10x)

01001 ADC1 ADC0 10x

01010 (ADC0 / ADC0 / 200x)

01011 ADC1 ADC0 200x

01100 (ADC2 / ADC2 / 10x)

01101 ADC3 ADC2 10x

01110 (ADC2 / ADC2 / 200x)

01111 ADC3 ADC2 200x

10000 ADC0 ADC1 1x

10001 (ADC1 / ADC1 / 1x)

10010 ADC2 ADC1 1x

10011 ADC3 ADC1 1x

10100 ADC4 ADC1 1x

10101 ADC5 ADC1 1x

10110 ADC6 ADC1 1x

10111 ADC7 ADC1 1x

11000 ADC0 ADC2 1x

11001 ADC1 ADC2 1x

11010 (ADC2 / ADC2 / 1x)

11011 ADC3 ADC2 1x

11100 ADC4 ADC2 1x

11101 ADC5 ADC2 1x

11110 1.1V (VBand Gap)
N/A

11111 0V (GND)
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22.8.2 ADC Control and Status Register A – ADCSRA

• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the 
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode, 
write this bit to one to start the first conversion. The first conversion after ADSC has been written 
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled, 
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete, 
it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting 
the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the Data Registers are updated. The 
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. 
ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-
Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI 
instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the 
ADC.

22.8.3 The ADC Data Register – ADCL and ADCH
ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers. If differential 
channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if 
the result is left adjusted and no more than 8-bit precision (7 bit + sign bit for differential input 
channels) is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then 
ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from 
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result 
is right adjusted. 

Table 22-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
ADC1 ADC0 – – – – – – ADCL

Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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• ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on 
page 282.

22.8.4 ADC Control and Status Register B – ADCSRB

• Bit 7– Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero 
when ADCSRB is written.

• Bit 5:3– Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written 
to zero when ADCSRB is written.

• Bit 2:0 – ADTS2:0: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger 
an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion 
will be triggered by the rising edge of the selected interrupt flag. Note that switching from a trig-
ger source that is cleared to a trigger source that is set, will generate a positive edge on the 
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running 
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

Bit 7 6 5 4 3 2 1 0

– ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB
Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event
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22.8.5 Digital Input Disable Register 0 – DIDR0

• Bit 7:0 – ADC7D..ADC0D: ADC7:0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an 
analog signal is applied to the ADC7..0 pin and the digital input from this pin is not needed, this 
bit should be written logic one to reduce power consumption in the digital input buffer. 

Bit 7 6 5 4 3 2 1 0

ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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23. JTAG Interface and On-chip Debug System

23.1 Features
• JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories

• Extensive On-chip Debug Support for Break Conditions, Including
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Break Points on Single Address or Address Range
– Data Memory Break Points on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio®

23.2 Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:

• Testing PCBs by using the JTAG Boundary-scan capability
• Programming the non-volatile memories, Fuses and Lock bits
• On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Programming via 
the JTAG interface, and using the Boundary-scan Chain can be found in the sections “JTAG 
Programming Overview” on page 349 and “Boundary-scan IEEE 1149.1 (JTAG)” on page 298, 
respectively. The On-chip Debug support is considered being private JTAG instructions, and dis-
tributed within ATMEL and to selected third party vendors only.

Figure 23-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The 
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller 
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain 
(Shift Register) between the TDI – input and TDO – output. The Instruction Register holds JTAG 
instructions controlling the behavior of a Data Register.

The ID-Register (IDentifier Register), Bypass Register, and the Boundary-scan Chain are the 
Data Registers used for board-level testing. The JTAG Programming Interface (actually consist-
ing of several physical and virtual Data Registers) is used for serial programming via the JTAG 
interface. The Internal Scan Chain and Break Point Scan Chain are used for On-chip debugging 
only.

23.3 Test Access Port – TAP
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins 
constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller state 
machine.
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• TCK: Test Clock. JTAG operation is synchronous to TCK.
• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register 

(Scan Chains).
• TDO: Test Data Out. Serial output data from Instruction Register or Data Register (Scan 

Chains).
The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – which is not 
provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the 
TAP controller is in reset. When programmed and the JTD bit in MCUCR is cleared, the TAP 
input signals are internally pulled high and the JTAG is enabled for Boundary-scan and program-
ming. In this case, the TAP output pin (TDO) is left floating in states where the JTAG TAP 
controller is not shifting data, and must therefore be connected to a pull-up resistor or other 
hardware having pull-ups (for instance the TDI-input of the next device in the scan chain). The 
device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect external reset sources. The debugger can also pull 
the RESET pin low to reset the whole system, assuming only open collectors on the reset line 
are used in the application.
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Figure 23-1. Block Diagram
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Figure 23-2. TAP Controller State Diagram

23.4 TAP Controller
The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions 
depicted in Figure 23-2 depend on the signal present on TMS (shown adjacent to each state 
transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-
Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift 
Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG 
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK. 
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR 
state. The MSB of the instruction is shifted in when this state is left by setting TMS high. 
While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on 
the TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI 
and TDO and controls the circuitry surrounding the selected Data Register.
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• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched 

onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, 
Pause-IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift 
Data Register – Shift-DR state. While in this state, upload the selected data register (selected 
by the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the 
rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low 
during input of all bits except the MSB. The MSB of the data is shifted in when this state is left 
by setting TMS high. While the data register is shifted in from the TDI pin, the parallel inputs 
to the data register captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected data 
register has a latched parallel-output, the latching takes place in the Update-DR state. The 
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting 
JTAG instruction and using data registers, and some JTAG instructions may select certain func-
tions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be 
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography” 
on page 297.

23.5 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section “Boundary-
scan IEEE 1149.1 (JTAG)” on page 298.

23.6 Using the On-chip Debug System

As shown in Figure 23-1, the hardware support for On-chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal peripheral 
units.

• Break Point unit.
• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying 
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O 
memory mapped location which is part of the communication interface between the CPU and the 
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two 
Program Memory Break Points, and two combined Break Points. Together, the four Break 
Points can be configured as either:

• 4 single Program Memory Break Points.
• 3 single Program Memory Break Points + 1 single Data Memory Break Point.
• 2 single Program Memory Break Points + 2 single Data Memory Break Points.
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• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range 
Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range 
Break Point”).

A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG 
Instructions” on page 296. 

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the 
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system 
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or 
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door 
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with 
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator. 
AVR Studio® supports source level execution of Assembly programs assembled with Atmel Cor-
poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000/NT/XP.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on 
disassembly level. The user can execute the program, single step through the code either by 
tracing into or stepping over functions, step out of functions, place the cursor on a statement and 
execute until the statement is reached, stop the execution, and reset the execution target. In 
addition, the user can have an unlimited number of code Break Points (using the BREAK 
instruction) and up to two data memory Break Points, alternatively combined as a mask (range) 
Break Point.

23.7 On-chip Debug Specific JTAG Instructions

The On-chip debug support is considered being private JTAG instructions, and distributed within 
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

23.7.1 PRIVATE0 (0x8)
Private JTAG instruction for accessing On-chip debug system.

23.7.2 PRIVATE1 (0x9)
Private JTAG instruction for accessing On-chip debug system.

23.7.3 PRIVATE2 (0xA)
Private JTAG instruction for accessing On-chip debug system.

23.7.4 PRIVATE3 (0xB)
Private JTAG instruction for accessing On-chip debug system.
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23.8 On-chip Debug Related Register in I/O Memory

23.8.1 On-chip Debug Register – OCDR

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this 
location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is set to indicate 
to the debugger that the register has been written. When the CPU reads the OCDR Register the 
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the 
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR 
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables 
access to the OCDR Register. In all other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

23.9 Using the JTAG Programming Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and 
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse 
must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the 
JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying.
• EEPROM programming and verifying.
• Fuse programming and verifying.
• Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are 
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a 
security feature that ensures no back-door exists for reading out the content of a secured 
device.

The details on programming through the JTAG interface and programming specific JTAG 
instructions are given in the section “JTAG Programming Overview” on page 349.

23.10 Bibliography
For more information about general Boundary-scan, the following literature can be consulted:

• IEEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan 
Architecture, IEEE, 1993.

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 
1992.

Bit 7 6 5 4 3 2 1 0

IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 OCDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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24. Boundary-scan IEEE 1149.1 (JTAG)

24.1 Features
• JTAG (IEEE std. 1149.1 compliant) Interface
• Boundary-scan Capabilities According to the JTAG Standard
• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
• Supports the Optional IDCODE Instruction
• Additional Public AVR_RESET Instruction to Reset the AVR

24.2 System Overview
The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having 
off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by 
the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to 
drive values at their output pins, and observe the input values received from other devices. The 
controller compares the received data with the expected result. In this way, Boundary-scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits 
Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be 
used for testing the Printed Circuit Board. Initial scanning of the data register path will show the 
ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to 
have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-
mined by the scan operations, and the internal software may be in an undetermined state when 
exiting the test mode. Entering reset, the outputs of any port pin will instantly enter the high 
impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction 
can be issued to make the shortest possible scan chain through the device. The device can be 
set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET 
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data. 
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction 
is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for 
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST 
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the 
external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR must be 
cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher 
than the internal chip frequency is possible. The chip clock is not required to run.

24.3 Data Registers 
The data registers relevant for Boundary-scan operations are:

• Bypass Register
• Device Identification Register
• Reset Register
• Boundary-scan Chain
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24.3.1 Bypass Register

The Bypass Register consists of a single Shift Register stage. When the Bypass Register is 
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR 
controller state. The Bypass Register may be used to shorten the scan chain on a system when 
the other devices are to be tested.

24.3.2 Device Identification Register
Figure 24-1 shows the structure of the Device Identification Register. 

Figure 24-1. The Format of the Device Identification Register

24.3.2.1 Version
Version is a 4-bit number identifying the revision of the component. The relevant version number 
is shown in Table 24-1.

24.3.2.2 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for 
AT90CAN128 is listed in Table 24-2.

24.3.2.3 Manufacturer ID
The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID 
for ATMEL is listed in Table 24-3.

24.3.2.4 Device ID
The full Device ID is listed in Table 24-4 following the AT90CAN128 version.

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1
4 bits 16 bits 11 bits 1-bit

Table 24-1. JTAG Version Numbers

Version JTAG Version Number (Hex)

AT90CAN128 revision A 0x0

Table 24-2. AVR JTAG Part Number

Part Number JTAG Part Number (Hex)

AT90CAN128 0x9781

Table 24-3. Manufacturer ID

Manufacturer JTAG Manufacturer ID (Hex)

ATMEL 0x01F

Table 24-4. Device ID

Version JTAG Device ID (Hex)

AT90CAN128 revision A 0x0978103F
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24.3.3 Reset Register
The Reset Register is a test data register used to reset the part. Since the AVR tri-states Port 
Pins when reset, the Reset Register can also replace the function of the unimplemented optional 
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is 
reset as long as there is a high value present in the Reset Register. Depending on the fuse set-
tings for the clock options, the part will remain reset for a reset time-out period (refer to “System 
Clock” on page 36) after releasing the Reset Register. The output from this data register is not 
latched, so the reset will take place immediately, as shown in Figure 24-2.

Figure 24-2. Reset Register

24.3.4 Boundary-scan Chain
The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having 
off-chip connections.

See “Boundary-scan Chain” on page 302 for a complete description.

24.4 Boundary-scan Specific JTAG Instructions
The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG 
instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction is not 
implemented, but all outputs with tri-state capability can be set in high-impedant state by using 
the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text 
describes which data register is selected as path between TDI and TDO for each instruction.

24.4.1 EXTEST (0x0)
Mandatory JTAG instruction for selecting the Boundary-scan Chain as data register for testing 
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output 
Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip 
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

D QFrom TDI

ClockDR • AVR_RESET

To TDO

From Other Internal and
External Reset Sources Internal reset
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• Update-DR: Data from the scan chain is applied to output pins.

24.4.2 IDCODE (0x1)
Optional JTAG instruction selecting the 32 bit ID-Register as data register. The ID-Register con-
sists of a version number, a device number and the manufacturer code chosen by JEDEC. This 
is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain.
• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

24.4.3 SAMPLE_PRELOAD (0x2)
Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the 
input/output pins without affecting the system operation. However, the output latches are not 
connected to the pins. The Boundary-scan Chain is selected as data register. 

The active states are: 

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain. 
• Shift-DR: The Boundary-scan Chain is shifted by the TCK input. 
• Update-DR: Data from the Boundary-scan chain is applied to the output latches. However, 

the output latches are not connected to the pins. 

24.4.4 AVR_RESET (0xC)
The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or 
releasing the JTAG reset source. The TAP controller is not reset by this instruction. The one bit 
Reset Register is selected as data register.

Note that the reset will be active as long as there is a logic “one” in the Reset Chain. 

The output from this chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

24.4.5 BYPASS (0xF)
Mandatory JTAG instruction selecting the Bypass Register for data register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.
• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

24.5 Boundary-scan Related Register in I/O Memory

24.5.1 MCU Control Register – MCUCR
The MCU Control Register contains control bits for general MCU functions.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR
Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bits 7 – JTD: JTAG Interface Disable
When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this 
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of 
the JTAG interface, a timed sequence must be followed when changing this bit: The application 
software must write this bit to the desired value twice within four cycles to change its value. Note 
that this bit must not be altered when using the On-chip Debug system.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to 
one. The reason for this is to avoid static current at the TDO pin in the JTAG interface.

24.5.2 MCU Status Register – MCUSR
The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by 
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic 
zero to the flag.

24.6 Boundary-scan Chain
The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having 
off-chip connection. 

24.6.1 Scanning the Digital Port Pins
Figure 24-3 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The 
cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn – function, and a 
bi-directional pin cell that combines the three signals Output Control – OCxn, Output Data – 
ODxn, and Input Data – IDxn, into only a two-stage Shift Register. The port and pin indexes are 
not used in the following description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 24-4 shows a 
simple digital port pin as described in the section “I/O-Ports” on page 65. The Boundary-scan 
details from Figure 24-3 replaces the dashed box in Figure 24-4.

When no alternate port function is present, the Input Data – ID – corresponds to the PINxn Reg-
ister value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output 
Control corresponds to the Data Direction – DD Register, and the Pull-up Enable – PUExn – cor-
responds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 24-4 to make the 
scan chain read the actual pin value. For Analog function, there is a direct connection from the 
external pin to the analog circuit, and a scan chain is inserted on the interface between the digi-
tal logic and the analog circuitry.

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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Figure 24-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.
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Figure 24-4. General Port Pin Schematic Diagram

24.6.2 Boundary-scan and the Two-wire Interface
The two Two-wire Interface pins SCL and SDA have one additional control signal in the scan-
chain; Two-wire Interface Enable – TWIEN. As shown in Figure 24-5, the TWIEN signal enables 
a tri-state buffer with slew-rate control in parallel with the ordinary digital port pins. A general 
scan cell as shown in Figure 24-9 is attached to the TWIEN signal.

Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordinary scan 
support for digital port pins suffice for connectivity tests. The only reason for having TWIEN in 
the scan path, is to be able to disconnect the slew-rate control buffer when doing boundary-
scan. 

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will lead to 
drive contention.
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 304
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128

Figure 24-5. Additional Scan Signal for the Two-wire Interface

24.6.3 Scanning the RESET Pin
The RESET pin accepts 3V or 5V active low logic for standard reset operation, and 12V active 
high logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 24-6
is inserted both for the 3V or 5V reset signal - RSTT, and the 12V reset signal - RSTHV. 

Figure 24-6. Observe-only Cell for RESET pin

24.6.4 Scanning the Clock Pins
The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscilla-
tor, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal Oscillator, and 
Ceramic Resonator.

Figure 24-7 shows how each oscillator with external connection is supported in the scan chain. 
The Enable signal is supported with a general Boundary-scan cell, while the Oscillator/clock out-
put is attached to an observe-only cell. In addition to the main clock, the Timer2 Oscillator is 
scanned in the same way. The output from the internal RC Oscillator is not scanned, as this 
oscillator does not have external connections. 

Pxn
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TWIEN
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SRC
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D Q
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ClockDR

ShiftDR

To
Next
Cell

From  System Pin To System Logic

FF1
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Figure 24-7. Boundary-scan Cells for Oscillators and Clock Options

Table 24-5 summaries the scan registers for the external clock pin XTAL1, oscillators with 
XTAL1/XTAL2 connections as well as external Timer2 clock pin TOSC1 and 32kHz Timer2 
Oscillator.

Notes: 1. Do not enable more than one clock source as clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between 

the internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is 
preferred.

3. The main clock configuration is programmed by fuses. As a fuse is not changed run-time, the 
main clock configuration is considered fixed for a given application. The user is advised to 
scan the same clock option as to be used in the final system. The enable signals are sup-
ported in the scan chain because the system logic can disable clock options in sleep modes, 
thereby disconnecting the Oscillator pins from the scan path if not provided.

24.6.5 Scanning the Analog Comparator
The relevant Comparator signals regarding Boundary-scan are shown in Figure 24-8. The 
Boundary-scan cell from Figure 24-9 is attached to each of these signals. The signals are 
described in Table 24-6.

The Comparator need not be used for pure connectivity testing, since all analog inputs are 
shared with a digital port pin as well.

Table 24-5. Scan Signals for the Oscillators(1)(2)(3)

Enable Signal Scanned Clock Line Clock Option Scanned Clock Line
when not Used

EXTCLKEN EXTCLK (XTAL1) External Main Clock 0

OSCON OSCCK
External Crystal
External Ceramic Resonator

1

OSC32EN OSC32CK Low Freq. External Crystal 1

TOSKON TOSCK 32 kHz Timer2 Oscillator 1

0

1
D Q

From
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Cell

ClockDR

ShiftDR

To
Next
Cell

To System Logic

FF10

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

From Digital Logic

XTAL1 / TOSC1 XTAL2 / TOSC2

Oscillator

ENABLE OUTPUT
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Figure 24-8. Analog Comparator

Figure 24-9. General Boundary-scan cell Used for Signals for Comparator and ADC

Table 24-6. Boundary-scan Signals for the Analog Comparator

Signal  
Name

Direction as 
Seen from the 
Comparator

Description
Recommended 
Input when Not 
in Use

Output Values when 
Recommended Inputs 
are Used

AC_IDLE input
Turns off Analog 
Comparator when 
true

1 Depends upon µC code 
being executed

ACO output Analog Comparator 
Output

Will become input 
to µC code being 
executed

0

ACME input
Uses output signal 
from ADC mux when 
true

0 Depends upon µC code 
being executed

ACBG input Bandgap Reference 
enable 0 Depends upon µC code 

being executed

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME

AC_IDLE

ACO

ADCEN

0

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

To Analog Circuitry/
To Digital Logic

From Digital Logic/
From Analog Ciruitry
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24.6.6 Scanning the ADC
Figure 24-10 shows a block diagram of the ADC with all relevant control and observe signals. 
The Boundary-scan cell from Figure 24-9 is attached to each of these signals. The ADC need 
not be used for pure connectivity testing, since all analog inputs are shared with a digital port pin 
as well. 

Figure 24-10. Analog to Digital Converter

The signals are described briefly in Table 24-7.
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Table 24-7. Boundary-scan Signals for the ADC(1)  

Signal  
Name

Direction  
as Seen 
from the 
ADC

Description
Recommended 
Input  
When not in Use

Output Values when 
Recommended Inputs 
are Used, and CPU is 
not Using the ADC

COMP Output Comparator Output 0 0

ACLK Input
Clock signal to gain 
stages implemented as 
Switch-cap filters

0 0

ACTEN Input Enable path from gain 
stages to the comparator 0 0

ADCBGEN Input
Enable Band-gap 
reference as negative 
input to comparator

0 0

ADCEN Input Power-on signal to the 
ADC 0 0

AMPEN Input Power-on signal to the 
gain stages 0 0

DAC_9 Input Bit 9 of digital value to 
DAC 1 1

DAC_8 Input Bit 8 of digital value to 
DAC 0 0

DAC_7 Input Bit 7 of digital value to 
DAC 0 0

DAC_6 Input Bit 6 of digital value to 
DAC 0 0

DAC_5 Input Bit 5 of digital value to 
DAC 0 0

DAC_4 Input Bit 4 of digital value to 
DAC 0 0

DAC_3 Input Bit 3 of digital value to 
DAC 0 0

DAC_2 Input Bit 2 of digital value to 
DAC 0 0

DAC_1 Input Bit 1 of digital value to 
DAC 0 0

DAC_0 Input Bit 0 of digital value to 
DAC 0 0

EXTCH Input
Connect ADC channels 0 
- 3 to by-pass path around 
gain stages

1 1

G10 Input Enable 10x gain 0 0

G20 Input Enable 20x gain 0 0

GNDEN Input Ground the negative input 
to comparator when true 0 0
 309
4250G–CAN–09/05



HOLD Input

Sample & Hold signal. 
Sample analog signal 
when low. Hold signal 
when high. If gain stages 
are used, this signal must 
go active when ACLK is 
high.

1 1

IREFEN Input
Enables Band-gap 
reference as AREF signal 
to DAC

0 0

MUXEN_7 Input Input Mux bit 7 0 0

MUXEN_6 Input Input Mux bit 6 0 0

MUXEN_5 Input Input Mux bit 5 0 0

MUXEN_4 Input Input Mux bit 4 0 0

MUXEN_3 Input Input Mux bit 3 0 0

MUXEN_2 Input Input Mux bit 2 0 0

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit 0 1 1

NEGSEL_2 Input
Input Mux for negative 
input for differential 
signal, bit 2

0 0

NEGSEL_1 Input
Input Mux for negative 
input for differential 
signal, bit 1

0 0

NEGSEL_0 Input
Input Mux for negative 
input for differential 
signal, bit 0

0 0

PASSEN Input Enable pass-gate of gain 
stages. 1 1

PRECH Input Precharge output latch of 
comparator. (Active low) 1 1

SCTEST Input

Switch-cap TEST enable. 
Output from x10 gain 
stage send out to Port Pin 
having ADC_4

0 0

ST Input

Output of gain stages will 
settle faster if this signal 
is high first two ACLK 
periods after AMPEN 
goes high.

0 0

VCCREN Input Selects Vcc as the ACC 
reference voltage. 0 0

Table 24-7. Boundary-scan Signals for the ADC(1)  (Continued)

Signal  
Name

Direction  
as Seen 
from the 
ADC

Description
Recommended 
Input  
When not in Use

Output Values when 
Recommended Inputs 
are Used, and CPU is 
not Using the ADC
 310
4250G–CAN–09/05

AT90CAN128 



 AT90CAN128

Note: 1. Incorrect setting of the switches in Figure 24-10 will make signal contention and may damage 

the part. There are several input choices to the S&H circuitry on the negative input of the out-
put comparator in Figure 24-10. Make sure only one path is selected from either one ADC pin, 
Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 24-7 should 
be used. The user is recommended not to use the Differential Gain stages during scan. Switch-
Cap based gain stages require fast operation and accurate timing which is difficult to obtain 
when used in a scan chain. Details concerning operations of the differential gain stage is there-
fore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 24-10 with a successive approx-
imation algorithm implemented in the digital logic. When used in Boundary-scan, the problem is 
usually to ensure that an applied analog voltage is measured within some limits. This can easily 
be done without running a successive approximation algorithm: apply the lower limit on the digi-
tal DAC[9:0] lines, make sure the output from the comparator is low, then apply the upper limit 
on the digital DAC[9:0] lines, and verify the output from the comparator to be high. 

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with 
a digital port pin as well.

When using the ADC, remember the following

• The port pin for the ADC channel in use must be configured to be an input with pull-up 
disabled to avoid signal contention.

• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when 
enabling the ADC. The user is advised to wait at least 200ns after enabling the ADC before 
controlling/observing any ADC signal, or perform a dummy conversion before using the first 
result.

• The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal 
low (Sample mode).

As an example, consider the task of verifying a 1.5V ± 5% input signal at ADC channel 3 when 
the power supply is 5.0V and AREF is externally connected to VCC. 

The recommended values from Table 24-7 are used unless other values are given in the algo-
rithm in Table 24-8. Only the DAC and port pin values of the Scan Chain are shown. The column 
“Actions” describes what JTAG instruction to be used before filling the Boundary-scan Register 
with the succeeding columns. The verification should be done on the data scanned out when 
scanning in the data on the same row in the table.

The lower limit is: [ 1024 * 1.5V * 0.95 / 5V ] = 291 = 0x123

The upper limit is: [ 1024 * 1.5V * 1.05 / 5V ] = 323 = 0x143

Table 24-8. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH PA3. 
Data

PA3. 
Control

PA3. 
Pull-up_ 
Enable

1 SAMPLE_ 
PRELOAD 1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0
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Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock fre-
quency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at 
least five times the number of scan bits divided by the maximum hold time, thold,max

24.7 AT90CAN128 Boundary-scan Order
Table 24-9 shows the Scan order between TDI and TDO when the Boundary-scan chain is 
selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The 
scan order follows the pin-out order as far as possible. Therefore, the bits of Port A is scanned in 
the opposite bit order of the other ports. Exceptions from the rules are the Scan chains for the 
analog circuits, which constitute the most significant bits of the scan chain regardless of which 
physical pin they are connected to. In Figure 24-3, PXn. Data corresponds to FF0, PXn. Control 
corresponds to FF1, and PXn. Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is 
not in the scan chain, since these pins constitute the TAP pins when the JTAG is enabled.

5 1 0x123 0x08 1 0 0 0 0

6

Verify the 
COMP bit 
scanned out 
to be 0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11

Verify the 
COMP bit 
scanned out 
to be 1

1 0x200 0x08 1 1 0 0 0

Table 24-8. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH PA3. 
Data

PA3. 
Control

PA3. 
Pull-up_ 
Enable

Table 24-9. AT90CAN128 Boundary-scan Order  

Bit Number Signal Name Comment Module

200 AC_IDLE

Comparator
199 ACO

198 ACME

197 AINBG

196 COMP ADC

195 ACLK

194 ACTEN

193 PRIVATE_SIGNAL(1)

192 ADCBGEN

191 ADCEN

190 AMPEN

189 DAC_9
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188 DAC_8

187 DAC_7

186 DAC_6

185 DAC_5

184 DAC_4

183 DAC_3

182 DAC_2

181 DAC_1

180 DAC_0

179 EXTCH

178 G10

177 G20

176 GNDEN

175 HOLD

174 IREFEN

173 MUXEN_7

172 MUXEN_6

171 MUXEN_5

170 MUXEN_4

169 MUXEN_3

168 MUXEN_2

167 MUXEN_1

166 MUXEN_0

165 NEGSEL_2

164 NEGSEL_1 ADC

163 NEGSEL_0

162 PASSEN

161 PRECH

160 SCTEST

159 ST

158 VCCREN

157 PE0.Data Port E

156 PE0.Control

155 PE0.Pullup_Enable

154 PE1.Data

153 PE1.Control

152 PE1.Pullup_Enable

151 PE2.Data

Table 24-9. AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
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150 PE2.Control

149 PE2.Pullup_Enable

148 PE3.Data

147 PE3.Control

146 PE3.Pullup_Enable

145 PE4.Data

144 PE4.Control

143 PE4.Pullup_Enable

142 PE5.Data

141 PE5.Control

140 PE5.Pullup_Enable

139 PE6.Data

138 PE6.Control

137 PE6.Pullup_Enable

136 PE7.Data

135 PE7.Control

134 PE7.Pullup_Enable

133 PB0.Data Port B

132 PB0.Control

131 PB0.Pullup_Enable

130 PB1.Data

129 PB1.Control

128 PB1.Pullup_Enable

127 PB2.Data

126 PB2.Control Port B

125 PB2.Pullup_Enable

124 PB3.Data

123 PB3.Control

122 PB3.Pullup_Enable

121 PB4.Data

120 PB4.Control

119 PB4.Pullup_Enable

118 PB5.Data

117 PB5.Control

116 PB5.Pullup_Enable

115 PB6.Data

114 PB6.Control

113 PB6.Pullup_Enable

Table 24-9. AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
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112 PB7.Data

111 PB7.Control

110 PB7.Pullup_Enable

109 PG3.Data Port G

108 PG3.Control

107 PG3.Pullup_Enable

106 PG4.Data

105 PG4.Control

104 PG4.Pullup_Enable

103 PRIVATE_SIGNAL(1) –

102 RSTT (Observe Only) RESET Logic 

101 RSTHV

100 EXTCLKEN Oscillators

99 OSCON

98 OSC32EN

97 TOSKON

96 EXTCLK (XTAL1)

95 OSCCK

94 OSC32CK

93 TOSK

92 PD0.Data Port D

91 PD0.Control

90 PD0.Pullup_Enable

89 PD1.Data

88 PD1.Control Port D

87 PD1.Pullup_Enable

86 PD2.Data

85 PD2.Control

84 PD2.Pullup_Enable

83 PD3.Data

82 PD3.Control

81 PD3.Pullup_Enable

80 PD4.Data

79 PD4.Control

78 PD4.Pullup_Enable

77 PD5.Data

76 PD5.Control

75 PD5.Pullup_Enable

Table 24-9. AT90CAN128 Boundary-scan Order  (Continued)
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74 PD6.Data

73 PD6.Control

72 PD6.Pullup_Enable

71 PD7.Data

70 PD7.Control

69 PD7.Pullup_Enable

68 PG0.Data Port G

67 PG0.Control

66 PG0.Pullup_Enable

65 PG1.Data

64 PG1.Control

63 PG1.Pullup_Enable

62 PC0.Data Port C

61 PC0.Control

60 PC0.Pullup_Enable

59 PC1.Data

58 PC1.Control

57 PC1.Pullup_Enable

56 PC2.Data

55 PC2.Control

54 PC2.Pullup_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pullup_Enable

50 PC4.Data Port C

49 PC4.Control

48 PC4.Pullup_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pullup_Enable

44 PC6.Data

43 PC6.Control

42 PC6.Pullup_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pullup_Enable

38 PG2.Data Port G

37 PG2.Control

Table 24-9. AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
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Notes: 1. PRIVATE_SIGNAL should always be scanned-in as zero.

36 PG2.Pullup_Enable

35 PA7.Data Port A

34 PA7.Control

33 PA7.Pullup_Enable

32 PA6.Data

31 PA6.Control

30 PA6.Pullup_Enable

29 PA5.Data

28 PA5.Control

27 PA5.Pullup_Enable

26 PA4.Data

25 PA4.Control

24 PA4.Pullup_Enable

23 PA3.Data

22 PA3.Control

21 PA3.Pullup_Enable

20 PA2.Data

19 PA2.Control

18 PA2.Pullup_Enable

17 PA1.Data

16 PA1.Control

15 PA1.Pullup_Enable

14 PA0.Data

13 PA0.Control

12 PA0.Pullup_Enable Port A

11 PF3.Data Port F

10 PF3.Control

9 PF3.Pullup_Enable

8 PF2.Data

7 PF2.Control

6 PF2.Pullup_Enable

5 PF1.Data

4 PF1.Control

3 PF1.Pullup_Enable

2 PF0.Data

1 PF0.Control

0 PF0.Pullup_Enable

Table 24-9. AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
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24.8 Boundary-scan Description Language Files
Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in 
a standard format used by automated test-generation software. The order and function of bits in 
the Boundary-scan Data Register are included in this description. A BSDL file for AT90CAN128
is available.
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25. Boot Loader Support – Read-While-Write Self-Programming
The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for 
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The 
Boot Loader program can use any available data interface and associated protocol to read code 
and write (program) that code into the Flash memory, or read the code from the program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire 
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it 
can also erase itself from the code if the feature is not needed anymore. The size of the Boot 
Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot 
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection. 

25.1 Features
• Read-While-Write Self-Programming
• Flexible Boot Memory Size
• High Security (Separate Boot Lock Bits for a Flexible Protection)
• Separate Fuse to Select Reset Vector
• Optimized Page(1) Size
• Code Efficient Algorithm
• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 26-11 on page 338) 
used during programming. The page organization does not affect normal operation.

25.2 Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot 
Loader section (see Figure 25-2). The size of the different sections is configured by the 
BOOTSZ Fuses as shown in Table 25-6 on page 332 and Figure 25-2. These two sections can 
have different level of protection since they have different sets of Lock bits.

25.2.1 AS - Application Section
The Application section is the section of the Flash that is used for storing the application code. 
The protection level for the Application section can be selected by the application Boot Lock bits 
(BLB02 and BLB01 bits), see Table 25-2 on page 323. The Application section can never store 
any Boot Loader code since the SPM instruction is disabled when executed from the Application 
section.

25.2.2 BLS – Boot Loader Section
While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when 
executing from the BLS only. The SPM instruction can access the entire Flash, including the 
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader 
Lock bits (BLB12 and BLB11 bits), see Table 25-3 on page 323.

25.3 Read-While-Write and No Read-While-Write Flash Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two 
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sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also 
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 25-
7 on page 332 and Figure 25-2 on page 322. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be 
read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during 
the entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which 
section that is being programmed (erased or written), not which section that actually is being 
read during a Boot Loader software update.

25.3.1 RWW – Read-While-Write Section
If a Boot Loader software update is programming a page inside the RWW section, it is possible 
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the 
user software is trying to read code that is located inside the RWW section (i.e., by a 
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown 
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy 
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read 
as logical one as long as the RWW section is blocked for reading. After a programming is com-
pleted, the RWWSB must be cleared by software before reading code located in the RWW 
section. See “Store Program Memory Control and Status Register – SPMCSR” on page 324. for 
details on how to clear RWWSB.

25.3.2 NRWW – No Read-While-Write Section
The code located in the NRWW section can be read when the Boot Loader software is updating 
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU 
is halted during the entire Page Erase or Page Write operation.

Table 25-1. Read-While-Write Features

Which Section does the Z-pointer 
Address During the Programming?

Which Section Can 
be Read During 
Programming?

Is the CPU 
Halted?

Read-While-Write 
Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
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Figure 25-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

No Read-While-Write 
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in 
NRWW Section
Can be Read During
the Operation
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Figure 25-2. Memory Sections

Note: The parameters in the figure above are given in Table 25-6 on page 332.

25.4 Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The 
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives 
the user a unique flexibility to select different levels of protection. 

The user can select:

• To protect the entire Flash from a software update by the MCU.
• To protect only the Boot Loader Flash section from a software update by the MCU.
• To protect only the Application Flash section from a software update by the MCU.
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• Allow software update in the entire Flash.

See Table 25-2 and Table 25-3 for further details. The Boot Lock bits can be set in software and 
in Serial or Parallel Programming mode, but they can be cleared by a Chip Erase command 
only. The general Write Lock (Lock Bit mode 2) does not control the programming of the Flash 
memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 1) does not 
control reading nor writing by LPM/SPM (Load Program Memory / Store Program Memory) 
instructions, if it is attempted. 

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

25.5 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may 
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively, 
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash 
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses 
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-

Table 25-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

Lock Bit 
Mode BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM 
executing from the Boot Loader section is not allowed to read 
from the Application section. If Interrupt Vectors are placed in the 
Boot Loader section, interrupts are disabled while executing from 
the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to 
read from the Application section. If Interrupt Vectors are placed 
in the Boot Loader section, interrupts are disabled while executing 
from the Application section.

Table 25-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

Lock Bit 
Mode BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM 
executing from the Application section is not allowed to read from 
the Boot Loader section. If Interrupt Vectors are placed in the 
Application section, interrupts are disabled while executing from 
the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to read 
from the Boot Loader section. If Interrupt Vectors are placed in the 
Application section, interrupts are disabled while executing from 
the Boot Loader section.
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grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be 
changed through the serial or parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

25.5.1 Store Program Memory Control and Status Register – SPMCSR
The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM 
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN 
bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section 
cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a 
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be 
cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit
This bit is a reserved bit in the AT90CAN128 and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (Page Erase or Page Write) to the RWW section, the RWW section is 
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the 
user software must wait until the programming is completed (SPMEN will be cleared). Then, if 
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within 
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while 
the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will 
be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock 
cycles sets Boot Lock bits, according to the data in R0. The data in R1 and the address in the Z-
pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the Lock 
bit set, or if no SPM instruction is executed within four clock cycles. 

Table 25-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 25-6 on page 332)

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR
Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR Reg-
ister, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the 
destination register. See “Reading the Fuse and Lock Bits from Software” on page 328 for 
details.

• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock 
cycles executes Page Write, with the data stored in the temporary buffer. The page address is 
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit 
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four 
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is 
addressed.

• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock 
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The 
data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase, 
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire 
Page Write operation if the NRWW section is addressed.

• Bit 0 – SPMEN: Store Program Memory Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with 
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will 
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of 
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction, 
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write, 
the SPMEN bit remains high until the operation is completed. 

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower 
five bits will have no effect.

25.6 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-registers 
ZL and ZH in the register file, and RAMPZ in the I/O space. The number of bits actually used is 
implementation dependent. Note that the RAMPZ register is only implemented when the pro-
gram space is larger than 64K bytes.

Since the Flash is organized in pages (see Table 26-11 on page 338), the Program Counter can 
be treated as having two different sections. One section, consisting of the least significant bits, is 
addressing the words within a page, while the most significant bits are addressing the pages. 
This is shown in Figure 25-3. Note that the page erase and page write operations are addressed 
independently. Therefore it is of major importance that the Boot Loader software addresses the 

Bit 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

RAMPZ – – – – – – – RAMPZ0
ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8
ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
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same page in both the page erase and page write operation. Once a programming operation is 
initiated, the address is latched and the Z-pointer can be used for other operations. 

The (E)LPM instruction use the Z-pointer to store the address. Since this instruction addresses 
the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.

Figure 25-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 25-3 are listed in Table 25-8 on page 332. 

25.7 Self-Programming the Flash
The program memory is updated in a page by page fashion. Before programming a page with 
the data stored in the temporary page buffer, the page must be erased. The temporary page 
buffer is filled one word at a time using SPM and the buffer can be filled either before the Page 
Erase command or between a Page Erase and a Page Write operation:

Alternative 1: fill the buffer before a Page Erase

• Fill temporary page buffer
• Perform a Page Erase
• Perform a Page Write

Alternative 2: fill the buffer after Page Erase

• Perform a Page Erase
• Fill temporary page buffer
• Perform a Page Write
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If only a part of the page needs to be changed, the rest of the page must be stored (for example 
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1, 
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software 
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already 
erased. The temporary page buffer can be accessed in a random sequence. It is essential that 
the page address used in both the Page Erase and Page Write operation is addressing the 
same page. See “Simple Assembly Code Example for a Boot Loader” on page 330 for an 
assembly code example.

25.7.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and 
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored. 
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will 
be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page Erase.
• Page Erase to the NRWW section: The CPU is halted during the operation.

25.7.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write 
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The 
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The 
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in 
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than 
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be 
lost.

25.7.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and 
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored. 
The page address must be written to PCPAGE. Other bits in the Z-pointer will be ignored during 
this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.
• Page Write to the NRWW section: The CPU is halted during the operation.

25.7.4 Using the SPM Interrupt
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the 
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling 
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should 
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is 
blocked for reading. How to move the interrupts is described in “Interrupts” on page 59.

25.7.5 Consideration While Updating BLS
Special care must be taken if the user allows the Boot Loader section to be updated by leaving 
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the 
entire Boot Loader, and further software updates might be impossible. If it is not necessary to 
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change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to 
protect the Boot Loader software from any internal software changes.

25.7.6 Prevent Reading the RWW Section During Self-Programming
During Self-Programming (either Page Erase or Page Write), the RWW section is always 
blocked for reading. The user software itself must prevent that this section is addressed during 
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW 
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS 
as described in “Interrupts” on page 59, or the interrupts must be disabled. Before addressing 
the RWW section after the programming is completed, the user software must clear the 
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on 
page 330 for an example.

25.7.7 Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCSR 
and execute SPM within four clock cycles after writing SPMCSR. The only accessible Lock bits 
are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-
ware update by the MCU. 

See Table 25-2 and Table 25-3 for how the different settings of the Boot Loader bits affect the 
Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an 
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR. 
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to 
load the Z-pointer with 0x0001 (same as used for reading the Lock bits). For future compatibility 
it is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the Lock bits. When 
programming the Lock bits the entire Flash can be read during the operation.

25.7.8 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading the 
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It 
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies 
that the bit is cleared before writing to the SPMCSR Register.

25.7.9 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the 
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR, 
the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN 
bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed 
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0001) – – BLB12 BLB11 BLB02 BLB01 LB2 LB1
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The algorithm for reading the Fuse Low byte is similar to the one described above for reading 
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET 
and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the 
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be 
loaded in the destination register as shown below. Refer to Table 26-5 on page 335 for a 
detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, 
the value of the Fuse High byte (FHB) will be loaded in the destination register as shown below. 
Refer to Table 26-4 on page 334 for detailed description and mapping of the Fuse High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction 
is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the 
value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown below. 
Refer to Table 26-3 on page 334 for detailed description and mapping of the Extended Fuse 
byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are 
unprogrammed, will be read as one.

25.7.10 Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is 
too low for the CPU and the Flash to operate properly. These issues are the same as for board 
level systems using the Flash, and the same design solutions should be applied. 

A Flash program corruption can be caused by two situations when the voltage is too low. 

• First, a regular write sequence to the Flash requires a minimum voltage to operate correctly.
• Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage for 

executing instructions is too low.
Flash corruption can easily be avoided by following these design recommendations (one is 
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader 
Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. 
This can be done by enabling the internal Brown-out Detector (BOD) if the operating 
voltage matches the detection level. If not, an external low VCC reset protection circuit 
can be used. If a reset occurs while a write operation is in progress, the write operation 
will be completed provided that the power supply voltage is sufficient.

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0000) FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0003) FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0002) – – – – EFB3 EFB2 EFB1 EFB0
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3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting 
the SPMCSR Register and thus the Flash from unintentional writes.

25.7.11 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 25-5 shows the typical pro-
gramming time for Flash accesses from the CPU.

25.7.12 Simple Assembly Code Example for a Boot Loader
;- the routine writes one page of data from RAM to Flash 
; the first data location in RAM is pointed to by the Y-pointer 
; the first data location in Flash is pointed to by the Z-pointer 
;- error handling is not included 
;- the routine must be placed inside the Boot space 
; (at least the Do_spm sub routine). Only code inside NRWW section can 
; be read during Self-Programming (Page Erase and Page Write). 
;- registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),  
; loophi (r25), spmcsrval (r20) 
; storing and restoring of registers is not included in the routine 
; register usage can be optimized at the expense of code size 
;- it is assumed that either the interrupt table is moved to the Boot 
; loader section or that the interrupts are disabled.

 
.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words 
.org SMALLBOOTSTART 

Write_page: 
; Page Erase 
ldi spmcsrval, (1<<PGERS) | (1<<SPMEN) 
call Do_spm 

 
; re-enable the RWW section 
ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN) 
call Do_spm 
 
; transfer data from RAM to Flash page buffer 
ldi looplo, low(PAGESIZEB) ;init loop variable 
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256 

Wrloop: 
ld r0, Y+ 
ld r1, Y+ 
ldi spmcsrval, (1<<SPMEN) 
call Do_spm 
adiw ZH:ZL, 2 
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256 
brne Wrloop 

 
; execute Page Write 
subi ZL, low(PAGESIZEB) ;restore pointer 

Table 25-5. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and 
write Lock bits by SPM) 3.7 ms 4.5 ms
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sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256 
ldi spmcsrval, (1<<PGWRT) | (1<<SPMEN) 
call Do_spm 

 
; re-enable the RWW section 
ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN) 
call Do_spm 

 
; read back and check, optional 
ldi looplo, low(PAGESIZEB) ;init loop variable 
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256 
subi YL, low(PAGESIZEB) ;restore pointer 
sbci YH, high(PAGESIZEB) 

Rdloop: 
lpm r0, Z+ 
ld r1, Y+ 
cpse r0, r1 
jmp Error 
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256 
brne Rdloop 

 
; return to RWW section 
; verify that RWW section is safe to read 

Return: 
in temp1, SPMCSR 
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet 
ret 
; re-enable the RWW section 
ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN) 
call Do_spm 
rjmp Return 

 
Do_spm: 
; check for previous SPM complete 

Wait_spm: 
in temp1, SPMCSR 
sbrc temp1, SPMEN 
rjmp Wait_spm 
; input: spmcsrval determines SPM action 
; disable interrupts if enabled, store status 
in temp2, SREG 
cli 
; check that no EEPROM write access is present 

Wait_ee: 
sbic EECR, EEWE 
rjmp Wait_ee 
; SPM timed sequence 
out SPMCSR, spmcsrval 
spm 
; restore SREG (to enable interrupts if originally enabled) 
out SREG, temp2 
ret
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25.7.13 Boot Loader Parameters
In Table 25-6 through Table 25-8, the parameters used in the description of the Self-Program-
ming are given. 

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 25-2

Note: 1. For details about these two section, see “NRWW – No Read-While-Write Section” on page 
320 and “RWW – Read-While-Write Section” on page 320.

Notes: 1. See “Addressing the Flash During Self-Programming” on page 325 for details about the use of 
Z-pointer during self-programming.

2. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.
3. The Z-register is only 16 bits wide. Bit 16 is located in RAMPZ register in I/O map.

Table 25-6. Boot Size Configuration (Word Addresses)(1)
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1 1 512 words 4 0x0000 - 0xFDFF 0xFE00 - 0xFFFF 0xFDFF 0xFE00

1 0 1024 words 8 0x0000 - 0xFBFF 0xFC00 - 0xFFFF 0xFBFF 0xFC00

0 1 2048 words 16 0x0000 - 0xF7FF 0xF800 - 0xFFFF 0xF7FF 0xF800

0 0 4096 words 32 0x0000 - 0xEFFF 0xF000 - 0xFFFF 0xEFFF 0xF000

Table 25-7. Read-While-Write Limit (Word Addresses)(1)

Section Pages Address

Read-While-Write section (RWW) 480 0x0000 - 0xEFFF

No Read-While-Write section (NRWW) 32 0xF000 - 0xFFFF

Table 25-8. Explanation of Different Variables Used in Figure 25-3 on page 326 and the Map-
ping to the Z-Pointer(1)

Variable
Name

Variable
Value

Corresponding
Z-value Description(2)

PCMSB 15 Most significant bit in the program counter. (The program counter 
is 16 bits PC[15:0])

PAGEMSB 6 Most significant bit which is used to address the words within one 
page (128 words in a page requires 7 bits PC [6:0]).

ZPCMSB Z16(3) Bit in Z-register that is mapped to PCMSB. Because Z0 is not 
used, the ZPCMSB equals PCMSB + 1. 

ZPAGEMSB Z7 Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not 
used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[15:7] Z16(3):Z7 Program counter page address: Page select, for Page Erase and 
Page Write.

PCWORD PC[6:0] Z7:Z1 Program counter word address: Word select, for filling temporary 
buffer (must be zero during PAGE WRITE operation).
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26. Memory Programming

26.1 Program and Data Memory Lock Bits
The AT90CAN128 provides six Lock bits which can be left unprogrammed (“1”) or can be pro-
grammed (“0”) to obtain the additional features listed in Table 26-2. The Lock bits can only be 
erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed. 

Table 26-1. Lock Bit Byte(1) 

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 26-2. Lock Bit Protection Modes(1)(2)  

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in Parallel and 
Serial Programming mode. The Fuse bits are locked in both Serial and 
Parallel Programming mode.(1)

3 0 0
Further programming and verification of the Flash and EEPROM is disabled 
in Parallel and Serial Programming mode. The Boot Lock bits and Fuse bits 
are locked in both Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1 No restrictions for SPM (Store Program Memory) or LPM (Load Program 
Memory) accessing the Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM executing 
from the Boot Loader section is not allowed to read from the Application 
section. If Interrupt Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1
LPM executing from the Boot Loader section is not allowed to read from the 
Application section. If Interrupt Vectors are placed in the Boot Loader 
section, interrupts are disabled while executing from the Application section.

BLB1 Mode BLB12 BLB11

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader section.
 333
4250G–CAN–09/05



Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

26.2 Fuse Bits
The AT90CAN128 has three Fuse bytes. Table 26-3, Table 26-4 and Table 26-5 describe briefly 
the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that the 
fuses are read as logical zero, “0”, if they are programmed.

Note: 1. See Table 8-2 on page 53 for BODLEVEL Fuse decoding.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM executing 
from the Application section is not allowed to read from the Boot Loader 
section. If Interrupt Vectors are placed in the Application section, interrupts 
are disabled while executing from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to read from the 
Boot Loader section. If Interrupt Vectors are placed in the Application 
section, interrupts are disabled while executing from the Boot Loader 
section.

Table 26-2. Lock Bit Protection Modes(1)(2)  (Continued)

Memory Lock Bits Protection Type

Table 26-3. Extended Fuse Byte 

Fuse Extended Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

BODLEVEL2(1) 3 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL1(1) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(1) 1 Brown-out Detector trigger level 1 (unprogrammed)

TA0SEL 0 (Reserved for factory tests) 1 (unprogrammed)

Table 26-4. Fuse High Byte 

Fuse High Byte Bit No Description Default Value

OCDEN(4) 7 Enable OCD 1 (unprogrammed, OCD disabled)

JTAGEN(5) 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN(1) 5 Enable Serial Program and 
Data Downloading 0 (programmed, SPI prog. enabled)

WDTON(3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3 EEPROM memory is preserved 
through the Chip Erase 1 (unprogrammed, EEPROM not preserved)
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Notes: 1. The SPIEN Fuse is not accessible in serial programming mode.
2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 25-6 on page 332 

for details.
3. See “Watchdog Timer Control Register – WDTCR” on page 56 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits 

and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to 
be running in all sleep modes. This may increase the power consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This 
to avoid static current at the TDO pin in the JTAG interface.

Notes: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source. 
See Table 6-8 on page 41 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See Table 6-1 on 
page 37 for details.

3. The CKOUT Fuse allow the system clock to be output on Port PC7. See “Clock Output Buffer” 
on page 42 for details.

4. See “System Clock Prescaler” on page 43 for details.
The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if 
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

26.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the 
fuse values will have no effect until the part leaves Programming mode. This does not apply to 
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on 
Power-up in Normal mode.

BOOTSZ1 2 Select Boot Size 
(see Table 25-6 for details) 0 (programmed)(2)

BOOTSZ0 1 Select Boot Size 
(see Table 25-6 for details) 0 (programmed)(2)

BOOTRST 0 Select Reset Vector 
(see Table 25-6 for details) 1 (unprogrammed)

Table 26-5. Fuse Low Byte 

Fuse Low Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)

Table 26-4. Fuse High Byte (Continued)

Fuse High Byte Bit No Description Default Value
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26.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This 
code can be read in both serial and parallel mode, also when the device is locked. The three 
bytes reside in a separate address space.

26.4 Calibration Byte
The AT90CAN128 has a byte calibration value for the internal RC Oscillator. This byte resides in 
the high byte of address 0x000 in the signature address space. During reset, this byte is auto-
matically written into the OSCCAL Register to ensure correct frequency of the calibrated RC 
Oscillator.

26.5 Parallel Programming Overview
This section describes how to parallel program and verify Flash Program memory, EEPROM 
Data memory, Memory Lock bits, and Fuse bits in the AT90CAN128. Pulses are assumed to be 
at least 250 ns unless otherwise noted.

26.5.1 Signal Names
In this section, some pins of the AT90CAN128 are referenced by signal names describing their 
functionality during parallel programming, see Figure 26-1 and Table 26-7. Pins not described in 
the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse. 
The bit coding is shown in Table 26-9.

When pulsing WR or OE, the command loaded determines the action executed. The different 
Commands are shown in Table 26-10.

Figure 26-1. Parallel Programming

Table 26-6. Signature Bytes 

Address Value Signature Byte Description

0 0x1E Indicates manufactured by Atmel

1 0x97 Indicates 128 KB Flash memory

2 0x81 Indicates AT90CAN128 device when address 1 contains 0x97

VCC

+2.7 - +5.5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6  PB7 - PB0 DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2

AVCC

+2.7 - +5.5V
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26.5.2 Pin Mapping

26.5.3 Commands

Table 26-7. Pin Name Mapping 

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O 0: Device is busy programming, 
1: Device is ready for new command.

OE PD2 I Output Enable (Active low).

WR PD3 I Write Pulse (Active low).

BS1 PD4 I Byte Select 1 (“0” selects low byte, “1” selects high byte).

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory and EEPROM data Page Load.

BS2 PA0 I Byte Select 2 (“0” selects low byte, “1” selects 2’nd high byte).

DATA PB7-0 I/O Bi-directional Data bus (Output when OE is low).

Table 26-8. Pin Values Used to Enter Programming Mode 

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 26-9. XA1 and XA0 Coding 

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 26-10. Command Byte Bit Coding 

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash
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26.5.4 Parameters

26.6 Parallel Programming

26.6.1 Enter Programming Mode
The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between VCC and GND.
2. Set RESET to “0” and toggle XTAL1 at least six times.
3. Set the Prog_enable pins listed in Table 26-8 on page 337 to “0000” and wait at least 

100 ns.
4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after 

+12V has been applied to RESET, will cause the device to fail entering programming 
mode.

5. Wait at least 50 µs before sending a new command.

26.6.2 Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For efficient 
programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory 
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the 
EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 word 
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes 
reading.

0001 0001 Write EEPROM

0000 1000 Read Signature bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 26-10. Command Byte Bit Coding (Continued)

Command Byte Command Executed

Table 26-11. No. of Words in a Page and No. of Pages in the Flash 

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

64K words 128 words PC[6:0] 512 PC[15:7] 15

Table 26-12. No. of Words in a Page and No. of Pages in the EEPROM 

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

4K bytes 8 bytes EEA[2:0] 512 EEA[11:3] 11
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26.6.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are 
not reset until the program memory has been completely erased. The Fuse bits are not 
changed. A Chip Erase must be performed before the Flash and/or EEPROM are 
reprogrammed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “1000 0000”. This is the command for Chip Erase.
4. Give XTAL1 a positive pulse. This loads the command.
5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
6. Wait until RDY/BSY goes high before loading a new command.

Note: 1. The EEPROM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

26.6.4 Programming the Flash
The Flash is organized in pages, see Table 26-11 on page 338. When programming the Flash, 
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash 
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “0”. This selects low address.
3. Set DATA = Address low byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.
2. Set DATA = Data low byte (0x00 - 0xFF).
3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XA0 to “01”. This enables data loading.
3. Set DATA = Data high byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 26-3 for signal 

waveforms)
F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.
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While the lower bits in the address are mapped to words within the page, the higher bits 
address the pages within the FLASH. This is illustrated in Figure 26-2 on page 340. Note that 
if less than eight bits are required to address words in the page (pagesize < 256), the most 
significant bit(s) in the address low byte are used to address the page when performing a 
Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “1”. This selects high address.
3. Set DATA = Address high byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. 
RDY/BSY goes low.

2. Wait until RDY/BSY goes high (See Figure 26-3 for signal waveforms).
I. Repeat B through H until the entire Flash is programmed or until all data has been 

programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for No Operation.
3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals 

are reset.

Figure 26-2. Addressing the Flash Which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 26-11 on page 338.

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB

PROGRAM COUNTER
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Figure 26-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

26.6.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 26-12 on page 338. When programming the 
EEPROM, the program data is latched into a page buffer. This allows one page of data to be 
programmed simultaneously. The programming algorithm for the EEPROM data memory is as 
follows (refer to “Programming the Flash” on page 339 for details on Command, Address and 
Data loading):

1. A: Load Command “0001 0001”.
2. G: Load Address High Byte (0x00 - 0xFF).
3. B: Load Address Low Byte (0x00 - 0xFF).
4. C: Load Data (0x00 - 0xFF).
5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.
2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY 

goes low.
3. Wait until to RDY/BSY goes high before programming the next page (See Figure 26-4 

for signal waveforms).

0x10 ADDR. LOW ADDR. HIGHDATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

DATA

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

 341
4250G–CAN–09/05



Figure 26-4. Programming the EEPROM Waveforms

26.6.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on 
page 339 for details on Command and Address loading):

1. A: Load Command “0000 0010”.
2. G: Load Address High Byte (0x00 - 0xFF).
3. B: Load Address Low Byte (0x00 - 0xFF).
4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.
5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.
6. Set OE to “1”.

26.6.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash” 
on page 339 for details on Command and Address loading):

1. A: Load Command “0000 0011”.
2. G: Load Address High Byte (0x00 - 0xFF).
3. B: Load Address Low Byte (0x00 - 0xFF).
4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.
5. Set OE to “1”.

26.6.8 Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash” 
on page 339 for details on Command and Data loading):

1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.

26.6.9 Programming the Fuse High Bits
The algorithm for programming the Fuse High bits is as follows (refer to “Programming the 
Flash” on page 339 for details on Command and Data loading):

0x11 ADDR. HIGH ADDR. LOW DATA ADDR. LOW DATA XXXX

A G B C E B C E L

K

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

DATA

XA1

XA0

BS1

XTAL1
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1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS1 to “0”. This selects low data byte.

26.6.10 Programming the Extended Fuse Bits
The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming the 
Flash” on page 339 for details on Command and Data loading):

1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS2 to “0”. This selects low data byte.

Figure 26-5. Programming the FUSES Waveforms

26.6.11 Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on 
page 339 for details on Command and Data loading):

1. A: Load Command “0010 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed 

(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any 
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.

26.6.12 Reading the Fuse and Lock Bits
The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash” 
on page 339 for details on Command loading):

0x40 DATA XX

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

XTAL1

BS2

RESET +12V

RDY/BSY

WR

OE

PAGEL

DATA

XA1

XA0

BS1
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1. A: Load Command “0000 0100”.
2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be 

read at DATA (“0” means programmed).
3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be 

read at DATA (“0” means programmed).
4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can now 

be read at DATA (“0” means programmed).
5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at 

DATA (“0” means programmed).
6. Set OE to “1”.

Figure 26-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

26.6.13 Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on 
page 339 for details on Command and Address loading):

1. A: Load Command “0000 1000”.
2. B: Load Address Low Byte (0x00 - 0x02).
3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.
4. Set OE to “1”.

26.6.14 Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on 
page 339 for details on Command and Address loading):

1. A: Load Command “0000 1000”.
2. B: Load Address Low Byte, 0x00.
3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. Set OE to “1”.

26.7 SPI Serial Programming Overview
This section describes how to serial program and verify Flash Program memory, EEPROM Data 
memory, Memory Lock bits, and Fuse bits in the AT90CAN128.

BS2

DATA

0

1

BS2

Extended Fuse Byte

Fuse Low Byte

0

1Fuse High Byte

Lock Bits

BS1

0

1
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26.7.1 Signal Names

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while 
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-
put). After RESET is set low, the Programming Enable instruction needs to be executed first 
before program/erase operations can be executed. NOTE, in Table 26-13 on page 345, the pin 
mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal 
SPI interface. Note that throughout the description about Serial downloading, MOSI and MISO 
are used to describe the serial data in and serial data out respectively. For AT90CAN128 these 
pins are mapped to PDI (PE0) and PDO (PE1).

Figure 26-7. Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the 
XTAL1 pin.

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming 
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase 
instruction. The Chip Erase operation turns the content of every memory location in both the 
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods 
for the serial clock (SCK) input are defined as follows:

Low:  > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck ≥ 12 MHz

High:  > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck ≥ 12 MHz

26.7.2 Pin Mapping

VCC

+2.7 - +5.5V

GND

XTAL1

PB1

RESET

PDO PE1

PE0PDI

SCK

AVCC

+2.7 - +5.5V

Table 26-13. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI (PDI) PE0 I Serial Data in

MISO (PDO) PE1 O Serial Data out

SCK PB1 I Serial Clock
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26.7.3 Parameters
The Flash parameters are given in Table 26-11 on page 338 and the EEPROM parameters in 
Table 26-12 on page 338.

26.8 SPI Serial Programming 
When writing serial data to the AT90CAN128, data is clocked on the rising edge of SCK. When 
reading data from the AT90CAN128, data is clocked on the falling edge of SCK.

To program and verify the AT90CAN128 in the serial programming mode, the following 
sequence is recommended (See four byte instruction formats in Table 26-15):

1. Power-up sequence: 
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this 
case, RESET must be given a positive pulse of at least two CPU clock cycles duration 
after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming 
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the 
third byte of the Programming Enable instruction. Whether the echo is correct or not, all 
four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give 
RESET a positive pulse and issue a new Programming Enable command. 

4. The Flash is programmed one page at a time. The memory page is loaded one byte at 
a time by supplying the 7 LSB of the address and data together with the Load Program 
Memory Page instruction. To ensure correct loading of the page, the data low byte must 
be loaded before data high byte is applied for a given address. The Program Memory 
Page is stored by loading the Write Program Memory Page instruction with the 9 MSB 
of the address. If polling is not used, the user must wait at least tWD_FLASH before issuing 
the next page. (See Table 26-14.) Accessing the serial programming interface before 
the Flash write operation completes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and 
data together with the appropriate Write instruction. An EEPROM memory location is 
first automatically erased before new data is written. If polling is not used, the user must 
wait at least tWD_EEPROM before issuing the next byte. (See Table 26-14.) In a chip 
erased device, no 0xFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the 
content at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal 
operation.

8. Power-off sequence (if needed): 
Set RESET to “1”. 
Turn VCC power off.

26.8.1 Data Polling Flash
When a page is being programmed into the Flash, reading an address location within the page 
being programmed will give the value 0xFF. At the time the device is ready for a new page, the 
programmed value will read correctly. This is used to determine when the next page can be writ-
ten. Note that the entire page is written simultaneously and any address within the page can be 
used for polling. Data polling of the Flash will not work for the value 0xFF, so when programming 
this value, the user will have to wait for at least tWD_FLASH before programming the next page. As 
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a chip-erased device contains 0xFF in all locations, programming of addresses that are meant to 
contain 0xFF, can be skipped. See Table 26-14 for tWD_FLASH value.

26.8.2 Data Polling EEPROM
When a new byte has been written and is being programmed into EEPROM, reading the 
address location being programmed will give the value 0xFF. At the time the device is ready for 
a new byte, the programmed value will read correctly. This is used to determine when the next 
byte can be written. This will not work for the value 0xFF, but the user should have the following 
in mind: As a chip-erased device contains 0xFF in all locations, programming of addresses that 
are meant to contain 0xFF, can be skipped. This does not apply if the EEPROM is re-pro-
grammed without chip erasing the device. In this case, data polling cannot be used for the value 
0xFF, and the user will have to wait at least tWD_EEPROM before programming the next byte. See 
Table 26-14 for tWD_EEPROM value.

Figure 26-8. Serial Programming Waveforms

Table 26-14. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FUSE 4.5 ms

tWD_FLASH 4.5 ms

tWD_EEPROM 9.0 ms

tWD_ERASE 9.0 ms

MSB LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI-PDI)

(MISO-PDO)

Sample

SERIAL DATA OUTPUT MSB

Table 26-15. Serial Programming Instruction Set   
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction
Instruction Format(1)

Operation(1)

Byte 1 Byte 2(2) Byte 3 Byte4

Programming 
Enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx Enable Serial Programming after RESET goes low.

Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip Erase EEPROM and Flash.

Read 
Program Memory 0010 H000 aaaa aaaa bbbb bbbb oooo oooo

Read H (high or low) data o from Program memory at 
word address a:b.
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Notes: 1. All bytes are represented by binary digits (0b...).
2. Address bits exceeding PCMSB and EEAMSB (see Table 26-11 on page 338 and Table 26-12 on page 338) are don’t care.

Load 
Program Memory 
Page

0100 H000 000x xxxx xbbb bbbb iiii iiii

Write H (high or low) data i to Program Memory page 
at word address b. Data low byte must be loaded 
before Data high byte is applied within the same 
address.

Write 
Program Memory 
Page

0100 1100 aaaa aaaa bxxx xxxx xxxx xxxx Write Program Memory Page at address a:b.

Read 
EEPROM Memory 1010 0000 000x aaaa bbbb bbbb oooo oooo Read data o from EEPROM memory at address a:b.

Write 
EEPROM Memory 1100 0000 000x aaaa bbbb bbbb iiii iiii Write data i to EEPROM memory at address a:b.

Load 
EEPROM Memory 
Page (page access)

1100 0001 0000 0000 0000 0bbb iiii iiii
Load data i to EEPROM memory page buffer. After 
data is loaded, program EEPROM page.

Write 
EEPROM Memory 
Page (page access)

1100 0010 000x aaaa bbbb b000 xxxx xxxx Write EEPROM page at address a:b.

Read Lockbits 0101 1000 0000 0000 xxxx xxxx xxoo oooo
Read Lock bits. “0”=programmed, “1”=unprogrammed. 
See Table 26-1 on page 333 for details.

Write 
Lock bits 1010 1100 111x xxxx xxxx xxxx 11ii iiii

Write Lock bits. Set bits = “0” to program Lock bits. 
See Table 26-1 on page 333 for details.

Read 
Signature Byte 0011 0000 000x xxxx xxxx xxbb oooo oooo Read Signature Byte o at address b.

Write 
Fuse Low bits 1010 1100 1010 0000 xxxx xxxx iiii iiii

Set bits = “0” to program, “1” to unprogram. 
See Table 26-5 on page 335 for details.

Write 
Fuse High bits 1010 1100 1010 1000 xxxx xxxx iiii iiii

Set bits = “0” to program, “1” to unprogram. 
See Table 26-4 on page 334 for details.

Write 
Extended Fuse Bits 1010 1100 1010 0100 xxxx xxxx xxxx iiii

Set bits = “0” to program, “1” to unprogram. 
See Table 26-3 on page 334 for details.

Read 
Fuse Low bits 0101 0000 0000 0000 xxxx xxxx oooo oooo

Read Fuse bits. “0”=programmed, “1”=unprogrammed. 
See Table 26-5 on page 335 for details.

Read 
Fuse High bits 0101 1000 0000 1000 xxxx xxxx oooo oooo

Read Fuse High bits. 
“0”=programmed, “1”=unprogrammed. 
See Table 26-4 on page 334 for details.

Read 
Extended Fuse Bits 0101 0000 0000 1000 xxxx xxxx oooo oooo

Read Extended Fuse bits. 
“0”=programmed, “1”=unprogrammed. 
See Table 26-3 on page 334 for details.

Read 
Calibration Byte 0011 1000 000x xxxx 0000 0000 oooo oooo Read Calibration Byte

Poll RDY/BSY 1111 0000 0000 0000 xxxx xxxx xxxx xxxo
If o = “1”, a programming operation is still busy. Wait 
until this bit returns to “0” before applying another 
command.

Table 26-15. Serial Programming Instruction Set  (Continued) 
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction
Instruction Format(1)

Operation(1)

Byte 1 Byte 2(2) Byte 3 Byte4
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26.9 JTAG Programming Overview
Programming through the JTAG interface requires control of the four JTAG specific pins: TCK, 
TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is 
default shipped with the fuse programmed. In addition, the JTD bit in MCUCR must be cleared. 
Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be 
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a 
means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-
tem Programming via the JTAG interface. Note that this technique can not be used when using 
the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-
icated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maximum fre-
quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input 
into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

26.9.1 Programming Specific JTAG Instructions
The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions 
useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text 
describes which data register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be 
used as an idle state between JTAG sequences. The state machine sequence for changing the 
instruction word is shown in Figure 26-9.
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Figure 26-9. State Machine Sequence for Changing the Instruction Word

26.9.1.1 AVR_RESET (0xC)
The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking 
the device out from the Reset mode. The TAP controller is not reset by this instruction. The one 
bit Reset Register is selected as data register. Note that the reset will be active as long as there 
is a logic “one” in the Reset Chain. The output from this chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

26.9.1.2 PROG_ENABLE (0x4)
The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-
bit Programming Enable Register is selected as data register. The active states are the 
following:

• Shift-DR: The programming enable signature is shifted into the data register.
• Update-DR: The programming enable signature is compared to the correct value, and 

Programming mode is entered if the signature is valid.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR
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Select-DR Scan
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0
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0 1 1 1

0 0

0 0

1 1

1 0
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0
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0

0

1 0

1

1

0

1

0

0
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26.9.1.3 PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG 
port. The 15-bit Programming Command Register is selected as data register. The active states 
are the following:

• Capture-DR: The result of the previous command is loaded into the data register.
• Shift-DR: The data register is shifted by the TCK input, shifting out the result of the previous 

command and shifting in the new command.
• Update-DR: The programming command is applied to the Flash inputs
• Run-Test/Idle: One clock cycle is generated, executing the applied command (not always 

required, see Table 26-16 below).

26.9.1.4 PROG_PAGELOAD (0x6)
The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port. 
An 8-bit Flash Data Byte Register is selected as the data register. This is physically the 8 LSBs 
of the Programming Command Register. The active states are the following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.
• Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. 

A write sequence is initiated that within 11 TCK cycles loads the content of the temporary 
register into the Flash page buffer. The AVR automatically alternates between writing the low 
and the high byte for each new Update-DR state, starting with the low byte for the first 
Update-DR encountered after entering the PROG_PAGELOAD command. The Program 
Counter is pre-incremented before writing the low byte, except for the first written byte. This 
ensures that the first data is written to the address set up by PROG_COMMANDS, and 
loading the last location in the page buffer does not make the program counter increment into 
the next page.

26.9.1.5 PROG_PAGEREAD (0x7)
The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port. 
An 8-bit Flash Data Byte Register is selected as the data register. This is physically the 8 LSBs 
of the Programming Command Register. The active states are the following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte 
Register. The AVR automatically alternates between reading the low and the high byte for 
each new Capture-DR state, starting with the low byte for the first Capture-DR encountered 
after entering the PROG_PAGEREAD command. The Program Counter is post-incremented 
after reading each high byte, including the first read byte. This ensures that the first data is 
captured from the first address set up by PROG_COMMANDS, and reading the last location 
in the page makes the program counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

26.9.2 Data Registers
The data registers are selected by the JTAG instruction registers described in section “Program-
ming Specific JTAG Instructions” on page 349. The data registers relevant for programming 
operations are:

• Reset Register
• Programming Enable Register
• Programming Command Register
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• Flash Data Byte Register

26.9.2.1 Reset Register
The Reset Register is a Test Data Register used to reset the part during programming. It is 
required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset 
as long as there is a high value present in the Reset Register. Depending on the Fuse settings 
for the clock options, the part will remain reset for a Reset Time-out period (refer to “Clock 
Sources” on page 37) after releasing the Reset Register. The output from this data register is not 
latched, so the reset will take place immediately, as shown in Figure 24-2 on page 300.

26.9.2.2 Programming Enable Register
The Programming Enable Register is a 16-bit register. The contents of this register is compared 
to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-
tents of the register is equal to the programming enable signature, programming via the JTAG 
port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when 
leaving Programming mode.

Figure 26-10. Programming Enable Register

26.9.2.3 Programming Command Register
The Programming Command Register is a 15-bit register. This register is used to serially shift in 
programming commands, and to serially shift out the result of the previous command, if any. The 
JTAG Programming Instruction Set is shown in Table 26-16. The state sequence when shifting 
in the programming commands is illustrated in Figure 26-12.
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Figure 26-11. Programming Command Register
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Table 26-16. JTAG Programming Instruction   
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence(1)(2) TDO Sequence(1)(2) Notes

1a. Chip Erase

0100011_10000000

0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (4)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (11)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data
0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(3)

2g. Write Flash Page

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(3)

2h. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (4)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (11)
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3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte
0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

Low byte
High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (11)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data
0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(3)

4f. Write EEPROM Page

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(3)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (4)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (11)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte
0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(8) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (5)

6c. Write Fuse Extended Byte

0111011_00000000

0111001_00000000

0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(3)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (4)

6e. Load Data Low Byte(9) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (5)

6f. Write Fuse High Byte

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(3)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (4)

6h. Load Data Low Byte(9) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (5)

Table 26-16. JTAG Programming Instruction  (Continued) 
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence(1)(2) TDO Sequence(1)(2) Notes
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Notes: 1. Address bits exceeding PCMSB and EEAMSB (Table 26-11 and Table 26-12) are don’t care.
2. All TDI and TDO sequences are represented by binary digits (0b...).

6i. Write Fuse Low Byte

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(3)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (4)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(11) 0010011_11iiiiii xxxxxxx_xxxxxxxx (6)

7c. Write Lock Bits

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(3)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (4)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte(8) 0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

8c. Read Fuse High Byte(9) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

8d. Read Fuse Low Byte(10) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

8e. Read Lock Bits(11) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxoooooo

(7)

8f. Read Fuses and Lock Bits

0111010_00000000

0111110_00000000

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo

(7)

Fuse Ext. byte
Fuse High byte
Fuse Low byte
Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

11a. Load No Operation Command
0100011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

Table 26-16. JTAG Programming Instruction  (Continued) 
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence(1)(2) TDO Sequence(1)(2) Notes
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3. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is 
normally the case).

4. Repeat until o = “1”.
5. Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.
6. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
7. “0” = programmed, “1” = unprogrammed.
8. The bit mapping for Fuses Extended byte is listed in Table 26-3 on page 334.
9. The bit mapping for Fuses High byte is listed in Table 26-4 on page 334.
10. The bit mapping for Fuses Low byte is listed in Table 26-5 on page 335.
11. The bit mapping for Lock bits byte is listed in Table 26-1 on page 333.

Figure 26-12. State Machine Sequence for Changing/Reading the Data Word

26.9.2.4 Flash Data Byte Register
The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer 
before executing Page Write, or to read out/verify the content of the Flash. A state machine sets 
up the control signals to the Flash and senses the strobe signals from the Flash, thus only the 
data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-
ister. During page load, the Update-DR state copies the content of the scan chain over to the 
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temporary register and initiates a write sequence that within 11 TCK cycles loads the content of 
the temporary register into the Flash page buffer. The AVR automatically alternates between 
writing the low and the high byte for each new Update-DR state, starting with the low byte for the 
first Update-DR encountered after entering the PROG_PAGELOAD command. The Program 
Counter is pre-incremented before writing the low byte, except for the first written byte. This 
ensures that the first data is written to the address set up by PROG_COMMANDS, and loading 
the last location in the page buffer does not make the Program Counter increment into the next 
page.

During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte 
Register during the Capture-DR state. The AVR automatically alternates between reading the 
low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-
ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is 
post-incremented after reading each high byte, including the first read byte. This ensures that 
the first data is captured from the first address set up by PROG_COMMANDS, and reading the 
last location in the page makes the program counter increment into the next page.

Figure 26-13. Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal 
operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate 
through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-
ter with sufficient number of clock pulses to complete its operation transparently for the user. 
However, if too few bits are shifted between each Update-DR state during page load, the TAP 
controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at 
least 11 TCK cycles between each Update-DR state.

26.9.3 Programming Algorithm
All references below of type “1a”, “1b”, and so on, refer to Table 26-16 on page 353.

TDI
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D
A
T
A
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26.9.3.1 Entering Programming Mode
1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.
2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-

ming Enable Register.

26.9.3.2 Leaving Programming Mode
1. Enter JTAG instruction PROG_COMMANDS.
2. Disable all programming instructions by using no operation instruction 11a.
3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-

ming Enable Register.
4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

26.9.3.3 Performing Chip Erase
1. Enter JTAG instruction PROG_COMMANDS.
2. Start Chip Erase using programming instruction 1a.
3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE 

(refer to Table 27-15 on page 378).

26.9.3.4 Programming the Flash
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash write using programming instruction 2a.
3. Load address High byte using programming instruction 2b.
4. Load address Low byte using programming instruction 2c.
5. Load data using programming instructions 2d, 2e and 2f.
6. Repeat steps 4 and 5 for all instruction words in the page.
7. Write the page using programming instruction 2g.
8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer 

to ).
9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash write using programming instruction 2a.
3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to 

Table 26-11 on page 338) is used to address within one page and must be written as 0.
4. Enter JTAG instruction PROG_PAGELOAD.
5. Load the entire page by shifting in all instruction words in the page byte-by-byte, start-

ing with the LSB of the first instruction in the page and ending with the MSB of the last 
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte 
Register into the Flash page location and to auto-increment the Program Counter 
before each new word.

6. Enter JTAG instruction PROG_COMMANDS.
7. Write the page using programming instruction 2g.
8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer 

to Table 27-15 on page 378).
9. Repeat steps 3 to 8 until all data have been programmed.
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26.9.3.5 Reading the Flash

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash read using programming instruction 3a.
3. Load address using programming instructions 3b and 3c.
4. Read data using programming instruction 3d.
5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash read using programming instruction 3a.
3. Load the page address using programming instructions 3b and 3c. PCWORD (refer to 

Table 26-11 on page 338) is used to address within one page and must be written as 0.
4. Enter JTAG instruction PROG_PAGEREAD.
5. Read the entire page (or Flash) by shifting out all instruction words in the page (or 

Flash), starting with the LSB of the first instruction in the page (Flash) and ending with 
the MSB of the last instruction in the page (Flash). The Capture-DR state both captures 
the data from the Flash, and also auto-increments the program counter after each word 
is read. Note that Capture-DR comes before the shift-DR state. Hence, the first byte 
which is shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.
7. Repeat steps 3 to 6 until all data have been read.

26.9.3.6 Programming the EEPROM
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable EEPROM write using programming instruction 4a.
3. Load address High byte using programming instruction 4b.
4. Load address Low byte using programming instruction 4c.
5. Load data using programming instructions 4d and 4e.
6. Repeat steps 4 and 5 for all data bytes in the page.
7. Write the data using programming instruction 4f.
8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH 

(refer to Table 27-15 on page 378).
9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

26.9.3.7 Reading the EEPROM
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable EEPROM read using programming instruction 5a.
3. Load address using programming instructions 5b and 5c.
4. Read data using programming instruction 5d.
5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

26.9.3.8 Programming the Fuses
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Fuse write using programming instruction 6a.
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3. Load data high byte using programming instructions 6b. A bit value of “0” will program 
the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.
5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to 

Table 27-15 on page 378).
6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a 

“1” will unprogram the fuse.
7. Write Fuse low byte using programming instruction 6f.
8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to 

Table 27-15 on page 378).

26.9.3.9 Programming the Lock Bits
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Lock bit write using programming instruction 7a.
3. Load data using programming instructions 7b. A bit value of “0” will program the corre-

sponding lock bit, a “1” will leave the lock bit unchanged.
4. Write Lock bits using programming instruction 7c.
5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH 

(refer to Table 27-15 on page 378).

26.9.3.10 Reading the Fuses and Lock Bits
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Fuse/Lock bit read using programming instruction 8a.
3. To read all Fuses and Lock bits, use programming instruction 8f. 

To only read Extended Fuse byte, use programming instruction 8b. 
To only read Fuse High byte, use programming instruction 8c. 
To only read Fuse Low byte, use programming instruction 8d. 
To only read Lock bits, use programming instruction 8e.

26.9.3.11 Reading the Signature Bytes
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Signature byte read using programming instruction 9a.
3. Load address 0x00 using programming instruction 9b.
4. Read first signature byte using programming instruction 9c.
5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third 

signature bytes, respectively.

26.9.3.12 Reading the Calibration Byte
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Calibration byte read using programming instruction 10a.
3. Load address 0x00 using programming instruction 10b.
4. Read the calibration byte using programming instruction 10c.
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27. Electrical Characteristics

27.1 Absolute Maximum Ratings*

27.2 DC Characteristics

Industrial Operating Temperature ...................– 40°C to +85°C *NOTICE: Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability.

Storage Temperature ....................................– 65°C to +150°C

Voltage on any Pin except RESET 
with respect to Ground ..............................– 0.5V to VCC+0.5V

Voltage on RESET with respect to Ground....– 0.5V to +13.0V

Voltage on VCC with respect to Ground............. – 0.5V to 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

TA = -40°C to +85°C, VCC = 2.7V to 5.5V (unless otherwise noted)  

Symbol Parameter Condition Min. Typ. Max. Units

VIL Input Low Voltage Except XTAL1 and 
RESET pins – 0.5 0.2 Vcc (1) V

VIL1 Input Low Voltage XTAL1 pin - External 
Clock Selected – 0.5 0.1 Vcc (1) V

VIL2 Input Low Voltage RESET pin – 0.5 0.2 Vcc (1) V

VIH Input High Voltage Except XTAL1 and 
RESET pins 0.6 Vcc (2) Vcc + 0.5 V

VIH1 Input High Voltage XTAL1 pin - External 
Clock Selected 0.7 Vcc (2) Vcc + 0.5 V

VIH2 Input High Voltage RESET pin 0.85 Vcc (2) Vcc + 0.5 V

VOL
Output Low Voltage (3) 
(Ports A, B, C, D, E, F, G)

IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.7
0.5 V

VOH
Output High Voltage (4) 
(Ports A, B, C, D, E, F, G)

IOH = – 20 mA, VCC = 5V
IOH = – 10 mA, VCC = 3V

4.2
2.4 V

IIL
Input Leakage 
Current I/O Pin

VCC = 5.5V, pin low 
(absolute value) 1.0 µA

IIH
Input Leakage 
Current I/O Pin

VCC = 5.5V, pin high 
(absolute value) 1.0 µA

RRST Reset Pull-up Resistor 30 100 kΩ

Rpu I/O Pin Pull-up Resistor 20 50 kΩ
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Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V) under steady state 

conditions (non-transient), the following must be observed: 
TQFP and QFN Package: 
1] The sum of all IOL, for all ports, should not exceed 400 mA. 
2] The sum of all IOL, for ports A0 - A7, G2, C3 - C7 should not exceed 300 mA. 
3] The sum of all IOL, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 150 mA. 
4] The sum of all IOL, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 150 mA. 
5] The sum of all IOL, for ports F0 - F7, should not exceed 200 mA. 
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater 
than the listed test condition.

4. Although each I/O port can source more than the test conditions (-20 mA at VCC = 5V, -10 mA at VCC = 3V) under steady 
state conditions (non-transient), the following must be observed: 
TQFP and QFN Package: 
1] The sum of all IOH, for all ports, should not exceed -400 mA. 
2] The sum of all IOH, for ports A0 - A7, G2, C3 - C7 should not exceed -300 mA. 
3] The sum of all IOH, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 1-50 mA. 
4] The sum of all IOH, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed -150 mA. 
5] The sum of all IOH, for ports F0 - F7, should not exceed -200 mA. 
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current 
greater than the listed test condition.

5. See errata “Power supply current in Power-down mode” of “Rev A & B” on page 414

ICC

Power Supply Current 
Active Mode 
(external clock)

8 MHz, VCC = 5V 20 mA

16 MHz, VCC = 5V 37 mA

4 MHz, VCC = 3V 5.5 mA

8 MHz, VCC = 3V 10.5 mA

Power Supply Current 
Idle Mode 
(external clock)

8 MHz, VCC = 5V 12 mA

16 MHz, VCC = 5V 23 mA

4 MHz, VCC = 3V 3 mA

8 MHz, VCC = 3V 7 mA

Power Supply Current 
Power-down Mode

WDT enabled, VCC = 5V 40 (5) µA

WDT disabled, VCC = 5V 18 (5) µA

WDT enabled, VCC = 3V 25 (5) µA

WDT disabled, VCC = 3V 10 (5) µA

VACIO
Analog Comparator  
Input Offset Voltage

VCC = 5V
Vin = VCC/2

1.0 8.0 20 mV

IACLK
Analog Comparator  
Input Leakage Current

VCC = 5V 
Vin = VCC/2 – 50 50 nA

tACID

Analog Comparator 
Propagation Delay 
Common Mode Vcc/2

VCC = 2.7V 170 ns

VCC = 5.0V 180 ns

TA = -40°C to +85°C, VCC = 2.7V to 5.5V (unless otherwise noted)  (Continued)

Symbol Parameter Condition Min. Typ. Max. Units
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27.3 External Clock Drive Characteristics

Figure 27-1. External Clock Drive Waveforms

Table 27-1. External Clock Drive  

Symbol Parameter
VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V

Units
Min. Max. Min. Max.

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns

tCLCX Low Time 50 25 ns

tCLCH Rise Time 1.6 0.5 µs

tCHCL Fall Time 1.6 0.5 µs

∆tCLCL
Change in period from one clock cycle 
to the next 2 2 %

VIL1

VIH1
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27.4 Maximum Speed vs. VCC
Maximum frequency is depending on VCC. As shown in Figure 27-2., the Maximum Frequency 
vs. VCC curve is linear between 1.8V < VCC < 4.5V. To calculate the maximum frequency at a 
given voltage in this interval, use this equation:

To calculate required voltage for a given frequency, use this equation:

At 3 Volt, this gives:

Thus, when VCC = 3V, maximum frequency will be 9.33 MHz.

At 8 MHz this gives:

Thus, a maximum frequency of 8 MHz requires VCC = 2.7V.

Figure 27-2. Maximum Frequency vs. VCC, AT90CAN128 

Table 27-2. Constants used to calculate maximum speed vs. VCC

Voltage and Frequency range a b Vx Fy

2.7 < VCC < 4.5 or 8 < Frequency < 16 8/1.8 1.8/8 2.7 8

Frequency a V Vx–( ) Fy+•=

Voltage b F Fy–( ) Vx+•=

Frequency 8
1.8-------- 3 2.7–( ) 8+• 9.33= =

Voltage 1.8
8-------- 8 8–( ) 2.7+• 2.7= =

Safe Operating Area

4.5V2.7V 5.5V

8 MHz

16 MHz

Frequency

Voltage
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27.5 Two-wire Serial Interface Characteristics
Table 27-3 describes the requirements for devices connected to the Two-wire Serial Bus. The 
AT90CAN128 Two-wire Serial Interface meets or exceeds these requirements under the noted 
conditions.

Timing symbols refer to Figure 27-3.

Notes: 1. In AT90CAN128, this parameter is characterized and not 100% tested.

Table 27-3. Two-wire Serial Bus Requirements  

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage – 0.5 0.3 Vcc V

VIH Input High-voltage 0.7 Vcc Vcc + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 Vcc (2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb 

(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF (3) 20 + 0.1Cb 

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50 (2) ns

Ii Input Current each I/O Pin 0.1 VCC < Vi < 0.9 VCC – 10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK 
(4) > max(16fSCL, 250kHz) (5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100 kHz

fSCL > 100 kHz

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tLOW Low Period of the SCL Clock
fSCL ≤ 100 kHz (6) 4.7 – µs

fSCL > 100 kHz (7) 1.3 – µs

tHIGH High period of the SCL clock
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tSU;STA
Set-up time for a repeated START 
condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 0.6 – µs

tHD;DAT Data hold time
fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time
fSCL ≤ 100 kHz 250 – ns

fSCL > 100 kHz 100 – ns

tSU;STO Setup time for STOP condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tBUF
Bus free time between a STOP and 
START condition fSCL ≤ 100 kHz 4.7 – µs

VCC 0,4V–
3mA---------------------------- 1000ns

Cb
------------------- Ω

VCC 0,4V–
3mA---------------------------- 300ns

Cb
---------------- Ω
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2. Required only for fSCL > 100 kHz.
3. Cb = capacitance of one bus line in pF.
4. fCK = CPU clock frequency
5. This requirement applies to all AT90CAN128 Two-wire Serial Interface operation. Other devices connected to the Two-wire 

Serial Bus need only obey the general fSCL requirement.
6. The actual low period generated by the AT90CAN128 Two-wire Serial Interface is (1/fSCL - 2/fCK), thus fCK must be greater 

than 6 MHz for the low time requirement to be strictly met at fSCL = 100 kHz.
7. The actual low period generated by the AT90CAN128 Two-wire Serial Interface is (1/fSCL - 2/fCK), thus the low time require-

ment will not be strictly met for fSCL > 308 kHz when fCK = 8 MHz. Still, AT90CAN128 devices connected to the bus may 
communicate at full speed (400 kHz) with other AT90CAN128 devices, as well as any other device with a proper tLOW accep-
tance margin.

Figure 27-3. Two-wire Serial Bus Timing

27.6 SPI Timing Characteristics
See Figure 27-4 and Figure 27-5 for details.

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 27-4. SPI Timing Parameters  

Description Mode Min. Typ. Max.

1 SCK period Master See Table 17-4

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low (1) Slave 2 • tck

12 Rise/Fall time Slave 1.6 µs
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Note: In SPI Programming mode the minimum SCK high/low period is: 
- 2 tCLCL for fCK < 12 MHz 
- 3 tCLCL for fCK >12 MHz

Figure 27-4. SPI Interface Timing Requirements (Master Mode)

Figure 27-5. SPI Interface Timing Requirements (Slave Mode)

13 Setup Slave 10

ns

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 2 • tck

Table 27-4. SPI Timing Parameters  (Continued)

Description Mode Min. Typ. Max.

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

18
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27.7 CAN Physical Layer Characteristics
Only pads dedicated to the CAN communication belong to the physical layer. 

Notes: 1. Characteristics for CAN physical layer have not yet been finalized.
2. Metastable immunity flip-flop.

Table : CAN Physical Layer Characteristics (1)

Parameter Condition Min. Max. Units

1 TxCAN output delay

Vcc=2.7 V
Load=20 pF

VOL/VOH=VCC/2 
9

ns

Vcc=4.5 V
Load=20 pF

VOL/VOH=VCC/2
5.3

2 RxCAN input delay

Vcc=2.7 V
VIL/VIH=VCC/2 9 + 1/ fCLKIO

(2)

Vcc=4.5 V
VIL/VIH=VCC/2 7.2 + 1/ fCLKIO

(2)
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27.8 ADC Characteristics

Notes: 1. Values are guidelines only. 
2. Minimum for AVCC is 2.7 V.
3. Maximum for AVCC is 5.5 V

Table 27-5. ADC Characteristics, Single Ended Channels  

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution Single Ended Conversion 10 Bits

Absolute accuracy 
(Included INL, DNL, 
Quantization Error, Gain and 
Offset Error)

Single Ended Conversion 
VREF = 4V, Vcc = 4V 
ADC clock = 200 kHz

1.5 LSB

Single Ended Conversion 
VREF = 4V, Vcc = 4V 
ADC clock = 1 MHz

LSB

Single Ended Conversion 
VREF = 4V, Vcc = 4V 
ADC clock = 200 kHz 
Noise Reduction Mode

1.5 LSB

Single Ended Conversion 
VREF = 4V, Vcc = 4V 
ADC clock = 1 MHz 
Noise Reduction Mode

LSB

Integral Non-linearity (INL)
Single Ended Conversion 
VREF = 4V, Vcc = 4V 
ADC clock = 200 kHz

0.5 1 LSB

Differential Non-linearity (DNL)
Single Ended Conversion 
VREF = 4V, Vcc = 4V 
ADC clock = 200 kHz

0.3 1 LSB

Gain Error
Single Ended Conversion 
VREF = 4V, Vcc = 4V 
ADC clock = 200 kHz

– 2 0 + 2 LSB

Offset Error
Single Ended Conversion 
VREF = 4V, Vcc = 4V 
ADC clock = 200 kHz

– 2 1 + 2 LSB

Clock Frequency Free Running Conversion 50 1000 kHz

Conversion Time Free Running Conversion 65 260 µs

AVCC Analog Supply Voltage VCC – 0.3 (2) VCC + 0.3 (3) V

VREF External Reference Voltage 2.0 AVCC V

VIN Input voltage GND VREF V

Input bandwidth 38.5 kHz

VINT Internal Voltage Reference 2.4 2.56 2.7 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ
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Notes: 1. Values are guidelines only. 
2. Minimum for AVCC is 2.7 V.
3. Maximum for AVCC is 5.5 V

Table 27-6. ADC Characteristics, Differential Channels  

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution

Differential Conversion 
Gain = 1x or 10x 8 Bits

Differential Conversion 
Gain = 200x 7 Bits

Absolute accuracy
Gain = 1x, 10x or 200x 
VREF = 4V, Vcc = 5V 
ADC clock = 50 - 200 kHz

1 LSB

Integral Non-linearity (INL) 
(Accuracy after Calibration 
for Offset and Gain Error)

Gain = 1x, 10x or 200x 
VREF = 4V, Vcc = 5V 
ADC clock = 50 - 200 kHz

0.5 1 LSB

Gain Error Gain = 1x, 10x or 200x – 2 0 + 2 LSB

Offset Error
Gain = 1x, 10x or 200x 
VREF = 4V, Vcc = 5V 
ADC clock = 50 - 200 kHz

– 1 0 + 1 LSB

Clock Frequency Free Running Conversion 50 200 kHz

Conversion Time Free Running Conversion 65 260 µs

AVCC Analog Supply Voltage VCC – 0.3 (2) VCC + 0.3 (3) V

VREF External Reference Voltage Differential Conversion 2.0 AVCC - 0.5 V

VIN Input voltage Differential Conversion 0 AVCC
 V

VDIFF Input Differential Voltage –VREF/Gain +VREF/Gain V

ADC Conversion Output –511 511 LSB

Input bandwidth Differential Conversion 4 kHz

VINT Internal Voltage Reference 2.4 2.56 2.7 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ
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27.9 External Data Memory Characteristics

Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.

Table 27-7. External Data Memory Characteristics, VCC = 4.5 - 5.5 Volts, No Wait-state  

Symbol Parameter
8 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

1 tLHLL ALE Pulse Width 115 1.0 tCLCL – 10 ns

2 tAVLL Address Valid A to ALE Low 57.5 0.5 tCLCL – 5 (1) ns

3a tLLAX_ST
Address Hold After ALE Low,  
write access 5 5 ns

3b tLLAX_LD
Address Hold after ALE Low,  
read access 5 5 ns

4 tAVLLC Address Valid C to ALE Low 57.5 0.5 tCLCL – 5 (1) ns

5 tAVRL Address Valid to RD Low 115 1.0 tCLCL – 10 ns

6 tAVWL Address Valid to WR Low 115 1.0 tCLCL – 10 ns

7 tLLWL ALE Low to WR Low 47.5 67.5 0.5 tCLCL – 15 (2) 0.5 tCLCL + 5 (2) ns

8 tLLRL ALE Low to RD Low 47.5 67.5 0.5 tCLCL – 15 (2) 0.5 tCLCL + 5 (2) ns

9 tDVRH Data Setup to RD High 40 40 ns

10 tRLDV Read Low to Data Valid 75 1.0 tCLCL – 50 ns

11 tRHDX Data Hold After RD High 0 0 ns

12 tRLRH RD Pulse Width 115 1.0 tCLCL – 10 ns

13 tDVWL Data Setup to WR Low 42.5 0.5 tCLCL – 20 (1) ns

14 tWHDX Data Hold After WR High 115 1.0 tCLCL – 10 ns

15 tDVWH Data Valid to WR High 125 1.0 tCLCL ns

16 tWLWH WR Pulse Width 115 1.0 tCLCL – 10 ns

Table 27-8. External Data Memory Characteristics, VCC = 4.5 - 5.5 Volts, 1 Cycle Wait-state  

Symbol Parameter
8 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 200 2.0 tCLCL – 50 ns

12 tRLRH RD Pulse Width 240 2.0 tCLCL – 10 ns

15 tDVWH Data Valid to WR High 240 2.0 tCLCL ns

16 tWLWH WR Pulse Width 240 2.0 tCLCL – 10 ns
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Table 27-9. External Data Memory Characteristics, VCC = 4.5 - 5.5 Volts, SRWn1 = 1, SRWn0 = 0  

Symbol Parameter
8 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 325 3.0 tCLCL – 50 ns

12 tRLRH RD Pulse Width 365 3.0 tCLCL – 10 ns

15 tDVWH Data Valid to WR High 375 3.0 tCLCL ns

16 tWLWH WR Pulse Width 365 3.0 tCLCL – 10 ns

Table 27-10. External Data Memory Characteristics, VCC = 4.5 - 5.5 Volts, SRWn1 = 1, SRWn0 = 1  

Symbol Parameter
8 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 200 3.0 tCLCL – 50 ns

12 tRLRH RD Pulse Width 365 3.0 tCLCL – 10 ns

14 tWHDX Data Hold After WR High 240 2.0 tCLCL – 10 ns

15 tDVWH Data Valid to WR High 375 3.0 tCLCL ns

16 tWLWH WR Pulse Width 365 3.0 tCLCL – 10 ns

Table 27-11. External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, No Wait-state  

Symbol Parameter
4 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

1 tLHLL ALE Pulse Width 235 tCLCL – 15 ns

2 tAVLL Address Valid A to ALE Low 115 0.5 tCLCL – 10 (1) ns

3a tLLAX_ST
Address Hold After ALE Low,  
write access 5 5 ns

3b tLLAX_LD
Address Hold after ALE Low,  
read access 5 5 ns

4 tAVLLC Address Valid C to ALE Low 115 0.5 tCLCL – 10 (1) ns

5 tAVRL Address Valid to RD Low 235 1.0 tCLCL – 15 ns

6 tAVWL Address Valid to WR Low 235 1.0 tCLCL – 15 ns

7 tLLWL ALE Low to WR Low 115 130 0.5 tCLCL – 10 (2) 0.5 tCLCL + 5 (2) ns

8 tLLRL ALE Low to RD Low 115 130 0.5 tCLCL – 10 (2) 0.5 tCLCL + 5 (2) ns

9 tDVRH Data Setup to RD High 45 45 ns

10 tRLDV Read Low to Data Valid 190 1.0 tCLCL – 60 ns
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Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.

11 tRHDX Data Hold After RD High 0 0 ns

12 tRLRH RD Pulse Width 235 1.0 tCLCL – 15 ns

13 tDVWL Data Setup to WR Low 105 0.5 tCLCL – 20 (1) ns

14 tWHDX Data Hold After WR High 235 1.0 tCLCL – 15 ns

15 tDVWH Data Valid to WR High 250 1.0 tCLCL ns

16 tWLWH WR Pulse Width 235 1.0 tCLCL – 15 ns

Table 27-11. External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, No Wait-state  (Continued)

Symbol Parameter
4 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

Table 27-12. External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, SRWn1 = 0, SRWn0 = 1  

Symbol Parameter
4 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 440 2.0 tCLCL – 60 ns

12 tRLRH RD Pulse Width 485 2.0 tCLCL – 15 ns

15 tDVWH Data Valid to WR High 500 2.0 tCLCL ns

16 tWLWH WR Pulse Width 485 2.0 tCLCL – 15 ns

Table 27-13. External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, SRWn1 = 1, SRWn0 = 0  

Symbol Parameter
4 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 690 3.0 tCLCL – 60 ns

12 tRLRH RD Pulse Width 735 3.0 tCLCL – 15 ns

15 tDVWH Data Valid to WR High 750 3.0 tCLCL ns

16 tWLWH WR Pulse Width 735 3.0 tCLCL – 15 ns

Table 27-14. External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, SRWn1 = 1, SRWn0 = 1  

Symbol Parameter
4 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 690 3.0 tCLCL – 60 ns

12 tRLRH RD Pulse Width 735 3.0 tCLCL – 15 ns
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Figure 27-6. External Memory Timing (SRWn1 = 0, SRWn0 = 0)

14 tWHDX Data Hold After WR High 485 2.0 tCLCL – 15 ns

15 tDVWH Data Valid to WR High 750 3.0 tCLCL ns

16 tWLWH WR Pulse Width 735 3.0 tCLCL – 15 ns

Table 27-14. External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, SRWn1 = 1, SRWn0 = 1  (Continued)

Symbol Parameter
4 MHz Oscillator Variable Oscillator

Unit
Min. Max. Min. Max.

ALE

T1 T2 T3

W
rit

e
R

ea
d

WR

T4

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataAddress

System Clock (CLKCPU)

1

4

2

7

6

3a

3b

5

8 12

16

13

10

11

14

15

9
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Figure 27-7. External Memory Timing (SRWn1 = 0, SRWn0 = 1)

Figure 27-8. External Memory Timing (SRWn1 = 1, SRWn0 = 0)

ALE

T1 T2 T3

W
rit

e
R

ea
d

WR

T5

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataAddress

System Clock (CLKCPU)

1

4

2

7

6

3a

3b

5

8 12

16

13

10

11

14

15

9

T4

ALE

T1 T2 T3

W
rit

e
R

ea
d

WR

T6

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataAddress

System Clock (CLKCPU)

1

4

2

7

6

3a

3b

5

8 12

16

13

10

11

14

15

9

T4 T5
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Figure 27-9. External Memory Timing (SRWn1 = 1, SRWn0 = 1)(1)

Note: 1. The ALE pulse in the last period (T4-T7) is only present if the next instruction accesses the 
RAM (internal or external). 

27.10 Parallel Programming Characteristics

Figure 27-10. Parallel Programming Timing, Including some General Timing Requirements

ALE

T1 T2 T3

W
rit

e
R

ea
d

WR

T7

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataAddress

System Clock (CLKCPU)

1

4

2

7

6

3a

3b

5

8 12

16

13

10

11

14

15

9

T4 T5 T6

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL
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Figure 27-11. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 27-10 (i.e., tDVXH, tXHXL, and tXLDX) also apply to 
loading operation.

Figure 27-12. Parallel Programming Timing, Reading Sequence (within the Same Page) with 
Timing Requirements(1)

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA 
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA 
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
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Note: 1. The timing requirements shown in Figure 27-10 (i.e., tDVXH, tXHXL, and tXLDX) also apply to 
reading operation.

Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits 
commands.

2.  tWLRH_CE is valid for the Chip Erase command.

Table 27-15. Parallel Programming Characteristics, VCC = 5V ± 10%  

Symbol Parameter Min. Typ. Max. Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 µA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 µs

tWLRH WR Low to RDY/BSY High(1) 3.7 5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 10 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns
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28. Decoupling Capacitors
The operating frequency (i.e. system clock) of the processor determines in 95% of cases the 
value needed for microcontroller decoupling capacitors.

 
The hypotheses used as first evaluation for decoupling capacitors are:

• The operating frequency (fop) supplies itself the maximum peak levels of noise. The main 
peaks are located at fop and 2 • fop.

• An SMC capacitor connected to 2 micro-vias on a PCB has the following characteristics:
– 1.5 nH from the connection of the capacitor to the PCB,
– 1.5 nH from the capacitor intrinsic inductance.

Figure 28-1. Capacitor description

According to the operating frequency of the product, the decoupling capacitances are chosen 
considering the frequencies to filter, fop and 2 • fop.

The relation between frequencies to cut and decoupling characteristics are defined by:

and 

where: 

– L: the inductance equivalent to the global inductance on the Vcc/Gnd lines.
– C1 & C2: decoupling capacitors (C1 = 4 • C2).

Then, in normalized value range, the decoupling capacitors become: 

These decoupling capacitors must to be implemented as close as possible to each pair of power 
supply pins:

– 21-22 and 52-53 for logic sub-system,
– 64-63 for analogic sub-system.

Nevertheless, a bulk capacitor of 10-47 µF is also needed on the power distribution network of 
the PCB, near the power source.

For further information, please refer to Application Notes AVR040 “EMC Design Considerations“ 
and AVR042 “Hardware Design Considerations“ on the Atmel web site.

Table 28-1. Decoupling Capacitors vs. Frequency

fop, operating frequency C1 C2

16 MHz 33 nF 10 nF

12 MHz 56 nF 15 nF

10 MHz 82 nF 22 nF

8 MHz 120 nF 33 nF

6 MHz 220 nF 56 nF

4 MHz 560 nF 120 nF

PCB

Capacitor

1.5 nH

0.75 nH 0.75 nH

fop 1
2Π LC1
-----------------------= 2 fop• 1

2Π LC2
-----------------------=



29. AT90CAN128 Typical Characteristics
• The following charts show typical behavior. These figures are not tested during 

manufacturing. All current consumption measurements are performed with all I/O pins 
configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail 
output is used as clock source.

• The power consumption in Power-down mode is independent of clock selection.
• The current consumption is a function of several factors such as: operating voltage, operating 

frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient 
temperature. The dominating factors are operating voltage and frequency.

• The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f 
where CL = load capacitance, VCC = operating voltage and f = average switching frequency of 
I/O pin.

• The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to 
function properly at frequencies higher than the ordering code indicates.

• The difference between current consumption in Power-down mode with Watchdog Timer 
enabled and Power-down mode with Watchdog Timer disabled represents the differential 
current drawn by the Watchdog Timer.

29.1 Active Supply Current

Figure 29-1. Active Supply Current vs. Frequency (0.1 - 1.0 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)
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Figure 29-2. Active Supply Current vs. Frequency (1 - 16 MHz)

Figure 29-3. Active Supply Current vs. Vcc (Internal RC Oscillator 8 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (25°C, 1 - 16 MHz)
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Figure 29-4. Active Supply Current vs. Vcc (Internal RC Oscillator 1 MHz)

Figure 29-5. Active Supply Current vs. Vcc (32 kHz Watch Crystal)

ACTIVE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 1 MHz)
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29.2 Idle Supply Current

Figure 29-6. Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

Figure 29-7. Idle Supply Current vs. Frequency (1 - 16 MHz)

IDLE SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)
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Figure 29-8. Idle Supply Current vs. Vcc (Internal RC Oscillator 8 MHz)

Figure 29-9. Idle Supply Current vs. Vcc (Internal RC Oscillator 1 MHz)
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Figure 29-10. Idle Supply Current vs. Vcc (32 kHz Watch Crystal)

29.3 Power-down Supply Current

Figure 29-11. Power-down Supply Current vs. Vcc (Watchdog Timer Disabled) 
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Figure 29-12. Power-down Supply Current vs. Vcc (Watchdog Timer Enabled) 

29.4 Power-save Supply Current

Figure 29-13. Power-save Supply Current vs. Vcc (Watchdog Timer Disabled) 
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29.5 Standby Supply Current

Figure 29-14. Power-save Supply Current vs. Vcc (25°C, Watchdog Timer Disabled) 

29.6 Pin Pull-up

Figure 29-15. I/O Pin Pull-up Resistor Current vs. Input Voltage (Vcc = 5V) 
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Figure 29-16. I/O Pin Pull-up Resistor Current vs. Input Voltage (Vcc = 2.7V) 

Figure 29-17. Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vcc = 5V) 
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Figure 29-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vcc = 2.7V) 

29.7 Pin Driver Strength

Figure 29-19. I/O Pin Source Current vs. Output Voltage (Vcc = 5V) 
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Figure 29-20. I/O Pin Source Current vs. Output Voltage (Vcc = 2.7V) 

Figure 29-21. I/O Pin Sink Current vs. Output Voltage (Vcc = 5V) 
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Figure 29-22. I/O Pin Sink Current vs. Output Voltage (Vcc = 2.7V) 

29.8 Pin Thresholds and Hysteresis

Figure 29-23. I/O Input Threshold Voltage vs. Vcc (VIH, I/O Pin Read as “1”) 
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Figure 1.  I/O Input Threshold Voltage vs. Vcc (VIL, I/O Pin Read as “0”) 

Figure 2.  I/O Input Hysteresis vs. Vcc 
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29.9 BOD Thresholds and Analog Comparator Offset

Figure 29-24. BOD Thresholds vs. Temperature (BOD level is 4.1V) 

Figure 29-25. BOD Thresholds vs. Temperature (BOD level is 2.7V) 
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Figure 29-26. Bandgap Voltage vs. Operating Voltage 

Figure 29-27. Analog Comparator Offset vs. Common Mode Voltage (Vcc = 5V) 
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29.10 Internal Oscillator Speed

Figure 29-28. Watchdog Oscillator Frequency vs. Operating Voltage 

Figure 29-29. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature 
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Figure 29-30. Calibrated 8 MHz RC Oscillator Frequency vs. Operating Voltage 

Figure 29-31. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value 
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29.11 Current Consumption of Peripheral Units

Figure 29-32. Brownout Detector Current vs. Operating Voltage 

Figure 29-33. ADC Current vs. Operating Voltage (ADC at 1 MHz) 
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Figure 29-34. AREF External Reference Current vs. Operating Voltage 

Figure 29-35. Analog Comparator Current vs. Operating Voltage 
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Figure 29-36. Programming Current vs. Operating Voltage 

29.12 Current Consumption in Reset and Reset Pulse Width

Figure 29-37. Reset Supply Current vs. Operating Voltage (0.1 - 1.0 MHz) 
(Excluding Current Through the Reset Pull-up) 
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Figure 29-38. Reset Supply Current vs. Operating Voltage (1 - 16 MHz) 
(Excluding Current Through the Reset Pull-up) 

Figure 29-39. Minimum Reset Pulse Width vs. Operating Voltage 
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30. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved
(0xFE) Reserved
(0xFD) Reserved
(0xFC) Reserved
(0xFB) Reserved
(0xFA) CANMSG MSG 7 MSG 6 MSG 5 MSG 4 MSG 3 MSG 2 MSG 1 MSG 0 page 264
(0xF9) CANSTMH TIMSTM15 TIMSTM14 TIMSTM13 TIMSTM12 TIMSTM11 TIMSTM10 TIMSTM9 TIMSTM8 page 263
(0xF8) CANSTML TIMSTM7 TIMSTM6 TIMSTM5 TIMSTM4 TIMSTM3 TIMSTM2 TIMSTM1 TIMSTM0 page 263
(0xF7) CANIDM1 IDMSK28 IDMSK27 IDMSK26 IDMSK25 IDMSK24 IDMSK23 IDMSK22 IDMSK21 page 262
(0xF6) CANIDM2 IDMSK20 IDMSK19 IDMSK18 IDMSK17 IDMSK16 IDMSK15 IDMSK14 IDMSK13 page 262
(0xF5) CANIDM3 IDMSK12 IDMSK11 IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 page 262
(0xF4) CANIDM4 IDMSK4 IDMSK3 IDMSK2 IDMSK1 IDMSK0 RTRMSK – IDEMSK page 262
(0xF3) CANIDT1 IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 page 261
(0xF2) CANIDT2 IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 page 261
(0xF1) CANIDT3 IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 page 261
(0xF0) CANIDT4 IDT4 IDT3 IDT2 IDT1 IDT0 RTRTAG RB1TAG RB0TAG page 261
(0xEF) CANCDMOB CONMOB1 CONMOB0 RPLV IDE DLC3 DLC2 DLC1 DLC0 page 260
(0xEE) CANSTMOB DLCW TXOK RXOK BERR SERR CERR FERR AERR page 259
(0xED) CANPAGE MOBNB3 MOBNB2 MOBNB1 MOBNB0 AINC INDX2 INDX1 INDX0 page 258
(0xEC) CANHPMOB HPMOB3 HPMOB2 HPMOB1 HPMOB0 CGP3 CGP2 CGP1 CGP0 page 258
(0xEB) CANREC REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0 page 258
(0xEA) CANTEC TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0 page 258
(0xE9) CANTTCH TIMTTC15 TIMTTC14 TIMTTC13 TIMTTC12 TIMTTC11 TIMTTC10 TIMTTC9 TIMTTC8 page 257
(0xE8) CANTTCL TIMTTC7 TIMTTC6 TIMTTC5 TIMTTC4 TIMTTC3 TIMTTC2 TIMTTC1 TIMTTC0 page 257
(0xE7) CANTIMH CANTIM15 CANTIM14 CANTIM13 CANTIM12 CANTIM11 CANTIM10 CANTIM9 CANTIM8 page 257
(0xE6) CANTIML CANTIM7 CANTIM6 CANTIM5 CANTIM4 CANTIM3 CANTIM2 CANTIM1 CANTIM0 page 257
(0xE5) CANTCON TPRSC7 TPRSC6 TPRSC5 TPRSC4 TPRSC3 TPRSC2 TRPSC1 TPRSC0 page 257
(0xE4) CANBT3 – PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP page 256
(0xE3) CANBT2 – SJW1 SJW0 – PRS2 PRS1 PRS0 – page 256
(0xE2) CANBT1 – BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 – page 255
(0xE1) CANSIT1 – SIT14 SIT13 SIT12 SIT11 SIT10 SIT9 SIT8 page 255
(0xE0) CANSIT2 SIT7 SIT6 SIT5 SIT4 SIT3 SIT2 SIT1 SIT0 page 255
(0xDF) CANIE1 – IEMOB14 IEMOB13 IEMOB12 IEMOB11 IEMOB10 IEMOB9 IEMOB8 page 254
(0xDE) CANIE2 IEMOB7 IEMOB6 IEMOB5 IEMOB4 IEMOB3 IEMOB2 IEMOB1 IEMOB0 page 254
(0xDD) CANEN1 – ENMOB14 ENMOB13 ENMOB12 ENMOB11 ENMOB10 ENMOB9 ENMOB8 page 254
(0xDC) CANEN2 ENMOB7 ENMOB6 ENMOB5 ENMOB4 ENMOB3 ENMOB2 ENMOB1 ENMOB0 page 254
(0xDB) CANGIE ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRT page 253
(0xDA) CANGIT CANIT BOFFIT OVRTIM BXOK SERG CERG FERG AERG page 252
(0xD9) CANGSTA – OVRG – TXBSY RXBSY ENFG BOFF ERRP page 251
(0xD8) CANGCON ABRQ OVRQ TTC SYNTTC LISTEN TEST ENA/STB SWRES page 250
(0xD7) Reserved
(0xD6) Reserved
(0xD5) Reserved
(0xD4) Reserved
(0xD3) Reserved
(0xD2) Reserved
(0xD1) Reserved
(0xD0) Reserved
(0xCF) Reserved
(0xCE) UDR1 UDR17 UDR16 UDR15 UDR14 UDR13 UDR12 UDR11 UDR10 page 193
(0xCD) UBRR1H – – – – UBRR111 UBRR110 UBRR19 UBRR18 page 197
(0xCC) UBRR1L UBRR17 UBRR16 UBRR15 UBRR14 UBRR13 UBRR12 UBRR11 UBRR10 page 197
(0xCB) Reserved
(0xCA) UCSR1C – UMSEL1 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1 page 196
(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 page 195
(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 page 193
(0xC7) Reserved
(0xC6) UDR0 UDR07 UDR06 UDR05 UDR04 UDR03 UDR02 UDR01 UDR00 page 193
(0xC5) UBRR0H – – – – UBRR011 UBRR010 UBRR09 UBRR08 page 197
(0xC4) UBRR0L UBRR07 UBRR06 UBRR05 UBRR04 UBRR03 UBRR02 UBRR01 UBRR00 page 197
(0xC3) Reserved
(0xC2) UCSR0C – UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 page 195
(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 page 194
(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 page 193
(0xBF) Reserved
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(0xBE) Reserved
(0xBD) Reserved
(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE page 210
(0xBB) TWDR TWDR7 TWDR6 TWDR5 TWDR4 TWDR3 TWDR2 TWDR1 TWDR0 page 212
(0xBA) TWAR TWAR6 TWAR5 TWAR4 TWAR3 TWAR2 TWAR1 TWAR0 TWGCE page 212
(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 page 211
(0xB8) TWBR TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 page 210
(0xB7) Reserved
(0xB6) ASSR – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB page 158
(0xB5) Reserved
(0xB4) Reserved
(0xB3) OCR2A OCR2A7 OCR2A6 OCR2A5 OCR2A4 OCR2A3 OCR2A2 OCR2A1 OCR2A0 page 157
(0xB2) TCNT2 TCNT27 TCNT26 TCNT25 TCNT24 TCNT23 TCNT22 TCNT21 TCNT20 page 157
(0xB1) Reserved
(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 page 162
(0xAF) Reserved
(0xAE) Reserved
(0xAD) Reserved
(0xAC) Reserved
(0xAB) Reserved
(0xAA) Reserved
(0xA9) Reserved
(0xA8) Reserved
(0xA7) Reserved
(0xA6) Reserved
(0xA5) Reserved
(0xA4) Reserved
(0xA3) Reserved
(0xA2) Reserved
(0xA1) Reserved
(0xA0) Reserved
(0x9F) Reserved
(0x9E) Reserved
(0x9D) OCR3CH OCR3C15 OCR3C14 OCR3C13 OCR3C12 OCR3C11 OCR3C10 OCR3C9 OCR3C8 page 140
(0x9C) OCR3CL OCR3C7 OCR3C6 OCR3C5 OCR3C4 OCR3C3 OCR3C2 OCR3C1 OCR3C0 page 140
(0x9B) OCR3BH OCR3B15 OCR3B14 OCR3B13 OCR3B12 OCR3B11 OCR3B10 OCR3B9 OCR3B8 page 140
(0x9A) OCR3BL OCR3B7 OCR3B6 OCR3B5 OCR3B4 OCR3B3 OCR3B2 OCR3B1 OCR3B0 page 140
(0x99) OCR3AH OCR3A15 OCR3A14 OCR3A13 OCR3A12 OCR3A11 OCR3A10 OCR3A9 OCR3A8 page 140
(0x98) OCR3AL OCR3A7 OCR3A6 OCR3A5 OCR3A4 OCR3A3 OCR3A2 OCR3A1 OCR3A0 page 140
(0x97) ICR3H ICR315 ICR314 ICR313 ICR312 ICR311 ICR310 ICR39 ICR38 page 141
(0x96) ICR3L ICR37 ICR36 ICR35 ICR34 ICR33 ICR32 ICR31 ICR30 page 141
(0x95) TCNT3H TCNT315 TCNT314 TCNT313 TCNT312 TCNT311 TCNT310 TCNT39 TCNT38 page 139
(0x94) TCNT3L TCNT37 TCNT36 TCNT35 TCNT34 TCNT33 TCNT32 TCNT31 TCNT30 page 139
(0x93) Reserved
(0x92) TCCR3C FOC3A FOC3B FOC3C – – – – page 139
(0x91) TCCR3B ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30 page 137
(0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 page 134
(0x8F) Reserved
(0x8E) Reserved
(0x8D) OCR1CH OCR1C15 OCR1C14 OCR1C13 OCR1C12 OCR1C11 OCR1C10 OCR1C9 OCR1C8 page 140
(0x8C) OCR1CL OCR1C7 OCR1C6 OCR1C5 OCR1C4 OCR1C3 OCR1C2 OCR1C1 OCR1C0 page 140
(0x8B) OCR1BH OCR1B15 OCR1B14 OCR1B13 OCR1B12 OCR1B11 OCR1B10 OCR1B9 OCR1B8 page 140
 (0x8A) OCR1BL OCR1B7 OCR1B6 OCR1B5 OCR1B4 OCR1B3 OCR1B2 OCR1B1 OCR1B0 page 140
(0x89) OCR1AH OCR1A15 OCR1A14 OCR1A13 OCR1A12 OCR1A11 OCR1A10 OCR1A9 OCR1A8 page 140
(0x88) OCR1AL OCR1A7 OCR1A6 OCR1A5 OCR1A4 OCR1A3 OCR1A2 OCR1A1 OCR1A0 page 140
(0x87) ICR1H ICR115 ICR114 ICR113 ICR112 ICR111 ICR110 ICR19 ICR18 page 141
(0x86) ICR1L ICR17 ICR16 ICR15 ICR14 ICR13 ICR12 ICR11 ICR10 page 141
(0x85) TCNT1H TCNT115 TCNT114 TCNT113 TCNT112 TCNT111 TCNT110 TCNT19 TCNT18 page 139
(0x84) TCNT1L TCNT17 TCNT16 TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 page 139
(0x83) Reserved
(0x82) TCCR1C FOC1A FOC1B FOC1C – – – – – page 138
(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 page 137
(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 page 134
(0x7F) DIDR1 – – – – – – AIN1D AIN0D page 270
(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D page 290
(0x7D) Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 page 285
(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 page 289, 267
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 287
(0x79) ADCH - / ADC9 - / ADC8 - / ADC7 - / ADC6 - / ADC5 - / ADC4 ADC9 / ADC3 ADC8 / ADC2 page 288
(0x78) ADCL ADC7 / ADC1 ADC6 / ADC0 ADC5 / - ADC4 / - ADC3 / - ADC2 / - ADC1 / - ADC0 / page 288
(0x77) Reserved
(0x76) Reserved
(0x75) XMCRB XMBK – – – – XMM2 XMM1 XMM0 page 32
(0x74) XMCRA SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00 page 31
(0x73) Reserved
(0x72) Reserved
(0x71) TIMSK3 – – ICIE3 – OCIE3C OCIE3B OCIE3A TOIE3 page 141
(0x70) TIMSK2 – – – – – – OCIE2A TOIE2 page 160
(0x6F) TIMSK1 – – ICIE1 – OCIE1C OCIE1B OCIE1A TOIE1 page 141
(0x6E) TIMSK0 – – – – – – OCIE0A TOIE0 page 111
(0x6D) Reserved
(0x6C) Reserved
(0x6B) Reserved
(0x6A) EICRB ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 page 93
(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 page 92
(0x68) Reserved
(0x67) Reserved
(0x66) OSCCAL – CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 page 41
(0x65) Reserved
(0x64) Reserved
(0x63) Reserved
(0x62) Reserved
(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 page 43
(0x60) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 page 56

0x3F (0x5F) SREG I T H S V N Z C page 10
0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 page 12
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 12
0x3C (0x5C) Reserved
0x3B (0x5B) RAMPZ(1) – – – – – – – RAMPZ0 page 12
0x3A (0x5A) Reserved
0x39 (0x59) Reserved
0x38 (0x58) Reserved
0x37 (0x57) SPMCSR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN page 324
0x36 (0x56) Reserved – – – – – – – –
0x35 (0x55) MCUCR JTD – – PUD – – IVSEL IVCE page 63, 72, 301
0x34 (0x54) MCUSR – – – JTRF WDRF BORF EXTRF PORF page 54, 302
0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE page 45
0x32 (0x52) Reserved
0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 page 297
0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 page 268
0x2F (0x4F) Reserved
0x2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 page 173
0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X page 173
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 page 171
0x2B (0x4B) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 page 35
0x2A (0x4A) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 page 35
0x29 (0x49) Reserved
0x28 (0x48) Reserved
0x27 (0x47) OCR0A OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 page 111
0x26 (0x46) TCNT0 TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 page 110
0x25 (0x45) Reserved
0x24 (0x44) TCCR0A FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 page 108
0x23 (0x43) GTCCR TSM – – – – – PSR2 PSR310 page 97, 162
0x22 (0x42) EEARH(2) – – – – EEAR11 EEAR10 EEAR9 EEAR8 page 21
0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 page 21
0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 page 22
0x1F (0x3F) EECR – – – – EERIE EEMWE EEWE EERE page 22
0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 page 35
0x1D (0x3D) EIMSK INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0 page 94
0x1C (0x3C) EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTF0 page 94
0x1B (0x3B) Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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Notes: 1. Address bits exceeding PCMSB (Table 26-11 on page 338) are don’t care.
2. Address bits exceeding EEAMSB (Table 26-12 on page 338) are don’t care.
3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 

should never be written.
4. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 

registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
5. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 

instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The 
CBI and SBI instructions work with registers 0x00 to 0x1F only.

6. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O 
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90CAN128 is a 
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the 
IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD 
instructions can be used.

0x1A (0x3A) Reserved
0x19 (0x39) Reserved
0x18 (0x38) TIFR3 – – ICF3 – OCF3C OCF3B OCF3A TOV3 page 142
0x17 (0x37) TIFR2 – – – – – – OCF2A TOV2 page 160
0x16 (0x36) TIFR1 – – ICF1 – OCF1C OCF1B OCF1A TOV1 page 142
0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 page 111
0x14 (0x34) PORTG – – – PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 page 91
0x13 (0x33) DDRG – – – DDG4 DDG3 DDG2 DDG1 DDG0 page 91
0x12 (0x32) PING – – – PING4 PING3 PING2 PING1 PING0 page 91
0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 page 90
0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 page 90
0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 page 91
0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 page 90
0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 page 90
0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 page 90
0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 page 90
0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 page 90
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 page 90
0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 page 89
0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 page 89
0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 page 89
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 89
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 89
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 page 89
0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 page 88
0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 page 89
0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 page 89

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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31. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd  ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← 0xFF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k  + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Direct Subroutine Call PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2
BREQ  k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2
BRNE  k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2
BRCS  k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2
BRCC  k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2
BRSH  k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2
BRLO  k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2
BRMI  k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2
BRPL  k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2
BRGE  k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2
BRLT  k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2
BRHS  k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2
BRHC  k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2
BRTS  k Branch if T Flag Set if (T = 1) then PC ← PC + k  + 1 None 1/2
BRTC  k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2
BRVS  k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2
BRVC  k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
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BRIE  k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2
BRID  k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd  ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd  ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

ELPM Extended Load Program Memory R0 ← (RAMPZ:Z) None 3
ELPM Rd, Z Extended Load Program Memory Rd ← (RAMPZ:Z) None 3
ELPM Rd, Z+ Extended Load Program Memory and Post-Inc Rd ← (RAMPZ:Z), RAMPZ:Z ← RAMPZ:Z+1 None 3
SPM Store Program Memory (Z) ← R1:R0 None -

Mnemonics Operands Description Operation Flags #Clocks
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IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS
NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks
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32. Ordering Information

Note: 1. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa-
tion and minimum quantities.

33. Packaging Information

Ordering Code (1) Speed (MHz) Power Supply (V) Package Operation Range Product Marking

AT90CAN128-16AI 16 2.7 - 5.5 64A Industrial (-40° to +85°C) AT90CAN128-IL

AT90CAN128-16MI 16 2.7 - 5.5 64M1 Industrial (-40° to +85°C) AT90CAN128-IL

AT90CAN128-16AU 16 2.7 - 5.5 64A Industrial (-40° to +85°C) 
Green AT90CAN128-UL

AT90CAN128-16MU 16 2.7 - 5.5 64M1 Industrial (-40° to +85°C) 
Green AT90CAN128-UL

Package Type

64A 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)

64M1 64-Lead, Quad Flat No lead (QFN)
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33.1 TQFP64

INDEX CORNER

0�~7�

PIN 1 

L

C

A1 A2 A

D1
D

e E1 E

B

11�~13�

PIN 64 

64 LEADS Thin Quad Flat Package

SYMBOL MIN NOM

MM

MAX

(2)

(2)

MIN NOM

INCH

MAX
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33.2 QFN64

1

INDEX CORNER

2
3

646362
64x b

J

K

64x L

e

EXPOSED DIE
ATTACH PADBOTTOM VIEW

TOP VIEW

D

E

INDEX CORNER

A2
A1

0.08

A

C

SEATING PLANE

SIDE VIEW

b

L

e

A2

N

A1

D / E

J / K

A

6.47

0.80

MIN

6.57

NOM

MM

9.00 BSC

6.67

1.00

0.00 0.05

MAX

. 255

. 031

MIN

. 259

NOM

INCH

. 354 BSC

0.50 BSC . 020 BSC

64

. 263

0.40 0.45 0.50 . 016 . 018 . 020

0.17 0.25 0.27 . 007 . 010 . 011

. 039

. 000 . 002

0.75 1.00 . 029 . 039

MAX

64 LEADS Quad Flat No lead

Note: Compliant JEDEC MO-220
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34. Errata 
The revision letter in this section refers to the revision of the AT90CAN128 device.

34.1 Rev C
Rev C (Part marked: M90CAN128 - I )

• Power supply current in Power-down mode
• Reset of Timer-2 flags in asynchronous mode
• Miss-functioning when code stack is in XRAM
• CAN transmission after a 3-bit intermission
• Extra consumption in power reduction modes
• Asynchronous Timer-2 wakes up without interrupt
• SPI programming timing

7. Power supply current in Power-down mode
The power supply current in Power-down mode of parts with lot number before A04900 is:

6. Reset of Timer-2 flags in asynchronous mode
In asynchronous mode, a writing in any register of the TIMER-2 (TCCR2A, TCNT2 & 
OCR2A) automatically clears TOV2 and OCF2A flags in TFIR register. 

Problem fix/workaround
- TOV2: Do not write in Timer-2 registers if TCNT2 is equal to 0xFF, 0x00 or 0x01.
- OCF2A: Do not write in Timer-2 registers if TCNT2 and OCR2A differ from -1, 0 or 1.

5. Miss-functioning when code stack is in XRAM
If the stack pointer (SP) targets the XRAM and if the execution of an instruction is split to 
serve a rising interrupt, the last operation of this instruction, executed after pushing out the 
return address from XRAM, may be disturbed providing wrong data to the system.
Example: - the “OUT” instruction can be executed twice

- the “MOV” instruction can update a register with un-predictable data.

Problem Fix/workaround
Map the code stack in internal SRAM.

4. CAN Transmission after a 3-bit intermission
If a Transmit Message Object (MOb) is enabled while the CAN bus is busy with an on going 
message, the transmitter will wait for the 3-bit intermission before starting its transmission. 
This is in full agreement with the CAN recommendation.
If the transmitter lost arbitration against another node, two conditions can occur:
- At least one receive MOb of the chip are programmed to accept the incoming message. In 

this case, the transmitter will wait for the next 3-bit intermission to retry its transmission.

TA = -40°C to +85°C  

Symbol Parameter Condition Min. Typ. Max. Units

ICC
Power Supply Current 
Power-down Mode

WDT enabled, VCC = 5V 150 µA

WDT disabled, VCC = 5V 120 µA

WDT enabled, VCC = 3V 50 µA

WDT disabled, VCC = 3V 40 µA
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- No receive MOb of the chip are programmed to accept the incoming message. In this 

case the transmitter will wait for a 4-bit intermission to retry its transmission. In this case, 
any other CAN nodes ready to transmit after a 3-bit intermission will start transmit before 
the chip transmitter, even if their messages have lower priority IDs.

Problem fix/ workaround
Always have a receive MOb enabled ready to accept any incoming messages. Thanks to 
the implementation of the CAN interface, a receive MOb must be enable at latest, before the 
1st bit of the DLC field. The receive MOb status register is written (RXOK if message OK) 
immediately after the 6th bit of the End of Frame field. This will leave in CAN2.0A mode a 
minimum 19-bit time delay to respond to the end of message interrupt (RXOK) and re-
enable the receive MOb before the start of the DLC field of the next incoming message. This 
minimum delay will be 39-bit time in CAN2.0B. See CAN2.0A CAN2.0B frame timings 
below.

Workaround implementation 
The workaround is to have the last MOb (MOb14) as "spy" enabled all the time; it is the MOb 
of lowest priority. If a MOb other than MOb14 is programmed in receive mode and its accep-
tance filter matches with the incoming message ID, this MOb will take the message. MOb14 
will only take messages than no other MObs will have accepted. MOb14 will need to be re-
enabled fast enough to manage back to back frames. The deadline to do this is the begin-
ning of DLC slot of incoming frames as explained above.
Minimum code to insert in CAN interrupt routine:

__interrupt void can_int_handler(void)

{

if ((CANSIT1 & 0x40) == 0x40 )/* MOb14 interrupt  (SIT14=1) */

{

CANPAGE = (0x0E << 4); /* select MOb14 */

CANSTMOB = 0x00; /* reset MOb14 status */

CANCDMOB = 0x88; /* reception enable */

}

........

........

}

3. Extra consumption in power reduction modes
When AVCC is selected as voltage reference for ADC (REFS[1,0]=0,1), an extra consump-
tion close to 30 µA (5.0V/25°C) appears in power reduction modes.

CAN 2.0A

Arbitration
Field

Control
Field

End of FrameCRC
Field

ACK
Field

Inter-
mission

19-bit time minimum

T1

(RXOK)

T2

11-bit identifier
ID10..0

CRC
del.

ACK
del.15-bit CRC SOFSOF RTR IDE r0ACK

7 bits
4-bit DLC
DLC4..03 bits

CAN 2.0B 39-bit time minimum

T1

(RXOK)

T2

End of FrameCRC
Field

ACK
Field

Inter-
mission

Arbitration
Field

Control
Field

CRC
del.

ACK
del.15-bit CRC SOFSOFACK

7 bits 3 bits
11-bit base identifier

IDT28..18
18-bit identifier extension

ID17..0
4-bit DLC
DLC4..0SRR IDE r0RTR r1
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Problem fix/ workaround
Switch from AVCC to AREF pin (REFS[1,0]=0,0) before enabling one of the power reduction 
modes.

2. Asynchronous Timer-2 wakes up without interrupt
The asynchronous timer can wake from sleep without giving interrupt. The error only occurs 
if the interrupt flag(s) is cleared by software less than 4 cycles before going to sleep and this 
clear is done exactly when it is supposed to be set (compare match or overflow). Only the 
interrupts flags are affected by the clear, not the signal witch is used to wake up the part.

Problem fix/workaround
No known workaround, try to lock the code to avoid such a timing.

1. SPI programming timing
When the fuse high byte or the extended fuse byte has been written, it is necessary to wait 
the end of the programming using “Poll RDY/BSY” instruction. If this instruction is entered 
too speedily after the “Write Fuse” instruction, the fuse low byte is written instead of high 
fuse /extended fuse byte.

Problem fix/workaround
Wait sometime before applying the “Poll RDY/BSY” instruction. For 8MHz system clock, 
waiting 1 µs is sufficient.

34.2 Rev A & B
- Rev A (Part marked: M128CAN11 - EL) 
- Rev B (Part marked: 90CAN128 - EL)

• Sporadic CAN error frames
• Spike on TWI pins when TWI is enabled
• ADC differential gain error with x1 & x10 amplification
• Asynchronous Timer-2 wakes up without interrupt
• SPI programming timing
• IDCODE masks data from TDI input

6. Sporadic CAN error frames
When BRP = 0  the CAN controller may desynchronize and send one error frame to ask for 
the retransmission of the incoming frame, even though it had no error. 
This is likely to occur with BRP = 0 after long inter frame periods without synchronization 
(low bus load). The CAN macro can still properly synchronize on frames following the error.

Problem fix/workaround
Set BRP greater than 0 in CANBT1.

5. Spike on TWI pins when TWI is enabled
100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/workaround
No known workaround, enable AT90CAN128 TWI first versus the others nodes of the TWI 
network.
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4. ADC differential gain error with x1 & x10 amplification

Gain error of - 4 lsb has been characterized on the part.

Problem fix/workaround
Software adjustment.

3. Asynchronous Timer-2 wakes up without interrupt
The asynchronous timer can wake from sleep without giving interrupt. The error only occurs 
if the interrupt flag(s) is cleared by software less than 4 cycles before going to sleep and this 
clear is done exactly when it is supposed to be set (compare match or overflow). Only the 
interrupts flags are affected by the clear, not the signal witch is used to wake up the part.

Problem fix/workaround
No known workaround, try to lock the code to avoid such a timing.

2. SPI programming timing
When the fuse high byte or the extended fuse byte has been written, it is necessary to wait 
the end of the programming using “Poll RDY/BSY” instruction. If this instruction is entered 
too speedily after the “Write Fuse” instruction, the fuse low byte is written instead of high 
fuse /extended fuse byte.

Problem fix/workaround
Wait sometime before applying the “Poll RDY/BSY” instruction. For 8MHz system clock, 
waiting 1 µs is sufficient.

1. IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are 
replaced by all-ones during Update-DR.

Problem fix / workaround
- If AT90CAN128 is the only device in the scan chain, the problem is not visible.
- Select the Device ID Register of the AT90CAN128 by issuing the IDCODE instruction or by 

entering the Test-Logic-Reset state of the TAP controller to read out the contents of its 
Device ID Register and possibly data from succeeding devices of the scan chain. Issue 
the BYPASS instruction to the AT90CAN128 while reading the Device ID Registers of pre-
ceding devices of the boundary scan chain.

- If the Device IDs of all devices in the boundary scan chain must be captured simulta-
neously, the AT90CAN128 must be the first device in the chain.
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35. Datasheet Change Log for AT90CAN128
Please note that the referring page numbers in this section are referring to this document. 
The referring revision in this section are referring to the document revision.

35.1 Changes from 4250F-04/05 to 4250G-09/05
1. Added “Pin Thresholds and Hysteresis” on page 391 in section “AT90CAN128 Typical 

Characteristics” .
2. Updated Icc Power -down in section “Electrical Characteristics” on page 361.
3. Changed Datasheet templates.
4. Updated Errata device REV C.

35.2 Changes from 4250E-12/04 to 4250F-04/05
1. Added “Decoupling Capacitors” on page 379.
2. Updated curves in section “AT90CAN128 Typical Characteristics” on page 380.
3. Updated characteristics in section “Electrical Characteristics” on page 361.
4. Removed “Preliminary” disclaimer.
5. Updated Errata device REV C.
6. Changed Ordering Information.

35.3 Changes from 4250D-07/04 to 4250E-12/04
1. Information on PHS2 segment of CAN bit timing (See “CAN Bit Timing” on page 234.) 

(See “Baud Rate” on page 240.) (See “CAN Bit Timing Register 3 - CANBT3” on page 
256.).

2. Information on capacitors when using 32.768 KHz crystal on XTAL1 & 2 and TOSC1 & 2 
pins.

3. Correction Table 26-15 on page 347 in section “SPI Serial Programming” 
4. Updated RESET, BOD & Bandgap characteristics in section “System Control and Reset” on 

page 50.
5. Added curves in section “AT90CAN128 Typical Characteristics” on page 380.
6. Updated characteristics in section “Electrical Characteristics” on page 361.
7. Updated Errata device REV C.
8. Changed Ordering Information.

35.4 Changes from 4250C-03/04 to 4250D-07/04
1. Updated Errata device REV A & B.

35.5 Changes from 4250B-02/04 to 4250C-03/04
1. Changed part number to AT90CAN128.
2. Changed Ordering Information.
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35.6 Changes from 4250A-10/03 to 4250B-02/04
1. Modified Product Ordering Information.
2. Added Errata section.
3. Updated Section 24. ”Boundary-scan IEEE 1149.1 (JTAG)” on page 298
4. Updated assembler examples.
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