1. Features

* High-performance, Low-power AVR® 8-bit Microcontroller
» Advanced RISC Architecture
— 133 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers + Peripheral Control Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
* Non volatile Program and Data Memories
— 128K Bytes of In-System Reprogrammable Flash
¢ Endurance: 10,000 Write/Erase Cycles
— Optional Boot Code Section with Independent Lock Bits
» Selectable Boot Size: 1K Bytes, 2K Bytes, 4K Bytes or 8K Bytes
¢ In-System Programming by On-Chip Boot Program (CAN, UART)
* True Read-While-Write Operation
— 4K Bytes EEPROM (Endurance: 100,000 Write/Erase Cycles)
— 4K Bytes Internal SRAM
— Up to 64K Bytes Optional External Memory Space
— Programming Lock for Software Security
» JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Programming Flash (Hardware ISP), EEPROM, Lock & Fuse Bits
— Extensive On-chip Debug Support
* CAN Controller 2.0A & 2.0B
— 15 Full Message Objects with Separate Identifier Tags and Masks
— Transmit, Receive, Automatic Reply and Frame Buffer Receive Modes
— 1Mbits/s Maximum Transfer Rate at 8 MHz
— Time stamping, TTC & Listening Mode (Spying or Autobaud)
* Peripheral Features
— Programmable Watchdog Timer with On-chip Oscillator
— 8-bit Synchronous Timer/Counter-0
* 10-bit Prescaler
* External Event Counter
¢ Output Compare or 8-bit PWM Output
— 8-bit Asynchronous Timer/Counter-2
* 10-bit Prescaler
* External Event Counter
¢ Output Compare or 8-Bit PWM Output
* 32Khz Oscillator for RTC Operation
— Dual 16-bit Synchronous Timer/Counters-1 & 3
* 10-bit Prescaler
¢ Input Capture with Noise Canceler
» External Event Counter
¢ 3-Output Compare or 16-Bit PWM Output
¢ Output Compare Modulation
— 8-channel, 10-bit SAR ADC
* 8 Single-ended Channels
« 7 Differential Channels
2 Differential Channels With Programmable Gain at 1x, 10x, or 200x
— On-chip Analog Comparator
— Byte-oriented Two-wire Serial Interface
— Dual Programmable Serial USART
— Master/Slave SPI Serial Interface
* Programming Flash (Hardware ISP)
* Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— 8 External Interrupt Sources
— 5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down & Standby
— Software Selectable Clock Frequency
— Global Pull-up Disable
* 1/0 and Packages
— 53 Programmable /O Lines
— 64-lead TQFP and 64-lead QFN
* Operating Voltages
- 27-5.5V
* Operating temperature
— Industrial (-40°C to +85°C)
* Maximum Frequency
— 8 MHz at 2.7V - Industrial range
— 16 MHz at 4.5V - Industrial range

ATMEL

Y (F)

8-bit AVR
Microcontroller
with

128K Bytes of
ISP Flash

and

CAN Controller

AT90CAN128

Rev. 4250G-CAN-09/05

2. Description

AIMEL

The AT90CAN128 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the ATO0CAN128
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize
power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The AT90CAN128 provides the following features: 128K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM, 53 general pur-
pose 1/O lines, 32 general purpose working registers, a CAN controller, Real Time Counter
(RTC), four flexible Timer/Counters with compare modes and PWM, 2 USARTSs, a byte oriented
Two-wire Serial Interface, an 8-channel 10-bit ADC with optional differential input stage with pro-
grammable gain, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port,
IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug sys-
tem and programming and five software selectable power saving modes.

The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI/CAN ports and
interrupt system to continue functioning. The Power-down mode saves the register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware
Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to main-
tain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops
the CPU and all I/0 modules except Asynchronous Timer and ADC, to minimize switching noise
during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the
rest of the device is sleeping. This allows very fast start-up combined with low power
consumption.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel AT90CAN128 is a powerful microcontroller that provides a highly flexible and cost
effective solution to many embedded control applications.

The AT90CAN128 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators,
and evaluation kits.

2 AT 90 C /AN 123 500000

4250G-CAN-09/05

2.1 Block Diagram

Figure 2-1. Block Diagram

RESET

PF7 - PFO PA7 - PAO PC7 - PCO E
A A x

Fmm - R R

1
1
1
1
1
VCC 1 | PORTF DRIVERS | | PORTA DRIVERS | | PORTC DRIVERS

DATA REGISTER
PORTF

DATA DIR.
REG. PORTF

DATA REGISTER
PORTA

DATA DIR.
REG. PORTA

DATA REGISTER
PORTC

! ! ! [ooromeus § !

DATA DIR.
REG. PORTC

POR-BOD [*
> RESET |« |

CALIB. OSC

INTERNAL
OSCILLATOR

OSCILLATOR

ADC l
AREF >
Q v v WATCHDOG
PROGRAM STACK ||y TIMER
->| JTAG TAP | "l COUNTER |‘ | POINTER [€
J PROGRAM SRAM MCU CONTROL
->|ON-CHIPDEBUGI: ->| FLASH | ::I |‘_’ ‘_’l REGISTER | 1

OSCILLATOR I

CAN

TIMING AND
CONTROL CONTROLLER

3 A

—- INSTRUCTION) a| TIMER/ E 5

GENERAL >
REGISTER l»| SENERAL e s COUNTERS -
REGISTERS
[X
PROGRAMMING INSTRUCTION - v INTERRUPT | €
DECODER L] UNIT
1

CONTROL
LINES EEPROM

v
> TWO-WIRE SERIAL
7 i r
A v v A v >

A A A
Y

A l A ¢ ' v Y Y i YV A4 i"\ Y

>
>
»
»
>

14
o
8 '<_(DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATAREG. || DATA DIR.
:(‘ EE + | PORTE REG. PORTE PORTB REG. PORTB PORTD REG. PORTD PORTG REG. PORTG
Zo
=
B B Wiy
8}
| PORTE DRIVERS PORTB DRIVERS PORTD DRIVERS | I PORTG DRIVERS
4 kA
___________ RN U N | - -—]- - RN | [[N U | L () [- RN R g R N | L |
Y YVYVY \4
PE7 - PEO PB7 - PBO PD7 - PDO PG4 - PGO

ATMEL ;

4250G-CAN-09/05

AIMEL

2.2 Pin Configurations

Figure 2-2. Pinout AT90CAN128 - TQFP

T © 0 =
(@] = [a] [m)]
F F F F
S S & ® ¥ ®» © ~ —_ o~
(@] (@] [} (@] (&) (&) [&] O o - N
[a] [m] [a] [m] o o a [a)] a [m] o
) b £ <L < £ £ < < < a < £ <
o 1] — Q —
Sz g2y enrz 8 g 3 9
< O] < o o o o o o o o o > o o o
S8 (8] |c] |38 [3]|8]|5]|8] 8] |33 (3] |5]|3]||2
NC® PA3 (AD3)
(RXDO / PDI) PEO 47| PA4 (AD4)
INDEX CORNER

[}

(TXDO / PDO) PE1 PA5 (AD5)

(XCKO / AINO) PE2 PAG (ADS)
(OC3A/ AIN1) PE3 PA7 (AD7)
(OC3B / INT4) PE4 PG2 (ALE)

(0C3C / INT5) PE5 PC7 (A15 / CLKO)

8] [e] [e] (8] [e] 8] [8] (8]] [&] [&] [&] [&] [8] [3] [8]

Gl a] 2] [B]][zl Bl el [=] [~] [o] [a] [+] [e] [o] [+]

(T3/INT6) PE6 . PC6 (A14)
(64-lead TQFP top view)
(ICP3/INT7) PE7 PC5 (A13)
(SS) PBO PC4 (A12)
(SCK) PB1 PC3 (A11)
(MOSI) PB2 PC2 (A10)
(MISO) PB3 PC1 (A9)
(OC2A) PB4 PCO (A8)
(OC1A) PB5 PG1 (RD)
(OC1B) PB6 PGO (WR)
=] [=] [2] [&] [&] [&] [&] [=] [&] [&] [&] [&] [&] [8] [5] [&]
& 6 o 8 2 3 32 8B 3 83 8 3 8 8 8
oo o 9 e % L £ & o oo o a4 a o
~ o - = = = Z = = =
0§ € e O I T
o6 9 9 z 2z 2z z 8 g 3 ~
SO 3z - = %2 %
g5 " 38388 %8
8] e e 5 S
Qe = ol
('NC = Do not connect (May be used in future devices)
@ Timer2 Oscillator

4250G-CAN-09/05

Figure 2-3. Pinout AT90CAN128 - QFN

T » O =
O = 00
- F F F
S dm <t oo~ —
O O O O O O O O o — o
o000 Qo0ao0anoaAQ [a el
oomsssssss$o L <<
SzEPrdedrLenrzioexd
< O < oo o oo O>o0o o o
<t MO N W O OO O N © O S M N - O O
© © © © © N n O O v v °n v un v s
NC” |1 48 | PA3 (AD3)
(RXDO/PDI)PEO | 2 47 | PA4 (AD4)
(TXDO / PDO) PE1 | 3 INDEX CORNER 46 | PA5 (AD5)
(XCKO / AINO) PE2 | 4 45 | PA6 (AD6)
(OC3A/AINT)PE3 | 5 44 | PA7 (AD7)
(OC3B/INT4)PE4 | 6 43 | PG2 (ALE)
(OC3C/INT5)PE5 | 7 42 | PC7 (A15/ CLKO)
(T3/INT6)PE6 | 8 41 | PC6 (A14)
(ICP3/INT7)PE7 | @ (64-lead QFN top view) 40 | PC5 (A13)
(SS)PBO | 10 39 | PC4 (A12)
(SCK)PB1 |11 38 | PC3 (A11)
(MOSI)PB2 |12 37 | PC2 (A10)
(MISO)PB3 |13 36 | PC1 (A9)
(OC2A) PB4 | 14 35 | PCO (A8)
(OC1A)PB5 |15 34 | PG1(RD)
(OC1B) PB6 | 16 33 | PGO (WR)
N 00 O © — AN O ¥ I © N~ 0 OO O «— o
~— AN AN AN &N &N N N N N N O o o™
N o g F OO N «~ O «— N O g Wvw © i~
580rpcz228R088888
S sl XX oo dmoTc<oo5
- N = EEEEQLXFE
0 0O O zzz2z0O00 =<~
O ? ? T T =Xz
- O O a4 < = -~ <
gEE 5388 z¢
18] 2Lz S r
3 x e g <

'NC = Do not connect (May be used in future devices)

@ Timer2 Oscillator

2.3 Pin Descriptions

2.31 VCC
Digital supply voltage.

2.3.2 GND
Ground.

233 Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source

ATMEL ;

4250G-CAN-09/05

AIMEL

capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A also serves the functions of various special features of the AT90CAN128 as listed on
page 73.

234 Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the AT90CAN128 as listed on
page 75.

235 Port C (PC7..PCO)
Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port C also serves the functions of special features of the AT90CAN128 as listed on page 77.

2.3.6 Port D (PD7..PDO)
Port D is an 8-bit bi-directional 1/0O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the AT90CAN128 as listed on
page 79.

2.3.7 Port E (PE7..PEO)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the AT90CAN128 as listed on
page 82.

2.3.8 Port F (PF7..PFO0)
Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional 1/0O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins

6 AT 90 C /AN 123 500000

4250G-CAN-09/05

2.3.9

2.3.10

2.3.11

2.3.12

2.3.13

2.3.14

that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port F also serves the functions of the JTAG interface. If the JTAG interface is enabled, the pull-
up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port G (PG4..PG0)

RESET

XTAL1

XTAL2

AVCC

AREF

Port G is a 5-bit I/0 port with internal pull-up resistors (selected for each bit). The Port G output
buffers have symmetrical drive characteristics with both high sink and source capability. As
inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are
activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock
is not running.

Port G also serves the functions of various special features of the AT90CAN128 as listed on
page 87.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset. The minimum pulse length is given in characteristics. Shorter pulses are not guaranteed
to generate a reset. The I/O ports of the AVR are immediately reset to their initial state even if
the clock is not running. The clock is needed to reset the rest of the AT90CAN128.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for the A/D Converter on Port F. It should be externally con-
nected to V¢, even if the ADC is not used. If the ADC is used, it should be connected to V¢
through a low-pass filter.

This is the analog reference pin for the A/D Converter.

3. About Code Examples

4250G-CAN-09/05

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

ATMEL 7

AIMEL

4. AVR CPU Core

4.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

4.2 Architectural Overview

Figure 4-1. Block Diagram of the AVR Architecture

(Data Bus 8-bit

\ 4
Program Status
PFIash < Counter [and Control [~
rogram
Memory <
Interrupt
A 4 q 32x8 <> Unit
Instruction General P
Register Purpose SPI
< Registrers <> Unit
Y
Instruction Watchdog
Decoder A Y < Timer
o 2 N
£ 7]
(2] (%]
l 4 L ALU PN Analog
Control Lines 3 2 Comparator
< 5
[§) [0]
[0 =
= © N
= £ <1 /0 Module1
- Data « »l«> 1/0 Module 2
> SRAM
<—»| 1/O Module n
EEPROM <
1/0 Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

8 AT90CAN128 mees———

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File —in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
aregister. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM (Store Program Memory) instruction that writes into the Application Flash
memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the 1/0 space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher is the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F. In addition, the AT90CAN128
has Extended 1/0 space from 0x60 - OxFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

4.3 ALU - Arithmetic Logic Unit

4250G-CAN-09/05

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set Summary” section for a detailed description.

ATMEL ;

4.4

10

AIMEL

Status Register

The Status Register contains information about the result of the most recently executed arith-
metic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0
| @ | v | w | s | v N z ¢ | sree

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - I: Global Interrupt Enable

The Global Interrupt Enable bit must be set to enabled the interrupts. The individual interrupt
enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

» Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

* Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

e Bit4-S:SignBit,S=N®V
The S-bit is always an EXCLUSIVE OR between the negative flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

¢ Bit 3 -V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

* Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

* Bit1-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

AT 90 C /AN 123 500000

4250G-CAN-09/05

* Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

4.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:
* One 8-bit output operand and one 8-bit result input
» Two 8-bit output operands and one 8-bit result input
» Two 8-bit output operands and one 16-bit result input
* One 16-bit output operand and one 16-bit result input
Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 0xOF
Working R16 0x10
Registers R17 0x11
R26 0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

451 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 4-3.

ATMEL ?

4250G-CAN-09/05

4.5.2

4.6

12

AIMEL

Figure 4-3. The X-, Y-, and Z-registers

15 XH XL
X-register I 7 0 I 7 0 I
R27 (0x1B) R26 (0x1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register I 7 0 I 7 0 I
R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

Extended Z-pointer Register for ELPM/SPM — RAMPZ

Bit 7 6 5 4 3 2 1 0
I - | - | - | - 1 - - - RAMPZ0 | RAMPZ

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7..1 — Res: Reserved Bits
These bits are reserved for future use and will always read as zero. For compatibility with future
devices, be sure to write to write them to zero.

* Bit 0 - RAMPZ0: Extended RAM Page Z-pointer

The RAMPZ Register is normally used to select which 64K RAM Page is accessed by the Z-
pointer. As the AT90CAN128 does not support more than 64K of SRAM memory, this register is
used only to select which page in the program memory is accessed when the ELPM/SPM
instruction is used. The different settings of the RAMPZ0 bit have the following effects:

RAMPZ0 = 0: Program memory address 0x0000 - Ox7FFF (lower 64K bytes) is accessed by
ELPM/SPM

RAMPZ0 = 1: Program memory address 0x8000 - OxFFFF (higher 64K bytes) is accessed by
ELPM/SPM

Figure 4-4. The Z-pointer used by ELPM and SPM

Bit (Individually) 7 0o 7 o 7 0
| RAMPZ | ZH ZL

Bit (Z-pointer) 23 16 15 8 7 0

Note that LPM (different of ELPM) is never affected by the RAMPZ setting.

Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-

AT 90 C /AN 123 500000

4250G-CAN-09/05

tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0xFF. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 1" 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/IW R/W R/W R/W R/W R/IW R/W
R/W R/IW R/W R/IW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

4.7 Instruction Execution Timing

4250G-CAN-09/05

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clk¢py, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 4-5 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 4-5. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

ok —4 N

CPU
1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

v

ATMEL s

AIMEL

Figure 4-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 4-6. Single Cycle ALU Operation

T1 T2 T3 T4
1 1 1 1
1 1 1 1
1 1 1 1
hepy = : : :
Total Execution Time x4 ' : :
1 1 1 1
Register Operands Fetch i De : : :
1 1 1 1
ALU Operation Execute : : : ;
1 1 1 1
Result Write Back : a : :
1 1 1
1 1 1

4.8 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 333 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 59. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 59 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page
319.

4.81 Interrupt Behavior
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
interrupt flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared,
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared
by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.

14 AT 90 C /AN 123 500000

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; store SREG val ue

cli ; disable interrupts during tinmed sequence
sbi EECR, EEMAE ; start EEPROM write

shi EECR, EEWE

out SREG, r16 ; restore SREG value (1-bit)

C Code Example

char cSREG

CSREG = SREG /* store SREG val ue */

/* disable interrupts during tinmed sequence */
_CQLEQ);

EECR | = (1<<EEMAE); [* start EEPROMwite */
EECR | = (1<<EEVE);
SREG = cSREG /* restore SREG value (l-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set Gobal Interrupt Enable

sl eep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set dobal Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

ATMEL X

4250G-CAN-09/05

AIMEL

4.8.2 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

16 AT 90 C /AN 123 500000

5. Memories

This section describes the different memories in the AT90CAN128. The AVR architecture has
two main memory spaces, the Data Memory and the Program Memory space. In addition, the
AT90CAN128 features an EEPROM Memory for data storage. All three memory spaces are lin-
ear and regular.

Table 5-1. Memory Mapping.

Memory Mnemonic AT90CAN128
Size Flash size 128 K bytes
Start Address - 0x00000
Flash
End Address Flash end Ox1FFFF®
OXFFFF@
Size - 32 bytes
32 Registers Start Address - 0x0000
End Address - 0x001F
Size - 64 bytes
I/0
. Start Address - 0x0020
Registers
End Address - 0x005F
Ext 10 Size - 160 bytes
XF ! Start Address - 0x0060
Registers
End Address - 0x00FF
Size ISRAM size 4 K bytes
Internal
SRAM Start Address ISRAM start 0x0100
End Address ISRAM end Ox10FF
Size XMem size 0-64 K bytes
Ext I
xterna Start Address XMem start 0x1100
Memory
End Address XMem end OxFFFF
Size E2 size 4 K bytes
EEPROM Start Address - 0x0000
End Address E2 end OxOFFF

Notes: 1. Byte address.
2. Word (16-bit) address.

5.1 In-System Reprogrammable Flash Program Memory

4250G-CAN-09/05

The AT90CAN128 contains On-chip In-System Reprogrammable Flash memory for program
storage (see “Flash size”). Since all AVR instructions are 16 or 32 bits wide, the Flash is orga-
nized as 16 bits wide. For software security, the Flash Program memory space is divided into
two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The AT90CAN128
Program Counter (PC) address the program memory locations. The operation of Boot Program
section and associated Boot Lock bits for software protection are described in detail in “Boot
Loader Support — Read-While-Write Self-Programming” on page 319. “Memory Programming”
on page 333 contains a detailed description on Flash data serial downloading using the SPI pins
or the JTAG interface.

ATMEL y

5.2

18

AIMEL

Constant tables can be allocated within the entire program memory address space (see the
LPM — Load Program Memory and ELPM — Extended Load Program Memory instruction
description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 13.

Figure 5-1. Program Memory Map

Program Memory

0x0000

Application Flash Section

P —

Boot Flash Section

Flash end

SRAM Data Memory

Figure 5-2 shows how the AT90CAN128 SRAM Memory is organized.

The AT90CAN128 is a complex microcontroller with more peripheral units than can be sup-
ported within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the
Extended I/O space in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The lower data memory locations address both the Register File, the /O memory, Extended 1/0
memory, and the internal data SRAM. The first 32 locations address the Register File, the next
64 location the standard 1/0 memory, then 160 locations of Extended I/O memory, and the next
locations address the internal data SRAM (see “ISRAM size”).

An optional external data SRAM can be used with the AT90CAN128. This SRAM will occupy an
area in the remaining address locations in the 64K address space. This area starts at the
address following the internal SRAM. The Register file, 1/0, Extended 1/O and Internal SRAM
occupies the lowest bytes, so when using 64 KB (65,536 bytes) of External Memory,
“XMem size” bytes of External Memory are available. See “External Memory Interface” on page
26 for details on how to take advantage of the external memory map.

AT 90 C /AN 123 500000

4250G-CAN-09/05

5.2.1 SRAM Data Access

4250G-CAN-09/05

When the addresses accessing the SRAM memory space exceeds the internal data memory
locations, the external data SRAM is accessed using the same instructions as for the internal
data memory access. When the internal data memories are accessed, the read and write strobe
pins (PGO and PG1) are inactive during the whole access cycle. External SRAM operation is
enabled by setting the SRE bit in the XMCRA Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access of the
internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP
take one additional clock cycle. If the Stack is placed in external SRAM, interrupts, subroutine
calls and returns take three clock cycles extra because the two-byte program counter is pushed
and popped, and external memory access does not take advantage of the internal pipe-line
memory access. When external SRAM interface is used with wait-state, one-byte external
access takes two, three, or four additional clock cycles for one, two, and three wait-states
respectively. Interrupts, subroutine calls and returns will need five, seven, or nine clock cycles
more than specified in the instruction set manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, 160 Extended 1/O Registers, and
the “ISRAM size” bytes of internal data SRAM in the AT90CAN128 are all accessible through all
these addressing modes. The Register File is described in “General Purpose Register File” on
page 11.

ATMEL 1

AIMEL

Figure 5-2. Data Memory Map

Data Memory
32 Registers 0x0000 - 0x001F
64 1/0 Registers | 0x0020 - 0x005F
160 Ext I/O Reg. | 0x0060 - OxO0FF
ISRAM start
Internal SRAM
(ISRAM size)
ISRAM end
XMem start
External SRAM
(XMem size)
| .
PR
_________ 1
] l
I
oo _- . OXFFFF

5.2.2 SRAM Data Access Times
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clksp cycles as described in Figure 5-3.

Figure 5-3. On-chip Data SRAM Access Cycles

T1 T2 T3
]]]
]]]
My — : :
Address ! Compute Address ; X Address valid |
]]]
Data — a D o
]]] ‘E
WR . / n\ =
]]] —
]] / it -
Data T — L — 5
1 1 T ©
1 1 1 &
RD ! 1/ :\
]]] -
Memory Access Instruction Next Instruction

4250G-CAN-09/05

5.3 EEPROM Data Memory

The AT90CAN128 contains EEPROM memory (see “E2 size”). It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
“SPI Serial Programming Overview” on page 344, “JTAG Programming Overview” on page 349,
and “Parallel Programming Overview” on page 336 respectively.

5.3.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the 1/0O space.

The write access time for the EEPROM is given in Table 5-2. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, V¢ is likely to rise or fall slowly on power-up/down. This causes the device for some
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See “Preventing EEPROM Corruption” on page 25.for details on how to avoid problems in these
situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

5.3.2 The EEPROM Address Registers - EEARH and EEARL

Bit 15 14 13 12 1" 10 9 8
- - - - EEAR11 | EEAR10 | EEAR9 | EEARS EEARH
EEAR7 | EEAR6 | EEAR5 | EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/IW R/W R/W
Initial Value 0 0 0 0 X X X X
X X X X X X X

* Bits 15..12 — Reserved Bits
These bits are reserved bits in the AT90CAN128 and will always read as zero.

* Bits 11..0 - EEAR11..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
EEPROM space (see “E2 size”). The EEPROM data bytes are addressed linearly between 0
and “E2 end”. The initial value of EEAR is undefined. A proper value must be written before the
EEPROM may be accessed.

ATMEL 2

4250G-CAN-09/05

5.3.3

5.3.4

22

AIMEL

The EEPROM Data Register - EEDR

Bit 7 6 5 4 3 2 1 0

| EEDR7 | EEDR6 | EEDR5 | EEDR4 | EEDR3 | EEDR2 | EEDR1 | EEDRO | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

The EEPROM Control Register — EECR

Bit 7 6 5 4 3 2 1 0
| | | - EERIE | EEMWE | EEWE EERE | EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0

* Bits 7..4 — Reserved Bits
These bits are reserved bits in the AT90CAN128 and will always read as zero.

e Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

* Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEWE bit for an EEPROM write procedure.

* Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be written to one to write the value into the
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-
erwise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN (Store Program Memory Enable) in SPMCSR (Store Program Mem-
ory Control and Status Register) becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader

ok w

AT 90 C /AN 123 500000

4250G-CAN-09/05

4250G-CAN-09/05

Support — Read-While-Write Self-Programming” on page 319 for details about Boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 5-2 lists the typical pro-
gramming time for EEPROM access from the CPU.

Table 5-2. EEPROM Programming Time.
Symbol Number of Calibrated RC Oscillator Cycles | Typ Programming Time
EEPROM write (from CPU) 67 584 8.5ms

ATMEL 2

24

AIMEL

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glo-
bally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM wri t e:
Wait for conpletion of previous wite
shi c EECR, EEVEE
rjnmp EEPROM write
Set up address (r18:r17) in address register

out EEARH, r18
out EEARL, r17
Wite data (r16) to data register
out EEDR, r 16
; Wite logical one to EEME
sbi EECR, EEMAE
; Start eepromwite by setting EEVE
sbi EECR, EEVE
ret

C Code Example

void EEPROM write (unsigned int ui Address, unsigned char ucData)
{
/* Wait for conpletion of previous wite */
whi | e(EECR & (1<<EEWE));
/* Set up address and data registers */
EEAR = ui Addr ess;
EEDR = ucDat a;
/* Wite | ogical one to EEME */
EECR | = (1<<EEMVE);
/* Start eepromwite by setting EEVE */
EECR | = (1<<EEVE);

AT 90 C /AN 123 500000

4250G-CAN-09/05

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example

EEPROM r ead:
; Wait for conpletion of previous wite
shic EECR, EEVE
rjnp EEPROM r ead
; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eepromread by witing EERE
shi EECR, EERE

; Read data fromdata register

in r16, EEDR

ret

C Code Example

unsi gned char EEPROM read(unsi gned int ui Address)
{

/* Wait for conpletion of previous wite */

whi | e(EECR & (1<<EEWE));

/* Set up address register */

EEAR = ui Addr ess;

/* Start eepromread by witing EERE */

EECR | = (1<<EERE);

/* Return data fromdata register */

return EEDR;

5.3.5 Preventing EEPROM Corruption
During periods of low V. the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V. reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

ATMEL 2

4250G-CAN-09/05

5.4

5.5

5.5.1

26

1/0 Memory

AIMEL

The 1/0 space definition of the AT90CAN128 is shown in “Register Summary” on page 401.

All AT90CAN128 I/Os and peripherals are placed in the 1/0O space. All I/0 locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the 1/0O space. I/O registers within the address range
0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/0 addresses 0x00 - 0x3F must be used. When addressing I/O registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The AT90CAN128 is a com-
plex microcontroller with more peripheral units than can be supported within the 64 location
reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 -
OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other
AVR’s, the CBI and SBI instructions will only operate on the specified bit, and can therefore be
used on registers containing such status flags. The CBI and SBI instructions work with registers
0x00 to 0x1F only.

The 1/0 and peripherals control registers are explained in later sections.

External Memory Interface

Overview

With all the features the External Memory Interface provides, it is well suited to operate as an
interface to memory devices such as External SRAM and Flash, and peripherals such as LCD-
display, A/D, and D/A. The main features are:

* Four different wait-state settings (including no wait-state).

* Independent wait-state setting for different extErnal Memory sectors (configurable sector
size).

» The number of bits dedicated to address high byte is selectable.

» Bus keepers on data lines to minimize current consumption (optional).

When the eXternal MEMory (XMEM) is enabled, address space outside the internal SRAM
becomes available using the dedicated External Memory pins (see Figure 2-2 on page 4, Table
10-3 on page 73, Table 10-9 on page 77, and Table 10-21 on page 87). The memory configura-
tion is shown in Figure 5-4.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Figure 5-4. External Memory with Sector Select

0x0000
Internal memory
ISRAM end
A XMem start
Lower sector
SRWO01
SRWO00
________ SRL[2..0]
External Memory Upper sector
(0-64K x 8)
SRW11
SRW10
2% OxFFFF

5.5.2 Using the External Memory Interface
The interface consists of:

* AD7:0: Multiplexed low-order address bus and data bus.

» A15:8: High-order address bus (configurable number of bits).
» ALE: Address latch enable.

« RD: Read strobe.

« WR: Write strobe.

The control bits for the External Memory Interface are located in two registers, the External
Memory Control Register A — XMCRA, and the External Memory Control Register B — XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the data
direction registers that corresponds to the ports dedicated to the XMEM interface. For details
about the port override, see the alternate functions in section “I/O-Ports” on page 65. The XMEM
interface will auto-detect whether an access is internal or external. If the access is external, the
XMEM interface will output address, data, and the control signals on the ports according to Fig-
ure 5-6 (this figure shows the wave forms without wait-states). When ALE goes from high-to-low,
there is a valid address on AD7:0. ALE is low during a data transfer. When the XMEM interface
is enabled, also an internal access will cause activity on address, data and ALE ports, but the
RD and WR strobes will not toggle during internal access. When the External Memory Interface
is disabled, the normal pin and data direction settings are used. Note that when the XMEM inter-
face is disabled, the address space above the internal SRAM boundary is not mapped into the
internal SRAM. Figure 5-5 illustrates how to connect an external SRAM to the AVR using an
octal latch (typically “74x573” or equivalent) which is transparent when G is high.

ATMEL 2

4250G-CAN-09/05

5.5.3

5.5.4

5.5.5

28

AIMEL

Address Latch Requirements

Due to the high-speed operation of the XRAM interface, the address latch must be selected with
care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V. When operating at condi-
tions above these frequencies, the typical old style 74HC series latch becomes inadequate. The
External Memory Interface is designed in compliance to the 74AHC series latch. However, most
latches can be used as long they comply with the main timing parameters. The main parameters
for the address latch are:

+* D to Q propagation delay (tpp).
+ Data setup time before G low (tg).
+ Data (address) hold time after G low (y).

The External Memory Interface is designed to guaranty minimum address hold time after G is
asserted low of t, = 5 ns. Refer to t_ axx (p/tLiaxx st i “Memory Programming” Tables 27-7
through Tables 27-14. The D-to-Q propégation délay (top) must be taken into consideration
when calculating the access time requirement of the external component. The data setup time
before G low (tg,;) must not exceed address valid to ALE low (ta c) minus PCB wiring delay
(dependent on the capacitive load).

Figure 5-5. External SRAM Connected to the AVR

N b0
. TN\ .
ApTO K —— 1P Q| F— A[7:0]
ALE > G
AVR SRAM

N .

A15:8 A[15:8]
"RD l/> RD
‘WR > WR

Pull-up and Bus-keeper

Timing

The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is written to
one. To reduce power consumption in sleep mode, it is recommended to disable the pull-ups by
writing the Port register to zero before entering sleep.

The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper can be dis-
abled and enabled in software as described in “External Memory Control Register B — XMCRB”
on page 32. When enabled, the bus-keeper will ensure a defined logic level (zero or one) on the
AD7:0 bus when these lines would otherwise be tri-stated by the XMEM interface.

External Memory devices have different timing requirements. To meet these requirements, the
AT90CAN128 XMEM interface provides four different wait-states as shown in Table 5-4. It is
important to consider the timing specification of the External Memory device before selecting the
wait-state. The most important parameters are the access time for the external memory com-
pared to the set-up requirement of the ATO0CAN128. The access time for the External Memory
is defined to be the time from receiving the chip select/address until the data of this address

AT 90 C /AN 123 500000

4250G-CAN-09/05

4250G-CAN-09/05

actually is driven on the bus. The access time cannot exceed the time from the ALE pulse must
be asserted low until data is stable during a read sequence (see t | g, * tr g1 - tovrn IN Tables 27-
7 through Tables 27-14). The different wait-states are set up in software. As an additional fea-
ture, it is possible to divide the external memory space in two sectors with individual wait-state
settings. This makes it possible to connect two different memory devices with different timing
requirements to the same XMEM interface. For XMEM interface timing details, please refer to
Tables 27-7 through Tables 27-14 and Figure 27-6 to Figure 27-9 in the “External Data Memory
Characteristics” on page 371.

Note that the XMEM interface is asynchronous and that the waveforms in the following figures
are related to the internal system clock. The skew between the internal and external clock
(XTAL1) is not guarantied (varies between devices temperature, and supply voltage). Conse-
quently, the XMEM interface is not suited for synchronous operation.

Figure 5-6. External Data Memory Cycles no Wait-state (SRWn1=0 and SRWn0=0)"

System Clock (CLKcpy) _/ \ / _/__/__/_
ALE _'_/_‘—\ 1 : / :

A15:8 Prev. addr. x ' Address X
j | j ' 2
DA7:0 Prgv. data x Address X)§(Xl Data X e
wR ! | N/
DA7:0 (XMBK =0) Prév. data X Address Y——— Data |)—C
1 1 1 1 g
DA7:0 (XMBK = 1) Pré:v. data X Address Xxxx‘xxX Data | X 00000 X: 3
| | N/

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector). The ALE pulse in period T4 is only present if the next instruction
accesses the RAM (internal or external).

Figure 5-7. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1("

T | T2 | T3 | T4 | 5

System Clock (CLKzpy) _/ \ / \ /_\—/_\
ALE _'_/_‘—\ | ‘

A15:8 Prév. addr. 1X ' Address X
| | | o
DA7:0 Prév. data 1X Address)@(1 Data ' X =
WR | : A\ : / D
DA7:0 (XMBK =0) Prév. data X Address ———H Daa | !)—C
1 : 1 3
DAT0 (XMBK =1) _Pré. data X Address | X paa X 8
RO ! N\ /

ATMEL 2

AIMEL

Note: 1. SRWn1 =SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T5 is only present if the next instruction accesses the RAM (internal
or external).

Figure 5-8. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0"

. T i T2 i T3 | T4 ! 5 i T6 i
System Clock (CLKpy) _/__/__/ \ / \ / _/__/_
l ‘ l ; l i '
ALE _i_/_?—\ 1 | 1 1 / '
! ' ! i | ! :
Al15:8 Prév. addr. }X ' Address | ' ' X:
l l l . ‘ l
DA7:0 Prév. data }X Address)@(} Data | ! '
l l l . l l
| | l\ 1 l 1 i
DA7:0 (XMBK = 0) _ Prév. data X address Y———L pata ! !)—C
l l l i l i i
DA7:0 (XMBK =1) Prév. data X Address | X Daa | ! ; X:

_—

- AFﬁA .
Write

Read

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM (internal
or external).

Figure 5-9. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1(")

T4 \ 5 T6

System Clock (CLKcpy) _/j, \ Xi \ /j \ /j \):/ \ /3’7 \ /j,

T7
: : 1
me_ L /T N\ ‘ : : AR
A15:8 Prév. addr. X ! Address | ! ! ' X
‘ : : ‘ o
DA7:0 Prév. data X Address X::X ' Data X =
: 3X 3 1 : :
‘
wE ‘ ‘ ‘ ! ‘
! ! A\ ‘ : /
‘ ‘
DA7:0 (XMBK =0) _ Prév. data X Address y——@L paa | L) ,C
‘ ! ‘ ‘ .
DA7:0 (XMBK =1) Prév. data X Addess | X pam | X g
RD | | N\ | . o/

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM (internal
or external).

AT90CAN128 mees———

5.5.6 External Memory Control Register A - XMCRA

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0

| sRE | sRL2 | SRL1 | SRLO | SRW11 | SRW10 | SRW01 | SRW00 | XMCRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0, A15:8,
ALE, W, and RD are activated as the alternate pin functions. The SRE bit overrides any pin
direction settings in the respective data direction registers. Writing SRE to zero, disables the
External Memory Interface and the normal pin and data direction settings are used. Note that
when the XMEM interface is disabled, the address space above the internal SRAM boundary is
not mapped into the internal SRAM.

e Bit 6..4 — SRL2, SRL1, SRLO: Wait-state Sector Limit

It is possible to configure different wait-states for different External Memory addresses. The
external memory address space can be divided in two sectors that have separate wait-state bits.
The SRL2, SRL1, and SRLO bits select the split of the sectors, see Table 5-3 and Figure 5-4. By
default, the SRL2, SRL1, and SRLO bits are set to zero and the entire external memory address
space is treated as one sector. When the entire SRAM address space is configured as one sec-
tor, the wait-states are configured by the SRW11 and SRW10 bits.

Table 5-3. Sector limits with different settings of SRL2..0
SRL2 SRL1 SRLO Sector Addressing

Lower sector N/A

0 0 0
Upper sector “XMem start’(") - OXFFFF
Lower sector “XMem start”") - Ox1FFF

0 0 1 Upper sector 0x2000 - OxXFFFF
Lower sector “XMem start’(") - 0x3FFF

0 1 0 Upper sector 0x4000 - OXFFFF
Lower sector “XMem start”(") - Ox5FFF

0 1 1 Upper sector 0x6000 - OXFFFF
Lower sector “XMem start”") - Ox7FFF

1 0 0 Upper sector 0x8000 - OXFFFF
Lower sector “XMem start’(") - 0x9FFF

1 0 1 Upper sector 0xA000 - OxFFFF
Lower sector “XMem start”") - OXBFFF

1 1 0 Upper sector 0xCO000 - OxFFFF
Lower sector “XMem start”") - OXDFFF

1 1 1 Upper sector 0xE000 - OXFFFF

Note: 1. See Table 5-1 on page 17 for “XMem start” setting.

ATMEL

31

5.5.7

32

AIMEL

¢ Bit 3..2 - SRW11, SRW10: Wait-state Select Bits for Upper Sector
The SRW11 and SRW10 bits control the number of wait-states for the upper sector of the exter-
nal memory address space, see Table 5-4.

* Bit 1..0 - SRW01, SRWO00: Wait-state Select Bits for Lower Sector

The SRW01 and SRWO0O bits control the number of wait-states for the lower sector of the exter-
nal memory address space, see Table 5-4.

Table 5-4. Wait States("

SRWn1 | SRWn0 | Wait States

0 0 No wait-states
0 1 Wait one cycle during read/write strobe
1 0 Wait two cycles during read/write strobe

Wait two cycles during read/write and wait one cycle before driving out new

1 1 address

Note: 1. n=0or 1 (lower/upper sector).
For further details of the timing and wait-states of the External Memory Interface, see Figures
5-6 through Figures 5-9 for how the setting of the SRW bits affects the timing.

External Memory Control Register B — XMCRB

Bit 7 6 5 4 3 2 1 0
| xmek | - | | - XMM2 XMM1 XMMO | XMCRB

Read/Write R/W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7- XMBK: External Memory Bus-keeper Enable

Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper is
enabled, it will ensure a defined logic level (zero or one) on AD7:0 when they would otherwise
be tri-stated. Writing XMBK to zero disables the bus keeper. XMBK is not qualified with SRE, so
even if the XMEM interface is disabled, the bus keepers are still activated as long as XMBK is
one.

* Bit 6..4 — Reserved Bits
These are reserved bits and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.

e Bit 2..0 - XMM2, XMM1, XMMO: External Memory High Mask

When the External Memory is enabled, all Port C pins are default used for the high address byte.
If the full address space is not required to access the External Memory, some, or all, Port C pins
can be released for normal Port Pin function as described in Table 5-5. As described in “Using
all 64KB Locations of External Memory” on page 34, it is possible to use the XMMn bits to
access all 64KB locations of the External Memory.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Table 5-5. Port C Pins Released as Normal Port Pins when the External Memory is Enabled

XMM2 XMMA1 XMMO | # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full External Memory Space) None

0 0 1 7 PC7

0 1 0 6 PC7 .. PC6

0 1 1 5 PC7 .. PC5

1 0 0 4 PC7 .. PC4

1 0 1 3 PC7 .. PC3

1 1 0 2 PC7 .. PC2

1 1 1 No Address high bits Full Port C

5.5.8 Using all Locations of External Memory Smaller than 64 KB

4250G-CAN-09/05

Since the external memory is mapped after the internal memory as shown in Figure 5-4, the
external memory is not addressed when addressing the first “ISRAM size” bytes of data space. It
may appear that the first “ISRAM size” bytes of the external memory are inaccessible (external
memory addresses 0x0000 to “ISRAM end”). However, when connecting an external memory
smaller than 64 KB, for example 32 KB, these locations are easily accessed simply by address-
ing from address 0x8000 to “ISRAM end + 0x8000”. Since the External Memory Address bit A15
is not connected to the external memory, addresses 0x8000 to “ISRAM end + 0x8000” will
appear as addresses 0x0000 to “ISRAM end” for the external memory. Addressing above
address “ISRAM end + 0x8000” is not recommended, since this will address an external mem-
ory location that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from “XMem start” to
“XMem start + 0x8000”. This is illustrated in Figure 5-10.

Figure 5-10. Address Map with 32 KB External Memory

AVR Memory Map External 32K SRAM (Size=0x8000)
0x0000 0x0000
Internal Memory p
ISRAM end R Sl ISRAM end
XMem start XMem start
>
External Memory
OX7TFFF | ... Ox7FFF
0x8000

ISRAM end + 0x8000
XMem start + 0x8000

(Unused)

OXFFFF

ATMEL 53

AIMEL

5.5.9 Using all 64KB Locations of External Memory

Since the External Memory is mapped after the Internal Memory as shown in Figure 5-4, only
(64K-(“ISRAM size”+256)) bytes of External Memory is available by default (address space
0x0000 to “ISRAM end” is reserved for internal memory). However, it is possible to take advan-
tage of the entire External Memory by masking the higher address bits to zero. This can be done
by using the XMMn bits and control by software the most significant bits of the address. By set-
ting Port C to output 0x00, and releasing the most significant bits for normal Port Pin operation,
the Memory Interface will address 0x0000 - Ox1FFF. See the following code examples.

Assembly Code Example("

; OFFSET is defined to 0x2000 to ensure

; external nenory access

; Configure Port C (address high byte) to
; out put 0x00 when the pins are rel eased
; for normal Port Pin operation

| di r16, OxFF
out DDRC, r16
| di r16, 0x00
out PORTC, r16
rel ease PC7:5
| di r16, (1l<<XmMl) | (1<<XMWD)
sts XMCRB, r16
;. wite OxXAA to address 0x0001 of external
; menory
| di r16, Oxaa
sts 0x0001+OFFSET, r16
; re-enable PC7:5 for external nenory
| di r16, (0<<XMML) | (0<<XMWD)
sts XMCRB, r16

; Store Ox55 to address (OFFSET + 1) of
; external nenory

| di r16, O0x55

sts 0x0001+OFFSET, r16

C Code Example!")
#def i ne OFFSET 0x2000

voi d XRAM exanpl e(voi d)

{
unsi gned char *p = (unsigned char *) (OFFSET + 1);

DDRC = OxFF;
PORTC = 0xO00;

XMCRB = (1<<XMML) | (1<<XMWD);

*p = Oxaa;
XMCRB = 0x00;
*p = 0x55;

}

Note: 1. The example code assumes that the part specific header file is included.
Care must be exercised using this option as most of the memory is masked away.

34 AT 90 C /AN 123 500000

4250G-CAN-09/05

5.6 General Purpose I/O Registers

The AT90CAN128 contains three General Purpose 1/0O Registers. These registers can be used
for storing any information, and they are particularly useful for storing global variables and status
flags.

The General Purpose I/0 Register 0, within the address range 0x00 - Ox1F, is directly bit-acces-
sible using the SBI, CBI, SBIS, and SBIC instructions.

5.6.1 General Purpose I/0 Register 2 - GPIOR2

Bit 7 6 5 4 3 2 1 0

IGPIOR07 | GPIOR06 | GPIORO05 | GPIOR04 | GPIOR03 | GPIOR02 | GPIOR01 GPIOROOI GPIOR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

5.6.2 General Purpose 1/0 Register 1 — GPIOR1

Bit 7 6 5 4 3 2 1 0

IGPIOR17 | GPIOR16 | GPIOR15 | GPIOR14 | GPIOR13 | GPIOR12 | GPIOR11 GPIOR10| GPIOR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

5.6.3 General Purpose 1/0 Register 0 — GPIORO0

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0

IGPIOR27 | GPIOR26 | GPIOR25 | GPIOR24 | GPIOR23 | GPIOR22 | GPIOR21 GPIORZOI GPIORO
Read/Write R/W R/W R/IW RW R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

ATMEL 5

AIMEL

6. System Clock

6.1

6.1.1

6.1.2

6.1.3

36

Clock Systems and their Distribution

Figure 6-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to unused
modules can be halted by using different sleep modes, as described in “Power Management and
Sleep Modes” on page 45. The clock systems are detailed below.

Figure 6-1. Clock Distribution

Asynchronous CAN General I/O Flash and
Timer/Counter2 Controller Modules ADC CPU Core RAM EEPROM
A [[A A 4
clkyoe
clkyo AVR Clock olkpy
Control Unit
CLko CIkASV CIkFLASH
A A
CKOUT Fuse
Reset Logic Watchdog Timer
F 1 ,
Source clock Watchdog clock

Prescaler

Watchdog
Oscillator

Clock

Multiplexer Multiplexer
A A A *

Timer/Counter2 Timer/Counter2 External Clock Crystal Low-frequency Calibrated RC
External Clock Oscillator Oscillator Crystal Oscillator Oscillator

t‘%*‘*
] M

TOSC1 TOSC2 XTAL1 XTAL2

CPU Clock - clkcpy
The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

1/0 Clock - clk)q
The I/O clock is used by the majority of the 1/O modules, like Timer/Counters, SPI, CAN,
USART. The I/O clock is also used by the External Interrupt module, but note that some external
interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the
I/O clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clk g is halted, enabling TWI address reception in all sleep modes.

Flash Clock — clkg sy
The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

AT 90 C /AN 123 500000

4250G-CAN-09/05

6.1.4 Asynchronous Timer Clock — clk,gy
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external clock or an external 32 kHz clock crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

6.1.5 ADC Clock - clkpc
The ADC is provided with a dedicated clock domain. This allows halting the CPU and 1/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

6.2 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 6-1. Device Clocking Options Select(")

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1000
External Low-frequency Crystal 0111 - 0100
Calibrated Internal RC Oscillator 0010
External Clock 0000
Reserved 0011, 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is an additional delay allowing the power to reach a stable level before starting
normal operation. The Watchdog Oscillator is used for timing this real-time part of the start-up
time. The number of WDT Oscillator cycles used for each time-out is shown in Table 6-2. The
frequency of the Watchdog Oscillator is voltage dependent as shown in “AT90CAN128 Typical
Characteristics” on page 380.

Table 6-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
4.1 ms 4.3 ms 4K (4,096)
65 ms 69 ms 64K (65,536)

6.3 Default Clock Source
The device is shipped with CKSEL = “0010", SUT = “10”, and CKDIV8 programmed. The default
clock source setting is the Internal RC Oscillator with longest start-up time and an initial system
clock prescaling of 8. This default setting ensures that all users can make their desired clock
source setting using an In-System or Parallel programmer.

ATMEL s

4250G-CAN-09/05

6.4

38

AIMEL

Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 6-2. Either a quartz crystal or a
ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 6-3. For ceramic resonators, the capacitor values given by
the manufacturer should be used. For more information on how to choose capacitors and other
details on Oscillator operation, refer to the Multi-purpose Oscillator Application Note.

Figure 6-2. Crystal Oscillator Connections

c2

| XTAL2
0

ST xTAL

GND

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 6-3.

Table 6-3. Crystal Oscillator Operating Modes

CKSEL3..1 Frequency Range (MHz) Recomnéezn;::) T-dUI::nv?i(tet: %r;::tzalgi(t:;j C1and
100 0.4-0.9 12-22
101 0.9-3.0 12-22
110 3.0-8.0 12-22
111 8.0-16.0 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
6-4.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Table 6-4. Start-up Times for the Oscillator Clock Selection

Start-up Time from Additional Delay
CKSELO SUT1..0 Power-down and from Reset Recommended Usage
Power-save (Vee = 5.0V)
0 00 258 CK(" 14CK +4.4ms | Ceramicresonator, fast
rising power
0 01 258 CK™ 14CK + 65 ms C?gramlc resonator, slowly
rising power
0 10 1K CK® 14CK Ceramic resonator, BOD
enabled
@) Ceramic resonator, fast
0 11 1K CK 14CK+ 4.1 ms -
rising power
1 00 1K CK® 14CK + 65 ms C?gramlc resonator, slowly
rising power
1 01 16K CK 14CK Crystal Oscillator, BOD
enabled
1 10 16K CK 14CK + 4.1 ms Crystal Oscillator, fast
rising power
1 11 16K CK 14CK + 65 ms erstal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

6.5 Low-frequency Crystal Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the low-frequency crystal
Oscillator must be selected by setting the CKSEL Fuses to “0100”, “0101”, “0110”, or “0111".
The crystal should be connected as shown in Figure 6-3.

Figure 6-3. Low-frequency Crystal Oscillator Connections

12 - 22 pF
XTAL2
32.768 KHz []
— o | XTAL1
12-22 pF
GND

12-22 pF capacitors may be necessary if the parasitic impedance (pads, wires & PCB) is very
low.

ATMEL s

4250G-CAN-09/05

AIMEL

When this Oscillator is selected, start-up times are determined by the SUT1..0 fuses as shown in
Table 6-5 and CKSEL1..0 fuses as shown in Table 6-6.

Table 6-5. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0 Additional Delay from Reset (V¢ = 5.0V) Recommended Usage
00 14CK Fast rising power or BOD enabled
01 14CK+4.1ms Slowly rising power
10 14CK + 65 ms Stable frequency at start-up
11 Reserved

Table 6-6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3..0 Start-up Time from Recommended Usage
Power-down and Power-save
0100" 1K CK
0101 32K CK Stable frequency at start-up
0110™M 1K CK
0111 32K CK Stable frequency at start-up

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application

6.6 Calibrated Internal RC Oscillator

The calibrated internal RC Oscillator provides a fixed 8.0 MHz clock. The frequency is nominal
value at 3V and 25°C. If 8 MHz frequency exceeds the specification of the device (depends on
V¢c), the CKDIV8 Fuse must be programmed in order to divide the internal frequency by 8 dur-
ing start-up. The device is shipped with the CKDIV8 Fuse programmed. See “System Clock
Prescaler” on page 43. for more details. This clock may be selected as the system clock by pro-
gramming the CKSEL Fuses as shown in Table 6-7. If selected, it will operate with no external
components. During reset, hardware loads the calibration byte into the OSCCAL Register and
thereby automatically calibrates the RC Oscillator. At 5V and 25°C, this calibration gives a fre-
quency within £ 10% of the nominal frequency. Using calibration methods as described in
application notes available at www.atmel.com/avr it is possible to achieve + 2% accuracy at any
given Vcc and temperature. When this Oscillator is used as the chip clock, the Watchdog Oscil-
lator will still be used for the Watchdog Timer and for the Reset Time-out. For more information
on the pre-programmed calibration value, see the section “Calibration Byte” on page 336.

Table 6-7. Internal Calibrated RC Oscillator Operating Modes'"
CKSEL3..0 Nominal Frequency
0010 8.0 MHz

Note: 1. The device is shipped with this option selected.

40 AT 90 C /AN 123 500000

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 6-8.
Table 6-8. Start-up times for the internal calibrated RC Oscillator clock selection
Start-up Time from Power- Additional Delay from
SuT1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage

00 6 CK 14CK BOD enabled

01 6 CK 14CK +4.1ms Fast rising power

10M 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

Note: 1. The device is shipped with this option selected.

6.6.1 Oscillator Calibration Register - OSCCAL

Bit 7 6 5 4 3 2 1 0
| - | cAe | CALs | CAL4 | CAL3 | CAL2 | CAL1 | CALO] OsccAL

Read/Write R RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 R Device Specific Calibration Value =~ - -—-- >

¢ Bit 7 — Reserved Bit
This bit is reserved for future use.

* Bits 6..0 — CALG6..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove process vari-
ations from the Oscillator frequency. This is done automatically during Chip Reset. When
OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero values to this regis-
ter will increase the frequency of the internal Oscillator. Writing Ox7F to the register gives the
highest available frequency. The calibrated Oscillator is used to time EEPROM and Flash
access. If EEPROM or Flash is written, do not calibrate to more than 10% above the nominal fre-
quency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is intended for
calibration to 8.0 MHz. Tuning to other values is not guaranteed, as indicated in Table 6-9.

Table 6-9. Internal RC Oscillator Frequency Range.

OscoAL vatve | Mt FiedueneynPercerageof | Max Frequency n Peentage of
0x00 50% 100%
0x3F 75% 150%
Ox7F 100% 200%

6.7 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
6-4. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.

ATMEL X

4250G-CAN-09/05

AIMEL

Figure 6-4. External Clock Drive Configuration

NC —— XTAL2
External
Clock —— - XTAL1
Signal
GND

Ml

Table 6-10. External Clock Frequency

CKSEL3..0 Frequency Range
0000 0-16 MHz

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 6-11.
Table 6-11. Start-up Times for the External Clock Selection
Start-up Time from Power- Additional Delay from
SUT1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage

00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4.1 ms Fast rising power
10 6 CK 14CK + 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler” on page
43 for details.

6.8 Clock Output Buffer

When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This mode is
suitable when chip clock is used to drive other circuits on the system. The clock will be output
also during reset and the normal operation of I/O pin will be overridden when the fuse is pro-
grammed. Any clock source, including internal RC Oscillator, can be selected when CLKO
serves as clock output. If the System Clock Prescaler is used, it is the divided system clock that
is output (CKOUT Fuse programmed).

6.9 Timer/Counter2 Oscillator

For AVR microcontrollers with Timer/Counter2 Oscillator pins (TOSC1 and TOSC2), the crystal
is connected directly between the pins. The Oscillator is optimized for use with a 32.768 kHz
watch crystal. 12-22 pF capacitors may be necessary if the parasitic impedance (pads, wires &
PCB) is very low.

42 AT 90 C /AN 123 500000

AT90CAN128 share the Timer/Counter2 Oscillator Pins (TOSC1 and TOSC2) with PG4 and
PG3. This means that both PG4 and PG3 can only be used when the Timer/Counter2 Oscillator
is not enable.

Applying an external clock source to TOSC1 can be done in asynchronous operation if EXTCLK
in the ASSR Register is written to logic one. See “Asynchronous operation of the
Timer/Counter2” on page 158 for further description on selecting external clock as input instead
of a 32 kHz crystal. In this configuration, PG4 cannot be used but PG3 is available.

6.10 System Clock Prescaler
The AT90CAN128 system clock can be divided by setting the Clock Prescaler Register —
CLKPR. This feature can be used to decrease power consumption when the requirement for
processing power is low. This can be used with all clock source options, and it will affect the
clock frequency of the CPU and all synchronous peripherals. clkq, clkapc, Clkcpy, and Clkg asy
are divided by a factor as shown in Table 6-12.

6.10.1 Clock Prescaler Register - CLKPR

Bit 7 6 5 4 3 2 1 0
JcLkPCE | - - CLKPS3 | CLKPS2 | CLKPS1 | CLKPS0 | CLKPR

Read/Write R/W R R R RIW RIW RIW R/W

Initial Value 0 0 0 0 See Bit Description

e Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

¢ Bit 6..0 — Reserved Bits
These bits are reserved for future use.

* Bits 3..0 - CLKPS3..0: Clock Prescaler Select Bits 3 - 0

These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 6-12.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.
Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to

ATMEL i

4250G-CAN-09/05

44

AIMEL

“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if
the selected clock source has a higher frequency than the maximum frequency of the device at
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 6-12. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 | Clock Division Factor
0 0 0 0 1
0 0 0 1 2
0 0 1 0 4
0 0 1 1 8
0 1 0 0 16
0 1 0 1 32
0 1 1 0 64
0 1 1 1 128
1 0 0 0 256
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

Note: When the system clock is divided, Timer/Counter2 can be used with Asynchronous clock only.
The frequency of the asynchronous clock must be lower than 1/4th of the frequency of the scaled
down Source clock. Otherwise, interrupts may be lost, and accessing the Timer/Counter2 regis-
ters may fail.

AT 90 C /AN 123 500000

7. Power Management and Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the SMCR Register select
which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be
activated by the SLEEP instruction. See Table 7-1 for a summary. If an enabled interrupt occurs
while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in
addition to the start-up time, executes the interrupt routine, and resumes execution from the
instruction following SLEEP. The contents of the register file and SRAM are unaltered when the
device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and exe-
cutes from the Reset Vector.

Figure 6-1 on page 36 presents the different clock systems in the AT90CAN128, and their distri-
bution. The figure is helpful in selecting an appropriate sleep mode.

7.0.1 Sleep Mode Control Register —- SMCR
The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
I - | - | - | - | sm2 | swmi | smMo | SE | SMCR

Read/Write R R R R RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7..4 — Reserved Bits
These bits are reserved for future use.

e Bits 3..1 — SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 7-1.

Table 7-1. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby("
1 1 1 Reserved

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

e Bit1 - SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s

ATMEL i

4250G-CAN-09/05

71

7.2

7.3

7.4

46

Idle Mode

AIMEL

purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing SPI, CAN, USART, Analog Comparator, ADC, Two-wire
Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This
sleep mode basically halts clkqp; and clkg agy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the External Interrupts, the
Two-wire Serial Interface address watch, Timer/Counter2, CAN and the Watchdog to continue
operating (if enabled). This sleep mode basically halts clk,, clkgpy, and clkg sy, While allowing
the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface address match interrupt, a Timer/Counter2 interrupt, an
SPM/EEPROM ready interrupt, an External Level Interrupt on INT7:4, or an External Interrupt on
INT3:0 can wake up the MCU from ADC Noise Reduction mode.

Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the External Oscillator is stopped, while the External Interrupts, the
Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled).
Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface
address match interrupt, an External Level Interrupt on INT7:4, or an External Interrupt on
INT3:0 can wake up the MCU. This sleep mode basically halts all generated clocks, allowing
operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 92
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 37.

Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

AT 90 C /AN 123 500000

4250G-CAN-09/05

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set, Timer/Counter2
will run during sleep. The device can wake up from either Timer Overflow or Output Compare
event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in
TIMSK2, and the global interrupt enable bit in SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended
instead of Power-save mode because the contents of the registers in the asynchronous timer
should be considered undefined after wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asynchronous
modules, including Timer/Counter2 if clocked asynchronously.

7.5 Standby Mode
When the SM2..0 bits are 110 and an External Crystal/Resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in 6 clock cycles.

Table 7-2. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources
Main
Timer TWI . SPM/
Sleep clkgpy | Clkeasy | Clkio | Clkapg | Clkasy | 210K Osc. | INT7:0 | Address | '™¢' | geprom | Apc | Other
Mode Source 2 110
Enabled Match Ready
Enabled
Idle X X X X X@ X X X X X X
Qggugfgie X X X X@) X®) X X@) X X
o XO X
Power- X X@ X(3) X X2
save
Standby(" X X® X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If AS2 bitin ASSR is set.
3. Only INT3:0 or level interrupt INT7:4.

7.6 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

7.6.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog to Digital Converter - ADC” on page
271 for details on ADC operation.

ATMEL a

4250G-CAN-09/05

7.6.2

7.6.3

7.6.4

7.6.5

7.6.6

7.6.7

48

AIMEL

Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to “Analog Comparator” on page 267 for details on how to configure the Analog
Comparator.

Brown-out Detector
If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to “Brown-out Detection” on page 53 for details
on how to configure the Brown-out Detector.

Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 55 for details on the start-up time.

Watchdog Timer
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 56 for details on how to configure the Watchdog Timer.

Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the 1/O clock (clk;o) and the ADC clock (clkspc) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 69 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to V¢/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to Vc/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDRO). Refer to “Digital Input Disable Register 1 — DIDR1” on page 270 and “Digital Input Dis-
able Register 0 — DIDRO” on page 290 for details.

JTAG Interface and On-chip Debug System

If the On-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode, the
main clock source is enabled, and hence, always consumes power. In the deeper sleep modes,

AT 90 C /AN 123 500000

4250G-CAN-09/05

this will contribute significantly to the total current consumption. There are three alternative ways
to avoid this:

* Disable OCDEN Fuse.

* Disable JTAGEN Fuse.

» Write one to the JTD bit in MCUCR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCR register to one or
leaving the JTAG fuse unprogrammed disables the JTAG interface.

ATMEL z

AIMEL

8. System Control and Reset

8.1

8.1.1

8.1.2

50

Reset

Resetting the AVR

Reset Sources

During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP — Absolute
Jump — instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 8-1 shows the reset
logic. Table 8-1 defines the electrical parameters of the reset circuitry.

The 1/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in “Clock Sources” on page 37.

The AT90CAN128 has five sources of reset:

» Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (Vpor)-

» External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length.

» Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

» Brown-out Reset. The MCU is reset when the supply voltage V. is below the Brown-out
Reset threshold (Vo) and the Brown-out Detector is enabled.

» JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system. Refer to the section “Boundary-scan IEEE 1149.1
(JTAG)” on page 298 for details.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Figure 8-1. Reset Logic

DATA BUS
A
MCU Status
Register (MCUSR)
Lol L)
Xl o oo
[elelivii=ll~
vee _| Power-on Reset oo ="
Circuit
Brown-out
BODLEVEL [2..0] »| Reset Circuit
[H Pull-up Resistor
\
RESET Spike »| Reset Circuit | sls o NTERNAL
+—
[U 5 —>»{R
%]
JTAG Reset Watchdog &
Register Timer &
u
T z
2
o
Watchdog ©
Oscillator
Y
>
Clock CK _| Delay Counters ——
Generator ” TIMEOUT
A A A
CKSEL[3:0]
SUT[1:0]
Table 8-1. Reset Characteristics
Symbol | Parameter Condition Min. Typ. Max. Units
Power-on Reset Threshold Voltage (rising) 1.4 2.3 V
Veor Power-on Reset Threshold Voltage
) 1.3 2.3 \%
(falling)
ST o 0.2 0.85
VRrsT RESET Pin Threshold Voltage Vv
Vee Vee
trsT Minimum pulse width on RESET Pin Vce =5V, temperature = 25 °C 400 ns

Note: 1. The Power-on Reset will not work unless the supply voltage has been below Vgt (falling)

8.1.3 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 8-1. The POR is activated whenever V. is below the detection level. The
POR circuit can be used to trigger the start-up Reset, as well as to detect a failure in supply
voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after V rise. The RESET signal is activated again, without any delay,
when V. decreases below the detection level.

ATMEL s

4250G-CAN-09/05

AIMEL

Figure 8-2. MCU Start-up, RESET Tied to V¢

TIME-OUT < trour >

INTERNAL
RESET 4 |
Figure 8-3. MCU Start-up, RESET Extended Externally

1
-~ Veor
Vee |

RESET

TIME-OUT

INTERNAL
RESET

8.14 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 8-1) will generate a reset, even if the clock is not running.
Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the
Reset Threshold Voltage — Vggr — 0n its positive edge, the delay counter starts the MCU after
the Time-out period — tyo,r —has expired.

Figure 8-4. External Reset During Operation

Vee
RESET \ |
1
- Vrst _ .
1 1
1 1
1 1
1 1
1
| : ¢ tTOUT
TIME-OUT : .
1
1
1
:
INTERNAL |
RESET

52 AT90CAN128

4250G-CAN-09/05

8.1.5 Brown-out Detection
AT90CAN128 has an On-chip Brown-out Detection (BOD) circuit for monitoring the V. level
during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be
selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free
Brown-out Detection. The hysteresis on the detection level should be interpreted as Vggt, =
Veor *+ Vhyst/2 and Vgor. = Vot - Viyst/2.

Table 8-2. BODLEVEL Fuse Coding!"

BODLEVEL 2..0 Fuses Min Vgor Typ Veor Max Vgor Units

1M1 BOD Disabled

110 4.1 \
101 4.0 \
100 3.9 \
011 3.8 \
010 2.7 \
001 2.6 \
000 25 \

Note: 1. Vgor may be below nominal minimum operating voltage for some devices. For devices where
this is the case, the device is tested down to V¢ = Vgt during the production test. This guar-
antees that a Brown-Out Reset will occur before V. drops to a voltage where correct
operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 010 for Low Operating Voltage and BODLEVEL = 101 for High Operating Volt-

age.

Table 8-3. Brown-out Characteristics
Symbol Parameter Min. Typ. Max. Units
Viyst Brown-out Detector Hysteresis 70 mV
tzop Min Pulse Width on Brown-out Reset 2 us

When the BOD is enabled, and V. decreases to a value below the trigger level (Vgqo7. in Figure
8-5), the Brown-out Reset is immediately activated. When V. increases above the trigger level
(Vgot+ in Figure 8-5), the delay counter starts the MCU after the Time-out period t;q,1 has
expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level for
longer than tzgp given in Table 8-1.

ATMEL s

4250G-CAN-09/05

AIMEL

Figure 8-5. Brown-out Reset During Operation

v,
cC +
1 1
1 1
1 1
1 1
RESET i !
1 1
1 1
1 1
1 1
1 1
TIME-OUT ! « trour |
1 1
1 1
1 1
1 1
INTERNAL ' i
RESET : '

8.1.6 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tyq 1. Refer to
page 56 for details on operation of the Watchdog Timer.

Figure 8-6. Watchdog Reset During Operation

VCC
RESET
WD —> l«— 1 CK Cycle
TIME-OUT I'I
o
[N
[N
RESET } < trour _>|
TIME-OUT |
1

INTERNAL |
RESET

8.1.7 MCU Status Register - MCUSR
The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0
|l - | - | - | JIRF | WDRF | BORF | EXTRF | PORF | MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

¢ Bit 7..5 — Reserved Bits
These bits are reserved for future use.

* Bit 4 — JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

54 AT 90 C /AN 123 500000

4250G-CAN-09/05

» Bit 3 - WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

* Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

» Bit 1 - EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

* Bit 0 - PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset flags to identify a reset condition, the user should read and then reset
the MCUSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the reset flags.

8.2 Internal Voltage Reference

AT90CAN128 features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC.

8.21 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in Table 8-4. To save power, the reference is not always turned on. The
reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).
2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

8.2.2 Voltage Reference Characteristics
Table 8-4. Internal Voltage Reference Characteristics
Symbol | Parameter Condition Min. Typ. Max. Units
Vig Bandgap reference voltage 1.0 1.1 1.2 \Y,
tgg Bandgap reference start-up time 40 70 V&
I Bandgap reference current 15 uA
consumption

4250G-CAN-09/05

ATMEL z

8.3

8.3.1

56

AIMEL

Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is
the typical value at V; = 5V. See characterization data for typical values at other V. levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 8-6 on page 57. The WDR — Watchdog Reset — instruction resets the Watchdog
Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the AT90CAN128 resets and executes from the
Reset Vector. For timing details on the Watchdog Reset, refer to Table 8-6 on page 57.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period,
two different safety levels are selected by the fuse WDTON as shown in Table 8-5. Refer to
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 58 for
details.

Table 8-5. WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON Safety WDT Initial How to Disable How to Change
Level State the WDT Time-out

Unprogrammed 1 Disabled Timed sequence Timed sequence

Programmed 2 Enabled Always enabled Timed sequence

Figure 8-7. Watchdog Timer

WATCHDOG R WATCHDOG
OSCILLATOR PRESCALER
~1 MHz A x| x| e[x| x[x[x[x
AR EERNE
olaolol = Qlelelg
WATCHDOG 218|3|3|3|3l3lg
RESET ol1e|°|3|3
V.V VY \A A
WDPO ;\l
WDP1 N
WDP2
WDE
MCU RESET
Watchdog Timer Control Register - WDTCR
Bit 7 6 5 4 3 2 1 0
| - | - | - | WDCE WDE WDP2 WDP1 WDPO | WDTCR
Read/Write R R R R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7..5 — Reserved Bits
These bits are reserved bits for future use.

* Bit 4 - WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure. This bit must also be set when

AT 90 C /AN 123 500000

4250G-CAN-09/05

4250G-CAN-09/05

changing the prescaler bits. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 58.

* Bit 3 - WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be writ-
ten to WDE even though it is set to one before the disable operation starts.
2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm
described above. See “Timed Sequences for Changing the Configuration of the Watchdog
Timer” on page 58.

* Bits 2..0 - WDP2, WDP1, WDPO0: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods
are shown in Table 8-6.

Table 8-6. Watchdog Timer Prescale Select

WoP2 | WoP1 wopo | JumberofWET | TpalTimecutat | el imeouta
0 0 0 16K cycles 171 ms 16.3 ms
0 0 1 32K cycles 34.3 ms 32.5ms
0 1 0 64K cycles 68.5 ms 65 ms
0 1 1 32/64K cycles 0.14s 0.13s
1 0 0 256K cycles 0.27 s 0.26s
1 0 1 512K cycles 0.55s 0.52s
1 1 0 1,024K cycles 11s 10s
1 1 1 2,048K cycles 2.2s 21s

ATMEL s

AIMEL

The following code example shows one assembly and one C function for turning off the WDT.
The example assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that
no interrupts will occur during execution of these functions.

Assembly Code Example("

WDT_of f:
; Wite logical one to WODCE and WDE
| di r16, (1<<WDCE)| (1<<V\DE)
sts WDOTCR, r16
; Turn of f WDT
| di r16, (0<<WDE)
sts WDOTCR, r16
ret

C Code Example!")
voi d WDT_of f (voi d)
{
/* Wite |l ogical one to WODCE and WDE */
WDTCR = (1<<WDCE) | (1<<WDE);
[* Turn off WDT */
WDTCR = 0x00;

Note: 1. The example code assumes that the part specific header file is included.

8.4 Timed Sequences for Changing the Configuration of the Watchdog Timer
The sequence for changing configuration differs slightly between the two safety levels. Separate
procedures are described for each level.

8.4.1 Safety Level 1
In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit
to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out
period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, and/or
changing the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be writ-
ten to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits
as desired, but with the WDCE bit cleared.

8.4.2 Safety Level 2
In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A
timed sequence is needed when changing the Watchdog Time-out period. To change the
Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE
always is set, the WDE must be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as desired,
but with the WDCE bit cleared. The value written to the WDE bit is irrelevant.

58 AT 90 C /AN 123 500000

4250G-CAN-09/05

9.

9.1

Interrupts

Interrupt Vectors in AT90CAN128

4250G-CAN-09/05

This section describes the specifics of the interrupt handling as performed in ATO0OCAN128. For
a general explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on

page 14.

Table 9-1. Reset and Interrupt Vectors

V:cc:.or ggﬁ% Source Interrupt Definition
1| 00000® | RESET Watdhdog Resel, and JTAG AVR Reset -
2 0x0002 INTO External Interrupt Request 0
3 0x0004 INT1 External Interrupt Request 1
4 0x0006 INT2 External Interrupt Request 2
5 0x0008 INT3 External Interrupt Request 3
6 0x000A INT4 External Interrupt Request 4
7 0x000C INT5S External Interrupt Request 5
8 0x000E INT6 External Interrupt Request 6
9 0x0010 INT7 External Interrupt Request 7
10 0x0012 TIMER2 COMP Timer/Counter2 Compare Match
11 0x0014 TIMER2 OVF Timer/Counter2 Overflow
12 0x0016 TIMER1 CAPT Timer/Counter1 Capture Event
13 0x0018 TIMER1 COMPA Timer/Counter1 Compare Match A
14 0x001A TIMER1 COMPB Timer/Counter1 Compare Match B
15 0x001C TIMER1 COMPC Timer/Counter1 Compare Match C
16 0x001E TIMER1 OVF Timer/Counter1 Overflow
17 0x0020 TIMERO COMP Timer/Counter0 Compare Match
18 0x0022 TIMERO OVF Timer/Counter0 Overflow
19 0x0024 CANIT CAN Transfer Complete or Error
20 0x0026 OVRIT CAN Timer Overrun
21 0x0028 SPI, STC SPI Serial Transfer Complete
22 0x002A USARTO, RX USARTO, Rx Complete
23 0x002C USARTO, UDRE USARTO Data Register Empty
24 0x002E USARTO, TX USARTO, Tx Complete
25 0x0030 ANALOG COMP Analog Comparator
26 0x0032 ADC ADC Conversion Complete
27 0x0034 EE READY EEPROM Ready
28 0x0036 TIMER3 CAPT Timer/Counter3 Capture Event

ATMEL

59

AIMEL

Table 9-1. Reset and Interrupt Vectors (Continued)
V(:‘lc:)r ggger::a) Source Interrupt Definition

29 0x0038 TIMER3 COMPA Timer/Counter3 Compare Match A
30 0x003A TIMER3 COMPB Timer/Counter3 Compare Match B
31 0x003C TIMER3 COMPC Timer/Counter3 Compare Match C
32 0x003E TIMER3 OVF Timer/Counter3 Overflow
33 0x0040 USART1, RX USART1, Rx Complete
34 0x0042 USART1, UDRE USART1 Data Register Empty
35 0x0044 USART1, TX USART1, Tx Complete
36 0x0046 TWI Two-wire Serial Interface
37 0x0048 SPM READY Store Program Memory Ready

Notes: 1. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.

2. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see “Boot Loader Support — Read-While-Write Self-Programming” on page 319.
Table 9-2 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Table 9-2. Reset and Interrupt Vectors Placement(")
BOOTRST IVSEL Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 25-6 on page 332. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

AT90CAN128 is:

; Addr ess Label s Code Coment s
0x0000 jmp RESET ; Reset Handl er
0x0002 jmp EXT_INTO ; | RQ Handl er
0x0004 jnmp EXT_INT1 ; | RQL Handl er
0x0006 jmp EXT_INT2 ; | RQ Handl er
0x0008 jmp EXT_INT3 ; | R@ Handl er
0x000A jnmp EXT_INT4 ; | RQ4 Handl er
0x000C jmp EXT_INT5 ; | RQ Handl er
0x000E jmp EXT_INT6 ; | RQ Handl er
0x0010 jnmp EXT_INT7 ; | RQ7 Handl er
60 ATI0CAN128 m——

4250G-CAN-09/05

0x0012 jmp TI M2_COWP ; Tinmer2 Conpare Handl er
0x0014 jmp TIM_OVF ; Tinmer2 Overflow Handl er
0x0016 jnmp TIML_CAPT ; Tinerl Capture Handl er
0x0018 jmp TI ML_COWPA; Ti mer1 Conpar eA Handl er
0x001A jmp TI ML_COWPB; Ti mer1 ConpareB Handl er
0x001C jnmp TI ML_OVF Ti mer 1 Conpar eC Handl er
0x001E jmp TIML_OVF ; Timerl Overfl ow Handl er
0x0020 jmp TIMO_COW ; Tinmer0 Conpare Handl er
0x0022 jmp TIMO_OVF ; Tinmer0O Overfl ow Handl er
0x0024 jmp CANLIT ; CAN Handl er

0x0026 jmp CTIM OVF ; CAN Tinmer Overflow Handl er
0x0028 jmp SPI _STC ; SPI Transfer Conplete Handl er
0x002A jmp USARTO_RXC; USARTO RX Conpl ete Handl er
0x002C jmp USARTO_DRE; USARTO, UDR Enpty Handl er
0x002E jmp USARTO_TXC; USARTO TX Conpl ete Handl er
0x0030 jmp ANA_COW ; Anal og Conparator Handl er
0x0032 jnmp ADC ; ADC Conversi on Conpl ete Handl er
0x0034 j mp EE_RDY ; EEPROM Ready Handl er

0x0036 jmp TI MB_CAPT ; Tinmer3 Capture Handl er
0x0038 jmp TI M38_COWPA; Ti mer 3 Conpar eA Handl er
0x003A j mp TI MB_COWPB; Ti nmer3 Conpar eB Handl er
0x003C jmp TI M38_COWPC; Ti mer 3 Conpar eC Handl er
0x003E jmp TIM3_OVF ; Timer3 Overfl ow Handl er
0x0040 j mp USART1_RXC; USART1 RX Conpl ete Handl er
0x0042 jmp USART1_DRE; USART1, UDR Enmpty Handl er
0x0044 jmp USART1_TXC; USART1 TX Conpl ete Handl er
0x0046 j mp T™W ; TW Interrupt Handl er

0x0048 jmp SPM RDY ; SPM Ready Handl er

0x004A RESET: Idi r16, hi gh(RAMEND) ; Main programstart
0x004B out SPH, r 16 ; Set Stack Pointer to top of RAM
0x004C | di r16, | ow(RAMEND)

0x004D out SPL, r16

0x004E sei ; Enable interrupts
0x004F <instr> xxx

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

; Addr ess Label s Code Conmment s

0x0000 RESET: |di r16, hi gh(RAMEND) ; Main programstart

0x0001 out SPH, r 16 ; Set Stack Pointer to top of RAM
0x0002 | di r 16, | ow(RAMEND)

0x0003 out SPL, r16

ATMEL o

4250G-CAN-09/05

AIMEL

0x0004 sei
0x0005 <instr> xxx

; Enable interrupts

.org (Boot Reset Add + 0x0002)

0x. .02 jmp EXT_I NTO ; | RQD Handl er
0x..04 jmp PCl NTO ; PCINTO Handl er
0x..0C jmp SPM_RDY ; Store Program Menory Ready Handl er

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

; Addr ess Label s Code Comment s

.org 0x0002

0x0002 jmp EXT_I NTO ; | RQD Handl er

0x0004 jmp PCl NTO ; PCI NTO Handl er

0x002C jmp SPM_RDY ; Store Program Menory Ready Handl er

.org (Boot Reset Add)

Ox..00 RESET: |di r16, hi gh(RAMEND) ; Main program start

0x..01 out SPH, r 16 ; Set Stack Pointer to top of RAM
0x. .02 | di r 16, | ow(RAMEND)

0x..03 out SPL, r16

O0x..04 sei ; Enable interrupts

0x. .05 <instr> Xxxx

When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

; Addr ess Label s Code Comment s

.org (Boot Reset Add)

0x..00 jmp RESET ; Reset handl er

0x0002 jmp EXT_I NTO ; | RQD Handl er

0x..04 jmp PCl NTO ; PCI NTO Handl er

Ox. . 44 jmp SPM_RDY ; Store Program Menory Ready Handl er
Ox..46 RESET: |di r16, hi gh(RAMEND) ; Main program start

0x. . 47 out SPH, r 16 ; Set Stack Pointer to top of RAM
Ox. .48 | di r16, | ow(RAMEND)

0x. . 49 out SPL, r16

0x. . 4A sei ; Enable interrupts

0x..4B <instr> Xxxx

4250G-CAN-09/05

9.2 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

9.21 MCU Control Register - MCUCR

Bit 7 6 5 4 3 2 1 0

| s | = PUD = = IVSEL IVCE | mcucr
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support — Read-While-Write
Self-Programming” on page 319 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLBO2 is pro-
grammed, interrupts are disabled while executing from the Application section. If Interrupt Vectors
are placed in the Application section and Boot Lock bit BLB12 is programed, interrupts are dis-
abled while executing from the Boot Loader section. Refer to the section “Boot Loader Support —
Read-While-Write Self-Programming” on page 319 for details on Boot Lock bits.

ATMEL 2

4250G-CAN-09/05

AIMEL

* Bit 0 - IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See Code Example below.

Assembly Code Example

Move_i nterrupts:
Get MCUCR
in rl6, MCUCR
nmv rl7, rl6
Enabl e change of Interrupt Vectors
ori r16, (1<<IVCE)
out MCUCR, r16
Move interrupts to Boot Flash section

ori r17, (1<<IVSEL)
out MCUCR, r17
ret

C Code Example

voi d Move_interrupts(void)

{
uchar tenp;
/[* Get MCUCR*/
tenp = MCUCR;

/* Enabl e change of Interrupt Vectors */
MCUCR = tenmp | (1<<IVCE);

/* Move interrupts to Boot Flash section */
MCUCR = tenp | (1<<IVSEL);

64 AT 90 C /AN 123 500000

4250G-CAN-09/05

10. 1/O-Ports

10.1

Introduction

4250G-CAN-09/05

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. All port pins have individually selectable pull-up resistors with a supply-voltage invari-
ant resistance. All I/O pins have protection diodes to both Vs and Ground as indicated in Figure
10-1. Refer to “Electrical Characteristics” on page 361 for a complete list of parameters.

Figure 10-1. 1/O Pin Equivalent Schematic

pu

Pxn ’

Logic

I
I
I
I
I
I R
I
I
I
I

Cpin See Figure
| "General Digital 1/0" for
| Details
-— -— L

"

All registers and bit references in this section are written in general form. A lower case “X” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical /0 Regis-
ters and bit locations are listed in “Register Description for 1/0O-Ports”.

Three I/O memory address locations are allocated for each port, one each for the Data Register
— PORTX, Data Direction Register — DDRX, and the Port Input Pins — PINx. The Port Input Pins
I/0O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable — PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.

Using the 1/O port as General Digital 1/O is described in “Ports as General Digital I/O”. Most port
pins are multiplexed with alternate functions for the peripheral features on the device. How each
alternate function interferes with the port pin is described in “Alternate Port Functions” on page
70. Refer to the individual module sections for a full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

ATMEL s

AIMEL

10.2 Ports as General Digital /0

The ports are bi-directional 1/0O ports with optional internal pull-ups. Figure 10-2 shows a func-
tional description of one 1/O-port pin, here generically called Pxn.

Figure 10-2. General Digital /0(")

b PUD
<‘I]
Q D |
DDxn
3. S
[_l—WDx
RESET
RDx
>
3 - & >
N [72]
L)
L m
P; Q D
xn ~ PORTXn 1 S
.. <
I wpx | O
RESET ‘
WRXx
SLEEP ; RRx
SYNCHRONIZER
| ______ RPx
S~ s B ey M| {;,
> | PINxn |
| FL Q "> Q |
|______I clk o
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WRx: WRITE PORTX
clig,: /0 CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTx PIN
WPx: WRITE PINx REGISTER

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk),q,
SLEEP, and PUD are common to all ports.

10.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description for I/O-Ports” on page 88, the DDxn bits are accessed at the DDRx I/O address, the
PORTXxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is

activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin

The port pins are tri-stated when reset condition becomes active, even if no clocks are running.

66 AT 90 C /AN 123 500000

4250G-CAN-09/05

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

10.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

10.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled state is fully acceptable, as
a high-impedant environment will not notice the difference between a strong high driver and a
pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-
ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 10-1 summarizes the control signals for the pin value.

Table 10-1. Port Pin Configurations

DDxn PORTxn (in l:gBCR) 110 Pull-up | Comment
0 0 X Input NG ?r?-f:tilttecznljif_ig;nation after Reset.
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

10.24 Reading the Pin Value

4250G-CAN-09/05

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 10-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 10-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted t,4 ., @and tyq i, respectively.

ATMEL o

AIMEL

Figure 10-3. Synchronization when Reading an Externally Applied Pin value

SYSTEM CLK ;' ;' |]
INSTRUCTIONS X ax W wix X e X

SYNC LATCH v
PINxn : :
r17 OxOOé X oxFF
4 tpd, max : ‘
tpd, min
e >

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH?” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tyq ma« and toy min, @ single signal transition on the pin will be delayed
between %2 and 1%z system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 10-4. The out instruction sets the “SYNC LATCH?” signal at the positive edge of
the clock. In this case, the delay t,4 through the synchronizer is 1 system clock period.

Figure 10-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK i [

116 5 e
INSTRUCTIONS X outPORT, r16 >< nop >< inr17.PNx
SYNC LATCH | E
PINxn |
7 —ow o
)
68 /AT'9 0/ C /A N 1253 1500000000000 —

4250G-CAN-09/05

10.2.5

4250G-CAN-09/05

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Assembly Code Example("

; Define pull-ups and set outputs high
Define directions for port pins

| di rl6, (1<<PB7)| (1<<PB6)]| (1<<PBl)| (1<<PB0)

| di rl7, (1<<DDB3)| (1<<DDB2)| (1<<DDB1) | (1<<DDBO0)
out PORTB, r16

out DDRB, r17

; Insert nop for synchronization

nop

; Read port pins

in ri6, PINB

C Code Example!")

unsi gned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)| (1<<PB6) | (1<<PB1) | (1<<PBO0);
DDRB = (1<<DDB3)| (1<<DDB2) | (1<<DDB1) | (1<<DDBO0) ;
/* Insert nop for synchronization*/

_NCP() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable and Sleep Modes

As shown in Figure 10-2, the digital input signal can be clamped to ground at the input of the
schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if
some input signals are left floating, or have an analog signal level close to V/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate Port Functions” on page 70.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the

ATMEL =

AIMEL

above mentioned sleep modes, as the clamping in these sleep modes produces the requested
logic change.

10.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode). The simplest method to ensure a
defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will be
disabled during reset. If low power consumption during reset is important, it is recommended to
use an external pull-up or pull-down. Connecting unused pins directly to Vcc or GND is not rec-
ommended, since this may cause excessive currents if the pin is accidentally configured as an
output.

10.3 Alternate Port Functions
Most port pins have alternate functions in addition to being general digital 1/Os. Figure 10-5
shows how the port pin control signals from the simplified Figure 10-2 can be overridden by
alternate functions. The overriding signals may not be present in all port pins, but the figure
serves as a generic description applicable to all port pins in the AVR microcontroller family.

70 AT 90 C /AN 123 500000

4250G-CAN-09/05

Figure 10-5. Alternate Port Functions"

PUOExn

1 PUOVxn

DDOExn

I DDOVxn

N =

PUD

PVOExn

j PVOVxn

DIEOExn

/_l—oq— DIEOVxn

f
[O——— SLEEP

Hgl

PTOExn
WPx

P Dixn

PUOExn:
PUOVxn:
DDOExn:
DDOVxn:
PVOExn:
PVOVxn:
DIEOExn:
DIEOVxn:
SLEEP:
PTOExn:

Note: 1.

Pxn PULL-UP OVERRIDE ENABLE PUD:
Pxn PULL-UP OVERRIDE VALUE WDx:
Pxn DATA DIRECTION OVERRIDE ENABLE RDx:
Pxn DATA DIRECTION OVERRIDE VALUE RRx:
Pxn PORT VALUE OVERRIDE ENABLE WRXx:
Pxn PORT VALUE OVERRIDE VALUE RPx:
Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE WPx:
Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE clk,:
SLEEP CONTROL Dixn:
Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn:

@ AIOXn

PULLUP DISABLE

WRITE DDRx

READ DDRx

READ PORTx REGISTER

WRITE PORTX

READ PORTx PIN

WRITE PINXx

1/0 CLOCK

DIGITAL INPUT PIN n ON PORTx

ANALOG INPUT/OUTPUT PIN n ON PORTx

WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,o,

SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

AT90CAN128

DATA BUS

Table 10-2 summarizes the function of the overriding signals. The pin and port indexes from
Figure 10-5 are not shown in the succeeding tables. The overriding signals are generated
internally in the modules having the alternate function.

ATMEL

71

AIMEL

Table 10-2. Generic Description of Overriding Signals for Alternate Functions
Signal Name Full Name Description
. If this signal is set, the pull-up enable is controlled by the PUOV
Pull-up Override . L . .
PUOE Enable signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.
Pull-up Override If PUOE is set, the pull-up is enabled/disabled when PUQV is
PUOV Valuep set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.
Data Direction If this signal is set, the Output Driver Enable is controlled by the
DDOE Override Enable DDOQV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.
o If DDOE is set, the Output Driver is enabled/disabled when
Data Direction . X
DDOV . DDOV is set/cleared, regardless of the setting of the DDxn
Override Value : :
Register bit.
If this signal is set and the Output Driver is enabled, the port
PVOE Port Value value is controlled by the PVOV signal. If PVOE is cleared, and
Override Enable the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.
PVOV Port Value If PVOE is set, the port value is set to PVOV, regardless of the
Override Value setting of the PORTxn Register bit.
PTOE Port Toggle If PTOE is set, the PORTxn Register bit is inverted.
Override Enable
Digital Input If this bit is set, the Digital Input Enable is controlled by the
DIEOE Enable Override DIEOQV signal. If this signal is cleared, the Digital Input Enable
Enable is determined by MCU state (Normal mode, sleep mode).
Digital Input If DIEOE is set, the Digital Input is enabled/disabled when
DIEQV Enable Override DIEQV is set/cleared, regardless of the MCU state (Normal
Value mode, sleep mode).
This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt trigger but
DI Digital Input before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.
This is the Analog Input/output to/from alternate functions. The
Analog . . : .
AlO signal is connected directly to the pad, and can be used bi-
Input/Output S
directionally.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further

details.
10.3.1 MCU Control Register — MCUCR
Bit 7 6 4 3 2 1 0
| JTD | = PUD = = IVSEL IVCE | MCUCR
Read/Write R/W R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0
72 AT90CAN128 meesssssssss—

4250G-CAN-09/05

* Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the 1/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” for more details about this feature.

10.3.2 Alternate Functions of Port A

The Port A has an alternate function as the address low byte and data lines for the External
Memory Interface.

The Port A pins with alternate functions are shown in Table 10-3.

Table 10-3. Port A Pins Alternate Functions

Port Pin Alternate Function
PA7 AD7 (External memory interface address and data bit 7)
PA6 ADG6 (External memory interface address and data bit 6)
PA5 AD5 (External memory interface address and data bit 5)
PA4 AD4 (External memory interface address and data bit 4)
PA3 AD3 (External memory interface address and data bit 3)
PA2 AD2 (External memory interface address and data bit 2)
PA1 AD1 (External memory interface address and data bit 1)
PAO ADO (External memory interface address and data bit 0)

The alternate pin configuration is as follows:

» AD7 - Port A, Bit7
AD7, External memory interface address 7 and Data 7.

* ADG6 - Port A, Bit 6
ADG, External memory interface address 6 and Data 6.

« AD5 - Port A, Bit 5
ADS5, External memory interface address 5 and Data 5.

e AD4 -Port A, Bit4
AD4, External memory interface address 4 and Data 4.

e AD3 -Port A, Bit 3
AD3, External memory interface address 3 and Data 3.

e AD2-Port A, Bit 2
AD2, External memory interface address 2 and Data 2.

« AD1-Port A, Bit 1
AD1, External memory interface address 1 and Data 1.

* ADO - Port A, Bit 0
ADO, External memory interface address 0 and Data 0.

ATMEL 7

4250G-CAN-09/05

74

AIMEL

Table 10-4 and Table 10-5 relates the alternate functions of Port A to the overriding signals
shown in Figure 10-5 on page 71.

Table 10-4. Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/AD7 PA6/AD6 PA5/AD5 PA4/AD4

PUOE SREe SREe SREe SREe
(ADAM + WR) (ADAM + WR) (ADAM + WR) (ADAM + WR)

PUOV 0 0 0 0

DDOE SRE SRE SRE SRE

DDOV WR + ADA WR + ADA WR + ADA WR + ADA

PVOE SRE SRE SRE SRE

PVOV A7 «ADAV +D7 | A6+ ADAM +D6 | A5+ADA+D5 | A4+«ADA" + D4
OUTPUT « WR OUTPUT « WR OUTPUT « WR OUTPUT « WR

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D7 INPUT D6 INPUT D5 INPUT D4 INPUT

AIO - - - -

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See “Exter-
nal Memory Interface” on page 26 for details.

Table 10-5. Overriding Signals for Alternate Functions in PA3..PAO

Signal Name PA3/AD3 PA2/AD2 PA1/AD1 PAO/ADO

PUOE SREe SREe SREe SREe
(ADAM + WR) (ADAM + WR) (ADAM + WR) (ADAM + WR)

PUOV 0 0 0 0

DDOE SRE SRE SRE SRE

DDOV WR + ADA WR + ADA WR + ADA WR + ADA

PVOE SRE SRE SRE SRE

PVOV A3<ADA+D3 | A2«ADAV+D2 | A1-ADAM+D1 | A0+ADA™ + DO
OUTPUT « WR OUTPUT « WR OUTPUT « WR OUTPUT « WR

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D3 INPUT D2 INPUT D1 INPUT DO INPUT

AIO - - - -

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See “Exter-
nal Memory Interface” on page 26 for details.

AT90CAN128 mees———

4250G-CAN-09/05

10.3.3 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 10-6.

Table 10-6. Port B Pins Alternate Functions

Port Pin | Alternate Functions

OCOA/OC1C (Output Compare and PWM Output A for Timer/Counter0 or Output Compare
and PWM Output C for Timer/Counter1)

PB6 OC1B (Output Compare and PWM Output B for Timer/Counter1)
PB5 OC1A (Output Compare and PWM Output A for Timer/Counter1)
PB4 OC2A (Output Compare and PWM Output A for Timer/Counter2)
PB3 MISO (SPI Bus Master Input/Slave Output)

PB2 MOSI (SPI Bus Master Output/Slave Input)

PB1 SCK (SPI Bus Serial Clock)

PBO SS (SPI Slave Select input)

PB7

The alternate pin configuration is as follows:

*« OCOA/OC1C, Bit7

OCOA, Output Compare Match A output. The PB7 pin can serve as an external output for the
Timer/Counter0 Output Compare A. The pin has to be configured as an output (DDB7 set “one”)
to serve this function. The OCOA pin is also the output pin for the PWM mode timer function.

OC1C, Output Compare Match C output. The PB7 pin can serve as an external output for the
Timer/Counter1 Output Compare C. The pin has to be configured as an output (DDB7 set “one”
to serve this function. The OC1C pin is also the output pin for the PWM mode timer function.

* OC1B, Bit6

OC1B, Output Compare Match B output. The PB6 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set “one”)
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

*« OC1A, Bit5

OC1A, Output Compare Match A output. The PB5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set “one”)
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

* OC2A, Bit4

OC2A, Output Compare Match A output. The PB4 pin can serve as an external output for the
Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDB4 set “one”)
to serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

¢ MISO - Port B, Bit 3

MISO, Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
master, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a slave, the data direction of this pin is controlled by DDB3. When the pin is forced to
be an input, the pull-up can still be controlled by the PORTB3 bit.

* MOSI - Port B, Bit 2

ATMEL 7

4250G-CAN-09/05

76

AIMEL

MOSI, SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI is
enabled as a master, the data direction of this pin is controlled by DDB2. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB2 bit.

* SCK - Port B, Bit 1

SCK, Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB1. When the SPI is
enabled as a master, the data direction of this pin is controlled by DDB1. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB1 bit.

- SS-PortB, Bit 0

SS, Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an
input regardless of the setting of DDBO. As a slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDBO.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTBO bit.

Table 10-7 and Table 10-8 relate the alternate functions of Port B to the overriding signals
shown in Figure 10-5 on page 71. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 10-7 and Table 10-8 relates the alternate functions of Port B to the overriding signals
shown in Figure 10-5 on page 71.

Table 10-7. Overriding Signals for Alternate Functions in PB7..PB4

Signal Name PB7/0C0A/OC1C PB6/0C1B PB5/OC1A PB4/0OC2A
PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE gﬁggﬁ%;c OC1B ENABLE | OC1AENABLE | OC2A ENABLE
PVOV ocoAa/oc1ct) OC1B OC1A OC2A

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI - - - -

AIO - - - -

Note: 1. See “Output Compare Modulator - OCM” on page 163 for details.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Table 10-8. Overriding Signals for Alternate Functions in PB3..PB0

Signal Name PB3/MISO PB2/MOSI PB1/SCK PB0/SS
PUOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
PUOV PORTB3 * PUD PORTB2 * PUD PORTB1 * PUD PORTBO * PUD
DDOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV 0 0 0 0

PVOE SPE « MSTR SPE « MSTR SPE « MSTR 0

PVOV SE'TSF,bA¥ E SE'T%?TER SCK OUTPUT 0

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI ﬁ\IPF',l'j"TASTER ﬁ\JPFiuSTL/f\éEESET SCK INPUT SPISS

AIO - - - -

10.3.4 Alternate Functions of Port C
The Port C has an alternate function as the address high byte for the External Memory Interface.

The Port C pins with alternate functions are shown in Table 10-9.

Table 10-9. Port C Pins Alternate Functions

Port Pin Alternate Function
PC7 A15/CLKO (External memory interface address 15 or Divided System
Clock)

PC6 A14 (External memory interface address 14)

PC5 A13 (External memory interface address 13)

PC4 A12 (External memory interface address 12)

PC3 A11 (External memory interface address 11)

PC2 A10 (External memory interface address 10)

PC1 A9 (External memory interface address 9)

PCO A8 (External memory interface address 8)

The alternate pin configuration is as follows:

* A15/CLKO - Port C, Bit 7
A15, External memory interface address 15.

CLKO, Divided System Clock: The divided system clock can be output on the PC7 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTCY and DDCY7 settings. It will also be output during reset.

ATMEL m

4250G-CAN-09/05

AIMEL

e A14-Port C, Bit 6
A14, External memory interface address 14.

* A13-PortC, Bit5
A13, External memory interface address 13.

* A12-PortC, Bit4
A12, External memory interface address 12.

e A11-PortC,Bit3
A11, External memory interface address 11.

* A10-PortC, Bit2
A10, External memory interface address 10.

* A9 -PortC, Bit1
A9, External memory interface address 9.

« AB-PortC,Bit0
A8, External memory interface address 8.

Table 10-10 and Table 10-11 relate the alternate functions of Port C to the overriding signals

shown in Figure 10-5 on page 71.

Table 10-10. Overriding Signals for Alternate Functions in PC7..PC4

Signal Name PC7/A15 PC6/A14 PC5/A13 PC4/A12
PUOE SRE * (XMM<1) SRE « (XMM<2) | SRE * (XMM<3) | SRE (XMM<4)
PUOV 0 0 0 0
CKOUT! +
DDOE (SRE * (XMM<1)) SRE « (XMM<2) | SRE * (XMM<3) | SRE (XMM<4)
DDOV 1 1 1 1
CKOUT™ +
PVOE (SRE * (XMM<1)) SRE ¢ (XMM<2) | SRE ¢ (XMM<3) | SRE * (XMM<4)
(A15 « CKOUTM) +
PVOV (CLKO » CKOUT™) A14 A13 A12
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AlO - - - -
Note: 1. CKOUT is one if the CKOUT Fuse is programmed
78 AT90CAN128 meeesesssss——

4250G-CAN-09/05

Table 10-11. Overriding Signals for Alternate Functions in PC3..PC0
Signal Name PC3/A11 PC2/A10 PC1/A9 PCO/A8
PUOE SRE ¢ (XMM<5) SRE ¢ (XMM<6) SRE ¢ (XMM<7) SRE ¢ (XMM<7)
PUOV 0 0 0 0
DDOE SRE ¢ (XMM<5) SRE ¢ (XMM<6) SRE ¢ (XMM<7) SRE ¢ (XMM<7)
DDOV 1 1 1 1
PVOE SRE ¢ (XMM<5) SRE ¢ (XMM<6) SRE ¢ (XMM<7) SRE ¢ (XMM<7)
PVOV A11 A10 A9 A8
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AIO - - - -
10.3.5 Alternate Functions of Port D
The Port D pins with alternate functions are shown in Table 10-12.
Table 10-12. Port D Pins Alternate Functions
Port Pin | Alternate Function
PD7 TO (Timer/Counter0 Clock Input)
PD6 RXCAN/T1 (CAN Receive Pin or Timer/Counter1 Clock Input)
PD5 TXCAN/XCK1 (CAN Transmit Pin or USART1 External Clock Input/Output)
PD4 ICP1 (Timer/Counter1 Input Capture Trigger)
PD3 INT3/TXD1 (External Interrupt3 Input or UART1 Transmit Pin)
PD2 INT2/RXD1 (External Interrupt2 Input or UART1 Receive Pin)
PD1 INT1/SDA (External Interrupt1 Input or TWI Serial DAta)
PDO INTO/SCL (External InterruptO Input or TWI Serial CLock)

The alternate pin configuration is as follows:

* TO/CLKO - Port D, Bit 7

TO, Timer/Counter0 counter source.

* RXCAN/T1 - Port D, Bit 6
RXCAN, CAN Receive Data (Data input pin for the CAN). When the CAN controller is enabled
this pin is configured as an input regardless of the value of DDD6. When the CAN forces this pin
to be an input, the pull-up can still be controlled by the PORTD® bit.

T1, Timer/Counter1 counter source.

* TXCAN/XCK1 - Port D, Bit 5

4250G-CAN-09/05

ATMEL

79

80

AIMEL

TXCAN, CAN Transmit Data (Data output pin for the CAN). When the CAN is enabled, this pin is
configured as an output regardless of the value of DDD5.

XCK1, USART1 External clock. The Data Direction Register (DDDS) controls whether the clock
is output (DDD5 set) or input (DDD45 cleared). The XCK1 pin is active only when the USART1
operates in Synchronous mode.

* ICP1-PortD, Bit4
ICP1, Input Capture Pin1. The PD4 pin can act as an input capture pin for Timer/Counter1.

* INT3/TXD1 - Port D, Bit 3

INT3, External Interrupt source 3. The PD3 pin can serve as an external interrupt source to the
MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD3.

* INT2/RXD1 - Port D, Bit 2

INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt source to the
MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is enabled
this pin is configured as an input regardless of the value of DDD2. When the USART forces this
pin to be an input, the pull-up can still be controlled by the PORTD?2 bit.

* INT1/SDA - Port D, Bit 1
INT1, External Interrupt source 1. The PD1 pin can serve as an external interrupt source to the
MCU.

SDA, Two-wire Serial Interface Data. When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PD1 is disconnected from the port and becomes the Serial Data
I/0 pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation.

* INTO/SCL — Port D, Bit 0

INTO, External Interrupt source 0. The PDO pin can serve as an external interrupt source to the
MCU.

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PDO is disconnected from the port and becomes the Serial Clock
I/0 pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation.

AT 90 C /AN 123 500000

4250G-CAN-09/05

4250G-CAN-09/05

Table 10-13 and Table 10-14 relates the alternate functions of Port D to the overriding signals
shown in Figure 10-5 on page 71.

Table 10-13. Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/T0 PD6/T1/RXCAN PD5/XCK1/TXCAN PD4/ICP1
PUOE 0 RXCANEN TXCANEN + 0
PUOV 0 PORTD6 « PUD 0 0
DDOE 0 RXCANEN TXCANEN 0
DDOV 0 0 1 0
PVOE 0 0 TXCANEN + UMSEL1 0
(XCK1 OUTPUT -
PVOV 0 0 UMSEL1 « TXCANEN) + 0
(TXCAN « TXCANEN)
PTOE 0 0 0 0
DIEOCE 0 0 0 0
DIEQV 0 0 0 0
DI TOINPUT | T1INPUT/RXCAN XCK1 INPUT ICP1 INPUT
AIO - - - -
Table 10-14. Overriding Signals for Alternate Functions in PD3..PDO(")
Signal Name PD3/INT3/TXD1 PD2/INT2/RXD1 PD1/INT1/SDA PDO/INTO/SCL
PUOE TXEN1 RXEN1 TWEN TWEN
PUOV 0 PORTD2 « PUD PORTD1+PUD | PORTDO « PUD
DDOE TXEN1 RXEN1 0 0
DDOV 1 0 0 0
PVOE TXEN1 0 TWEN TWEN
PVOV TXD1 0 SDA_OUT SCL_OouUT
PTOE 0 0 0 0
DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE
DIEOV INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE
DI INT3 INPUT INT2 INPUT/RXD1 INT1 INPUT INTO INPUT
AIO - - SDA INPUT SCL INPUT
Note: . When enabled, the Two-wire Serial Interface enables Slew-Rate controls on the output pins

PDO0 and PD1. This is not shown in this table. In addition, spike filters are connected between
the AlO outputs shown in the port figure and the digital logic of the TWI module.

ATMEL

81

AIMEL

10.3.6 Alternate Functions of Port E
The Port E pins with alternate functions are shown in Table 10-15.

Table 10-15. Port E Pins Alternate Functions

Port Pin | Alternate Function

PE7 INT7/ICP3 (External Interrupt 7 Input or Timer/Counter3 Input Capture Trigger)
PE6 INT6/ T3 (External Interrupt 6 Input or Timer/Counter3 Clock Input)

INT5/0OC3C (External Interrupt 5 Input or Output Compare and PWM Output C for
PE5)

Timer/Counter3)

INT4/0OC3B (External Interrupt4 Input or Output Compare and PWM Output B for
PE4)

Timer/Counter3)

AIN1/OC3A (Analog Comparator Negative Input or Output Compare and PWM Output A

PE3 for Timer/Counter3)

PE2 AINO/XCKO (Analog Comparator Positive Input or USARTO external clock input/output)
PE1 PDO/TXDO0 (Programming Data Output or UARTO Transmit Pin)
PEO PDI/RXDO0 (Programming Data Input or UARTO Receive Pin)

The alternate pin configuration is as follows:

* PCINT7/ICP3 - Port E, Bit 7
INT7, External Interrupt source 7. The PE7 pin can serve as an external interrupt source.

ICP3, Input Capture Pin3: The PE7 pin can act as an input capture pin for Timer/Counter3.

* INT6/T3 — Port E, Bit 6
INT6, External Interrupt source 6. The PEG6 pin can serve as an external interrupt source.

T3, Timer/Counter3 counter source.

* INT5/0C3C - Port E, Bit 5
INT5, External Interrupt source 5. The PE5 pin can serve as an External Interrupt source.

OC3C, Output Compare Match C output. The PE5 pin can serve as an External output for the
Timer/Counter3 Output Compare C. The pin has to be configured as an output (DDE5 set “one”)
to serve this function. The OC3C pin is also the output pin for the PWM mode timer function.

* INT4/0C3B - Port E, Bit 4
INT4, External Interrupt source 4. The PE4 pin can serve as an External Interrupt source.

OC3B, Output Compare Match B output. The PE4 pin can serve as an External output for the
Timer/Counter3 Output Compare B. The pin has to be configured as an output (DDE4 set (one))
to serve this function. The OC3B pin is also the output pin for the PWM mode timer function.

* AIN1/OC3A - Port E, Bit 3

AIN1 — Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.

OC3A, Output Compare Match A output. The PE3 pin can serve as an External output for the
Timer/Counter3 Output Compare A. The pin has to be configured as an output (DDE3 set “one”)
to serve this function. The OC3A pin is also the output pin for the PWM mode timer function.

82 AT 90 C /AN 123 500000

4250G-CAN-09/05

* AINO/XCKO - Port E, Bit 2
AINO — Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.

XCKO, USARTO External clock. The Data Direction Register (DDE2) controls whether the clock
is output (DDE2 set) or input (DDE2 cleared). The XCKO pin is active only when the USARTO
operates in Synchronous mode.

* PDO/TXDO - Port E, Bit 1
PDO, SPI Serial Programming Data Output. During Serial Program Downloading, this pin is
used as data output line for the AT90CAN128.

TXDO, UARTO Transmit pin.

* PDI/RXDO0 - Port E, Bit 0
PDI, SPI Serial Programming Data Input. During Serial Program Downloading, this pin is used
as data input line for the AT90CAN128.

RXDO0, USARTO Receive Pin. Receive Data (Data input pin for the USARTO0). When the
USARTO receiver is enabled this pin is configured as an input regardless of the value of DDREDO.
When the USARTO forces this pin to be an input, a logical one in PORTEO will turn on the inter-
nal pull-up.

Table 10-16 and Table 10-17 relates the alternate functions of Port E to the overriding signals
shown in Figure 10-5 on page 71.

Table 10-16. Overriding Signals for Alternate Functions PE7..PE4

Signal Name PE7/INT7/ICP3 PE6/INT6/T3 PE5/INT5/0C3C | PE4/INT4/OC3B
PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 OC3C ENABLE OC3B ENABLE
PVOV 0 0 0C3c 0C3B

PTOE 0 0 0 0

DIEOE INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE
DIEOV INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE
DI }l'\gFTS':\‘NPPUUTT #; ?N”;ElTJT INT5 INPUT INT4 INPUT
AlO - - - -

ATMEL

83

AIMEL

Table 10-17. Overriding Signals for Alternate Functions in PE3..PEO

Signal Name PE3/AIN1/OC3A PE2/AINO/XCKO PE1/PDO/TXD0 PEO/PDI/RXD0
PUOE 0 0 TXENO RXENO
PUOV 0 0 0 PORTEO « PUD
DDOE 0 0 TXENO RXENO
DDOV 0 0 1 0
PVOE OC3A ENABLE UMSELO TXENO 0
PVOV OC3A XCKO0 OUTPUT TXDO 0
PTOE 0 0 0 0
DIEOE AIN1D™ AINOD™ 0 0
DIEQV 0 0 0 0
DI 0 XCKO INPUT - RXDO
AIO AIN1 INPUT AINO INPUT - -
Note: 1. AINOD and AIN1D is described in “Digital Input Disable Register 1 — DIDR1” on page 270.

10.3.7 Alternate Functions of Port F

The Port F has an alternate function as analog input for the ADC as shown in Table 10-18. If
some Port F pins are configured as outputs, it is essential that these do not switch when a con-
version is in progress. This might corrupt the result of the conversion. If the JTAG interface is
enabled, the pull-up resistors on pins PF7 (TDI), PF5 (TMS) and PF4 (TCK) will be activated
even if a reset occurs.

Table 10-18. Port F Pins Alternate Functions

Port Pin Alternate Function
PF7 ADCY7/TDI (ADC input channel 7 or JTAG Data Input)
PF6 ADCG6/TDO (ADC input channel 6 or JTAG Data Output)
PF5 ADC5/TMS (ADC input channel 5 or JTAG mode Select)
PF4 ADC4/TCK (ADC input channel 4 or JTAG ClocK)
PF3 ADC3 (ADC input channel 3)
PF2 ADC2 (ADC input channel 2)
PF1 ADC1 (ADC input channel 1)
PFO ADCO (ADC input channel 0)

The alternate pin configuration is as follows:

» TDI, ADC7 - Port F, Bit 7
ADCY7, Analog to Digital Converter, input channel 7.

84 AT 90 C /AN 123 500000

4250G-CAN-09/05

4250G-CAN-09/05

TDI, JTAG Test Data In. Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

* TCK, ADC6 - Port F, Bit 6

ADCB6, Analog to Digital Converter, input channel 6.

TDO, JTAG Test Data Out. Serial output data from Instruction Register or Data Register. When
the JTAG interface is enabled, this pin can not be used as an 1/O pin.

 TMS, ADCS5 - Port F, Bit 5

ADCS5, Analog to Digital Converter, input channel 5.

TMS, JTAG Test mode Select. This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an 1/O pin.

* TDO, ADC4 - Port F, Bit 4

ADC4, Analog to Digital Converter, input channel 4.

TCK, JTAG Test Clock. JTAG operation is synchronous to TCK. When the JTAG interface is

enabled, this pin can not be used as an I/O pin.

» ADC3 - PortF, Bit3
ADCS3, Analog to Digital Converter, input channel 3.

« ADC2 - Port F, Bit 2
ADC2, Analog to Digital Converter, input channel 2.

 ADC1 - Port F, Bit 1
ADCA1, Analog to Digital Converter, input channel 1.

« ADCO - Port F, Bit 0
ADCO, Analog to Digital Converter, input channel 0.

ATMEL 2

86

AIMEL

Table 10-19 and Table 10-20 relates the alternate functions of Port F to the overriding signals

shown in Figure 10-5 on page 71.

Table 10-19. Overriding Signals for Alternate Functions in PF7..PF4

Signal Name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV JTAGEN JTAGEN JTAGEN JTAGEN

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

oov o Hasa :

PVOE JTAGEN JTAGEN JTAGEN JTAGEN

PVOV 0 TDO 0 0

PTOE 0 0 0 0

DIEOE JTAGEN + JTAGEN + JTAGEN + JTAGEN +

ADC7D ADC6D ADC5D ADC4D

DIEOV JTAGEN 0 JTAGEN JTAGEN

DI TDI - T™MS TCK

AlIO ADC7 INPUT ADCS6 INPUT ADCS5 INPUT ADC4 INPUT
Table 10-20. Overriding Signals for Alternate Functions in PF3..PF0

Signal Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PFO0/ADCO

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE 0 0 0 0

DIEOCE ADC3D ADC2D ADC1D ADCOD

DIEQV 0 0 0 0

DI - - - -

AlIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

AT90CAN128 mees———

4250G-CAN-09/05

10.3.8 Alternate Functions of Port G
The alternate pin configuration is as follows:

Table 10-21. Port G Pins Alternate Functions

Port Pin Alternate Function
PG4 TOSC1 (RTC Oscillator Timer/Counter2)
PG3 TOSC2 (RTC Oscillator Timer/Counter2)
PG2 ALE (Address Latch Enable to external memory)
PG1 RD (Read strobe to external memory)
PGO WR (Write strobe to external memory)

The alternate pin configuration is as follows:

* TOSC1 - Port G, Bit 4

TOSC2, Timer/Counter2 Oscillator pin 1. When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PG4 is disconnected from the port, and becomes the
input of the inverting Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this
pin, and the pin can not be used as an 1/O pin.

* TOSC2 - Port G, Bit 3

TOSC2, Timer/Counter2 Oscillator pin 2. When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PG3 is disconnected from the port, and becomes the
inverting output of the Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this
pin, and the pin can not be used as an I/O pin.

* ALE - Port G, Bit 2
ALE is the external data memory Address Latch Enable signal.

- RD - Port G, Bit 1
RD is the external data memory read control strobe.

« WR - Port G, Bit 0
WR is the external data memory write control strobe.

ATMEL o

4250G-CAN-09/05

AIMEL

Table 10-21 and Table 10-22 relates the alternate functions of Port G to the overriding signals
shown in Figure 10-5 on page 71.

Table 10-22. Overriding Signals for Alternate Function in PG4

Signal Name - - - PG4/TOSC1
PUOE AS2

PUOV 0

DDOE AS2

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE AS2

DIEQV EXCLK

DI -

AlIO T/C2 OSC INPUT

Table 10-23. Overriding Signals for Alternate Functions in PG3:0

Signal Name PG3/TOSC2 PG2/ALE PG1/RD PGO/WR
PUOE AS2 « EXCLK SRE SRE SRE
PUOV 0 0 0 0
DDOE AS2 + EXCLK SRE SRE SRE
DDOV 0 1 1 1
PVOE 0 SRE SRE SRE
PVOV 0 ALE RD WR
PTOE 0 0 0 0
DIEOE AS2 0 0 0
DIEOV 0 0 0 0

DI - - - -
AIO T/C2 OSC OUTPUT - - -

10.4 Register Description for I/O-Ports

10.4.1 Port A Data Register - PORTA

Bit 7 6 5 4 3 2 1 0

I PORTA7 | PORTA6 | PORTA5 | PORTA4 | PORTA3 | PORTA2 | PORTA1 | PORTAO I PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/IW R/IW
Initial Value 0 0 0 0 0 0 0 0

88 AT 90 C /AN 123 500000

10.4.2 Port A Data Direction Register - DDRA

Bit 7 6 5 4 3 2 1 0

| pbA7 | DpAs | DDAs DDA4 DDA3 DDA2 DDA1 DDA0 | DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.3 Port A Input Pins Address — PINA

Bit 7 6 5 4 3 2 1 0

I PINA7 | PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINAO I PINA
Read/Write R/W R/W R/IW R/W R/W R/W R/IW R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

10.4.4 Port B Data Register - PORTB

Bit 7 6 5 4 3 2 1 0

I PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.5 Port B Data Direction Register - DDRB

Bit 7 6 5 4 3 2 1 0

| poB7 | DDB6 | DDBS DDB4 DDB3 DDB2 DDB1 DDBO | DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.6 Port B Input Pins Address — PINB

Bit 7 6 5 4 3 2 1 0

I PINB7 | PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I PINB
Read/Write R/W R/W R/W R/W R/W R/W R/IW R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

10.4.7 Port C Data Register - PORTC

Bit 7 6 5 4 3 2 1 0
| PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTCO | PORTC

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

10.4.8 Port C Data Direction Register - DDRC

Bit 7 6 5 4 3 2 1 0

| poc7 | pbce | bbcs DDC4 DDC3 DDC2 DDC1 DDCO | DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.9 Port C Input Pins Address — PINC

Bit 7 6 5 4 3 2 1 0

I PINC7 | PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I PINC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

ATMEL s

4250G-CAN-09/05

AIMEL

10.4.10 Port D Data Register - PORTD

Bit 7 6 5 4 3 2 1 0

I PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTDO I PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/IW R/IW
Initial Value 0 0 0 0 0 0 0 0

10.4.11 Port D Data Direction Register —- DDRD

Bit 7 6 5 4 3 2 1 0
| pob7 | Dpppe | DDDS DDD4 DDD3 DDD2 DDDA1 DDD0 | DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

10.4.12 Port D Input Pins Address — PIND

Bit 7 6 5 4 3 2 1 0

I PIND7 | PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO I PIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

10.4.13 Port E Data Register - PORTE

Bit 7 6 5 4 3 2 1 0

I PORTE7 | PORTE6 | PORTE5 | PORTE4 | PORTE3 | PORTE2 | PORTE1 | PORTEO I PORTE
Read/Write R/W R/W R/W R/W R/W R/W R/IW R/IW
Initial Value 0 0 0 0 0 0 0 0

10.4.14 Port E Data Direction Register - DDRE

Bit 7 6 5 4 3 2 1 0
| poE7 | DDE6 | DDES DDE4 DDE3 DDE2 DDE1 DDE0 | DDRE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

10.4.15 Port E Input Pins Address — PINE

Bit 7 6 5 4 3 2 1 0

I PINE7 | PINE6 PINES PINE4 PINE3 PINE2 PINE1 PINEO I PINE
Read/Write R/W R/W R/IW R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

10.4.16 Port F Data Register —- PORTF

Bit 7 6 5 4 3 2 1 0

I PORTF7 | PORTF6 | PORTF5 | PORTF4 | PORTF3 | PORTF2 | PORTF1 | PORTFO I PORTF
Read/Write R/W R/W R/W R/W R/W R/W R/IW R/IW
Initial Value 0 0 0 0 0 0 0 0

10.4.17 Port F Data Direction Register - DDRF

Bit 7 6 5 4 3 2 1 0
| DDF7 | DDF6 | DDF5 DDF4 DDF3 DDF2 DDF1 DDFO0 | DDRF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
90 AT90CAN128 mees———

4250G-CAN-09/05

10.4.18 Port F Input Pins Address — PINF

Bit 7 6 5 4 3 2 1 0

I PINF7 | PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINFO I PINF
Read/Write R/W R/W R/IW R/IW R/W R/IW RIW R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

10.4.19 Port G Data Register —- PORTG

Bit 7 6 5 4 3 2 1 0

| - | - - PORTG4 | PORTG3 | PORTG2 | PORTG1 | PORTGO | PORTG
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.20 Port G Data Direction Register —- DDRG

Bit 7 6 5 4 3 2 1 0

I - | - | - DDG4 DDG3 DDG2 DDG1 DDG0 | DDRG
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.21 Port G Input Pins Address — PING

Bit 7 6 5 4 3 2 1 0

I - | - - PING4 PING3 PING2 PING1 PINGO I PING
Read/Write R R R R/IW R/W R/IW RIW R/W
Initial Value 0 0 0 N/A N/A N/A N/A N/A

ATMEL o

4250G-CAN-09/05

AIMEL

11. External Interrupts

11.0.1

92

The External Interrupts are triggered by the INT7:0 pins. Observe that, if enabled, the interrupts
will trigger even if the INT7:0 pins are configured as outputs. This feature provides a way of gen-
erating a software interrupt. The External Interrupts can be triggered by a falling or rising edge or
a low level. This is set up as indicated in the specification for the External Interrupt Control Reg-
isters — EICRA (INT3:0) and EICRB (INT7:4). When the external interrupt is enabled and is
configured as level triggered, the interrupt will trigger as long as the pin is held low. Note that
recognition of falling or rising edge interrupts on INT7:4 requires the presence of an I/O clock,
described in “Clock Systems and their Distribution” on page 36. Low level interrupts and the
edge interrupt on INT3:0 are detected asynchronously. This implies that these interrupts can be
used for waking the part also from sleep modes other than Idle mode. The 1/O clock is halted in
all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. This makes the MCU less sensitive to
noise. The changed level is sampled twice by the Watchdog Oscillator clock. The period of the
Watchdog Oscillator is 1 ys (nominal) at 5.0V and 25°C. The frequency of the Watchdog Oscilla-
tor is voltage dependent as shown in the “Electrical Characteristics” on page 361. The MCU will
wake up if the input has the required level during this sampling or if it is held until the end of the
start-up time. The start-up time is defined by the SUT fuses as described in “System Clock” on
page 36. If the level is sampled twice by the Watchdog Oscillator clock but disappears before the
end of the start-up time, the MCU will still wake up, but no interrupt will be generated. The
required level must be held long enough for the MCU to complete the wake up to trigger the level
interrupt.

External Interrupt Control Register A — EICRA

Bit 7 6 5 4 3 2 1 0
| 'sc3a1t | 1sc3o | Isc21 | Isc20 ISC11 1SC10 1SC01 ISC00 | EICRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0 - ISC31, ISC30 - ISCO01, ISC00: External Interrupt 3 - 0 Sense Control Bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 11-1. Edges on INT3..INTO are registered asynchro-
nously. Pulses on INT3:0 pins wider than the minimum pulse width given in Table 11-2 will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an inter-
rupt request as long as the pin is held low. When changing the ISCn bit, an interrupt can occur.
Therefore, it is recommended to first disable INTn by clearing its Interrupt Enable bit in the
EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt flag should be
cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the
interrupt is re-enabled.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Table 11-1. Interrupt Sense Control"
ISCn1 ISCn0 | Description
0 0 The low level of INTn generates an interrupt request.
0 1 Reserved
1 0 The falling edge of INTn generates asynchronously an interrupt request.
1 1 The rising edge of INTn generates asynchronously an interrupt request.

Note: 1. n=3,2,10r0.

When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

Table 11-2. Asynchronous External Interrupt Characteristics

Symbol | Parameter Condition Min Typ Max Units
t Minimum pulse width for asynchronous 50 ns
INT external interrupt

11.0.2 External Interrupt Control Register B — EICRB

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0
| 'sc71 | 1sc70 | 1scé1 | 1sC60 | ISC51 | 1SC50 | Isc41 | Isc40 | EICRB

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - ISC71, ISC70 - ISC41, ISC40: External Interrupt 7 - 4 Sense Control Bits

The External Interrupts 7 - 4 are activated by the external pins INT7:4 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 11-3. The value on the INT7:4 pins are sampled
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one
clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an inter-
rupt. Observe that CPU clock frequency can be lower than the XTAL frequency if the XTAL
divider is enabled. If low level interrupt is selected, the low level must be held until the comple-
tion of the currently executing instruction to generate an interrupt. If enabled, a level triggered
interrupt will generate an interrupt request as long as the pin is held low.

Table 11-3. Interrupt Sense Control"
ISCn1 ISCn0 | Description
0 0 The low level of INTn generates an interrupt request.
0 1 Any logical change on INTn generates an interrupt request
1 0 The falling edge between two samples of INTn generates an interrupt request.
1 1 The rising edge between two samples of INTn generates an interrupt request.

Note: 1. n=7,6,50r4.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt

Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

ATMEL .

AIMEL

11.0.3 External Interrupt Mask Register — EIMSK

Bit 7 6 5 4 3 2 1 0

I INT7 | INTE | INTS5 INT4 INT3 INT2 INT1 IINTO | EIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 — INT7 — INTO: External Interrupt Request 7 - 0 Enable

When an INT7 — INTO bit is written to one and the I-bit in the Status Register (SREG) is set
(one), the corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the
External Interrupt Control Registers — EICRA and EICRB - defines whether the external inter-
rupt is activated on rising or falling edge or level sensed. Activity on any of these pins will trigger
an interrupt request even if the pin is enabled as an output. This provides a way of generating a

software interrupt.

11.0.4 External Interrupt Flag Register — EIFR

Bit 7 6 5 4 3 2 1 0
| INTF7 | INTF6 | INTF5 INTF4 INTF3 INTF2 INTF1 IINTFO | EIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 — INTF7 - INTFO: External Interrupt Flags 7 - 0

When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0 becomes
set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT7:0 in EIMSK, are
set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine
is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags are
always cleared when INT7:0 are configured as level interrupt. Note that when entering sleep
mode with the INT3:0 interrupts disabled, the input buffers on these pins will be disabled. This
may cause a logic change in internal signals which will set the INTF3:0 flags. See “Digital Input
Enable and Sleep Modes” on page 69 for more information.

94 AT 90 C /AN 123 500000

4250G-CAN-09/05

12. Timer/Counter3/1/0 Prescalers

12.1 Overview

Timer/Counter3, Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the
Timer/Counters can have different prescaler settings. The description below applies to both
Timer/Counter3, Timer/Counter1 and Timer/CounterO.

“o

Most bit references in this section are written in general form. A lower case “n” replaces the

Timer/Counter number.

12.1.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fo k 110)- Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either s« 0/8, foik 10/64 fork 10/256, or
fouk 1o/1024. B B B

12.1.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter3, Timer/Counter1 and Timer/CounterQ. Since
the prescaler is not affected by the Timer/Counter’s clock select, the state of the prescaler will
have implications for situations where a prescaled clock is used. One example of prescaling arti-
facts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The
number of system clock cycles from when the timer is enabled to the first count occurs can be
from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

12.1.3 External Clock Source

4250G-CAN-09/05

An external clock source applied to the T3/T1/T0 pin can be used as Timer/Counter clock
(clkys/clk4/clkrg). The T3/T1/TO pin is sampled once every system clock cycle by the pin syn-
chronization logic. The synchronized (sampled) signal is then passed through the edge detector.
Figure 12-1 shows a functional equivalent block diagram of the T3/T1/T0 synchronization and
edge detector logic. The registers are clocked at the positive edge of the internal system clock
(clk,0)- The latch is transparent in the high period of the internal system clock.

The edge detector generates one clks/clkr4/clkyy pulse for each positive (CSn2:0 = 7) or nega-
tive (CSn2:0 = 6) edge it detects.

ATMEL .

AIMEL

Figure 12-1. T3/T1/T0 Pin Sampling

Tn

clk

o

D Q D Q [\
)

Q Tn_sync
—m (To Clock
Select Logic)

Ll)

Synchronization

Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T3/T1/TO pin to the counter is updated.

Enabling and disabling of the clock input must be done when T3/T1/T0 has been stable for at
least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is

generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fexicik < fak 110/2) given a 50/50 % duty cycle. Since the edge detector uses
sampling, the maximum freque_ncy of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than f,, ,0/2.5.

An external clock source can not be prescaled.

Figure 12-2. Prescaler for Timer/Counter3, Timer/Counter1 and Timer/Counter0 ("

CK/8
CK/64

CK 10-BIT T/C PRESCALER
Clear
3
PSR310

CK/256

CK/1024

,,,,,,,,,,,,

,,,,,,,,,,,,

TO —! Synchronization —@-
iiiiiiiiiiii i '[

CS00
Cso01
Cs02

le— o
l

le— o

le

TIMER/COUNTERO CLOCK SOURCE TIMER/COUNTER1 CLOCK SOURCE
clkrg clkry

led— o
[«
le

CS30
Cs31
Cs32

TIMER/COUNTERS3 CLOCK SOURCE
clkrs

Note: 1. The synchronization logic on the input pins (TO/T1/T3) is shown in Figure 12-1.

96 AT 90 C /AN 123 500000

4250G-CAN-09/05

12.2 Timer/Counter0/1/3 Prescalers Register Description

12.21 General Timer/Counter Control Register - GTCCR

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0
| sm | - | - | - - - PSR2 | PSR310 | GTCCR

Read/Write R R R R R R RIW RIW

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSR2 and PSR310 bits is kept, hence keeping the corresponding
prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are halted
and can be configured to the same value without the risk of one of them advancing during con-
figuration. When the TSM bit is written to zero, the PSR2 and PSR310 bits are cleared by
hardware, and the Timer/Counters start counting simultaneously.

* Bit 0 - PSR310: Prescaler Reset Timer/Counter3, Timer/Counter1 and Timer/Counter0
When this bit is one, Timer/Counter3, Timer/Counter1 and Timer/CounterQ prescaler will be
Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note
that Timer/Counter3, Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset
of this prescaler will affect these three timers.

ATMEL o

AIMEL

13. 8-bit Timer/Counter0 with PWM

Timer/Counter0 is a general purpose, single channel, 8-bit Timer/Counter module. The main
features are:

13.1 Features
* Single Channel Counter
* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* External Event Counter
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOV0 and OCF0A)

13.2 Overview
Many register and bit references in this section are written in general form.

* A lower case “n” replaces the Timer/Counter number, in this case 0. However, when using
the register or bit defines in a program, the precise form must be used, i.e., TCNTO for
accessing Timer/CounterQ counter value and so on.

* A lower case “X” replaces the Output Compare unit channel, in this case A. However, when
using the register or bit defines in a program, the precise form must be used, i.e., OCROA for
accessing Timer/Counter0 output compare channel A value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 13-1. For the actual
placement of 1/O pins, refer to “Pinout AT90CAN128 - TQFP” on page 4. CPU accessible 1/0
Registers, including I/O bits and 1/O pins, are shown in bold. The device-specific I/O Register
and bit locations are listed in the “8-bit Timer/Counter Register Description” on page 108.

Figure 13-1. 8-bit Timer/Counter Block Diagram

A

<l
-

A4

TCCRn |

count _ TOVn
clear Control Lodi " (Int.Req.)
direction onirol-ogie clkrp Clock Select
Edge L
A A Detector [Tn
BOTTOM TOP
[0} Yyvy _x (From Prescaler)
D Timer/Counter A
o TCNTn |
< | . [=07] [=oxFF o oo
<DE 1 } (Int.Req.)
\
— 1 o | Waveform -
— Generation -1 OCnx
[
<1 OCRnx |

4250G-CAN-09/05

13.21 Registers

13.2.2 Definitions

The Timer/Counter (TCNTO) and Output Compare Register (OCROA) are 8-bit registers. Inter-
rupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt
Flag Register (TIFRO0). All interrupts are individually masked with the Timer Interrupt Mask Reg-
ister (TIMSKO). TIFRO and TIMSKO are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the TO pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkyg).

The double buffered Output Compare Register (OCROA) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC0A). See “Output
Compare Unit” on page 100. for details. The compare match event will also set the Compare
Flag (OCFOA) which can be used to generate an Output Compare interrupt request.

The following definitions are used extensively throughout the section:

BOTTOM | The counter reaches the BOTTOM when it becomes 0x00.
MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCROA Register. The assignment is depen-
dent on the mode of operation.

13.3 Timer/Counter Clock Sources

13.4 Counter Unit

4250G-CAN-09/05

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCROA). For details on clock sources and pres-
caler, see “Timer/Counter3/1/0 Prescalers” on page 95.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
13-2 shows a block diagram of the counter and its surroundings.

Figure 13-2. Counter Unit Block Diagram

TOVn

DATA BUS (Int.Req.)

-} -
Clock Select

- count Edge . T
n
clear clky, Detector
TCNTn - Control Logic [
direction
-

(From Prescaler)
bottom T Ttop

ATMEL =

AIMEL

Signal description (internal signals):

count Increment or decrement TCNTO by 1.

direction Select between increment and decrement.

clear Clear TCNTO (set all bits to zero).

clkq, Timer/Counter clock, referred to as clky in the following.
top Signalize that TCNTO has reached maximum value.
bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky). clkyg can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNTO value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in
the Timer/Counter Control Register (TCCROA). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OCOA. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 103.

The Timer/Counter Overflow Flag (TOVO) is set according to the mode of operation selected by
the WGMO01:0 bits. TOVO can be used for generating a CPU interrupt.

13.5 Output Compare Unit

100

The 8-bit comparator continuously compares TCNTO with the Output Compare Register
(OCROA). Whenever TCNTO equals OCROA, the comparator signals a match. A match will set
the Output Compare Flag (OCFOQA) at the next timer clock cycle. If enabled (OCIEOA = 1 and
Global Interrupt Flag in SREG is set), the Output Compare Flag generates an Output Compare
interrupt. The OCFOA flag is automatically cleared when the interrupt is executed. Alternatively,
the OCFOA flag can be cleared by software by writing a logical one to its I/O bit location. The
Waveform Generator uses the match signal to generate an output according to operating mode
set by the WGMO01:0 bits and Compare Output mode (COMOA1:0) bits. The max and bottom sig-
nals are used by the Waveform Generator for handling the special cases of the extreme values
in some modes of operation (See “Modes of Operation” on page 103.).

AT 90 C /AN 123 500000

4250G-CAN-09/05

AT90CAN128

Figure 13-3 shows a block diagram of the Output Compare unit.

Figure 13-3. Output Compare Unit, Block Diagram
DATA BUS

OCRnx TCNTn
| = (8-bit Comparator) |
OCFnx (Int.Req.)
A
top »
bottom
—> Waveform Generator »| OCnx

FOCn >

P

WGMn1:0 COMnX1:0

The OCROA Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCROA Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCROA Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCROA Buffer Register, and if double buffering is
disabled the CPU will access the OCROA directly.

13.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCOA) bit. Forcing compare match will not set the
OCFOA flag or reload/clear the timer, but the OCOA pin will be updated as if a real compare
match had occurred (the COMOA1:0 bits settings define whether the OCOA pin is set, cleared or
toggled).

13.5.2 Compare Match Blocking by TCNTO Write
All CPU write operations to the TCNTO Register will block any compare match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCROA to be initial-
ized to the same value as TCNTO without triggering an interrupt when the Timer/Counter clock is
enabled.

13.5.3 Using the Output Compare Unit
Since writing TCNTO in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNTO when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNTO
equals the OCROA value, the compare match will be missed, resulting in incorrect waveform

A IIIEI% 101

4250G-CAN-09/05

AIMEL

generation. Similarly, do not write the TCNTO value equal to BOTTOM when the counter is
downcounting.

The setup of the OCOA should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCOA value is to use the Force Output Com-
pare (FOCOA) strobe bits in Normal mode. The OCOA Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COMOA1:0 bits are not double buffered together with the compare value.
Changing the COMO0A1:0 bits will take effect immediately.

13.6 Compare Match Output Unit

13.6.1

102

The Compare Output mode (COMOA1:0) bits have two functions. The Waveform Generator
uses the COMOA1:0 bits for defining the Output Compare (OCOA) state at the next compare
match. Also, the COMOA1:0 bits control the OCOA pin output source. Figure 13-4 shows a sim-
plified schematic of the logic affected by the COMOA1:0 bit setting. The I/O Registers, 1/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COMOA1:0 bits are shown. When referring to the
OCOA state, the reference is for the internal OCOA Register, not the OCOA pin. If a system reset
occur, the OCOA Register is reset to “0”.

Figure 13-4. Compare Match Output Unit, Schematic

—

COMnx1
COMnx0 Waveform
D Q
FOCnx Generator
1
OCnx
OCnx 0 Pin
A
»D Q
(9]
-
2 PORT
e
= »D Q
\ J DDR
clkyo

Compare Output Function

The general I/O port function is overridden by the Output Compare (OCOA) from the Waveform
Generator if either of the COMOA1:0 bits are set. However, the OCOA pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCOA pin (DDR_OCO0A) must be set as output before the OCOA value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OCOA state before the
output is enabled. Note that some COMOA1:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 108.

AT 90 C /AN 123 500000

4250G-CAN-09/05

13.6.2

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMOA1:0 bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COMOA1:0 = 0 tells the Waveform Generator that no action on
the OCOA Register is to be performed on the next compare match. For compare output actions
in the non-PWM modes refer to Table 13-2 on page 109. For fast PWM mode, refer to Table 13-
3 on page 109, and for phase correct PWM refer to Table 13-4 on page 110.

A change of the COMOA1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCOA strobe bits.

13.7 Modes of Operation

13.71

13.7.2

Normal Mode

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMO01:0) and Compare Output
mode (COMOA1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMOA1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM
modes the COMOA1:0 bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 102.).

For detailed timing information refer to Figure 13-8, Figure 13-9, Figure 13-10 and Figure 13-11
in “Timer/Counter Timing Diagrams” on page 107.

The simplest mode of operation is the Normal mode (WGMO01:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOVO) will be set in the same
timer clock cycle as the TCNTO becomes zero. The TOVO flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOVO flag, the timer resolution can be increased by software. There
are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

4250G-CAN-09/05

In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCROA Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNTO) matches the OCROA. The OCROA defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 13-5. The counter value (TCNTO)
increases until a compare match occurs between TCNTO and OCROA, and then counter
(TCNTO) is cleared.

A IIIEI% 103

AIMEL

Figure 13-5. CTC Mode, Timing Diagram

OCnx Interrupt Flag Set

-

Y Y

w V1V Vi

OCnx —
(Toggle) ———1 L1 L

(COMnx1:0 =1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCFOA flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing TOP to a value close to BOTTOM when the counter is running
with none or a low prescaler value must be done with care since the CTC mode does not have
the double buffering feature. If the new value written to OCROA is lower than the current value of
TCNTO, the counter will miss the compare match. The counter will then have to count to its max-
imum value (OxFF) and wrap around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COMOA1:0 = 1). The OCOA value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of focga =
fax o2 when OCROA is set to zero (0x00). The waveform frequency is defined by the following
equation:

P Jeik_ o
OCnx— 2.N.(1+ OCRnx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

13.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OCOA) is cleared on the compare
match between TCNTO and OCROA, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 13-6. The TCNTO value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and

104 AT90C AN 1 25 1 —

inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent compare
matches between OCROA and TCNTO.

Figure 13-6. Fast PWM Mode, Timing Diagram

OCRnXx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

Y /
m//////
OCnx (COMNx1:0 = 2)

OCnx |_| (COMnNx1:0 = 3)
: . I VPN RN SN PN _,|
Period T2 = N I 7

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCOA pin.
Setting the COMOA1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMOA1:0 to three (See Table 13-3 on page 109). The actual
OCOA value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OCOA Register at the compare
match between OCROA and TCNTO, and clearing (or setting) the OCOA Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jak o

fOCnxPWM N- 256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCROA is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCROA equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COMO0A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCOA to toggle its logical level on each compare match (COMOA1:0 = 1). The waveform
generated will have a maximum frequency of focoa = foi 110/2 when OCROA is set to zero. This
feature is similar to the OCOA toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

A IIIEI% 105

4250G-CAN-09/05

13.7.4

106

AIMEL

Phase Correct PWM Mode

The phase correct PWM mode (WGMO01:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OCOA) is cleared on the compare match
between TCNTO and OCROA while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNTO value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 13-7.
The TCNTO value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNTO slopes represent compare matches between OCROA and TCNTO.

Figure 13-7. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

-
-
-
-
-
-

oINS N

OCnx |_| |_ (COMnx1:0 = 2)
OCnx |—| |—| |— (COMNx1:0 = 3)
Period I 1 I 2 I 3 I

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The
interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OCOA pin. Setting the COMO0OA1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COMOA1:0 to three (See Table 13-4 on page 110).
The actual OCOA value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OCOA Register at the
compare match between OCROA and TCNTO when the counter increments, and setting (or
clearing) the OCOA Register at compare match between OCROA and TCNTO when the counter

AT 90 C /AN 123 500000

4250G-CAN-09/05

decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

~ Jek o

fOCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCROA is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

13.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set. Figure 13-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 13-8. Timer/Counter Timing Diagram, no Prescaling

clkyo —\——\——\——\—
clky,
(clk,o/1)
TCNTn o MAX -1 MAX BOTTOM BOTTOM + 1
TOVn

Figure 13-9 shows the same timing data, but with the prescaler enabled.

Figure 13-9. Timer/Counter Timing Diagram, with Prescaler (fyy ,,0/8)

e IR
(0?22/"8) r r

TCNTn MAX -1 MAX BOTTOM >< BOTTOM + 1

TOVn

A mEl% 107

4250G-CAN-09/05

AIMEL

Figure 13-10 shows the setting of OCFOA in all modes except CTC mode.

Figure 13-10. Timer/Counter Timing Diagram, Setting of OCFOA, with Prescaler (f ,0/8)

oo IR
(c?liﬁ/”s) r r

TCNTn OCRnx - 1 OCRnNx OCRnx + 1 >< OCRnx + 2
OCRnx OCRnx Value
OCFnx

Figure 13-11 shows the setting of OCFOA and the clearing of TCNTO in CTC mode.

Figure 13-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (foy_0/8)

o AT
<c?:f§/"8> r r

TCNTn
(CTC)

TOP -1 TOP BOTTOM X BOTTOM + 1

OCRnNx TOP

OCFnx

13.9 8-bit Timer/Counter Register Description

13.9.1 Timer/Counter0 Control Register A - TCCROA

Bit 7 6 5 4 3 2 1 0

| FocoA | weMmoo | COMOA1 | COMOAO | WGMO1 | CS02 | CSO1 CS00] TCCROA
Read/Write W RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - FOCOA: Force Output Compare A

The FOCOA bit is only active when the WGMOO bit specifies a non-PWM mode. However, for
ensuring compatibility with future devices, this bit must be set to zero when TCCROA is written
when operating in PWM mode. When writing a logical one to the FOCOA bit, an immediate com-
pare match is forced on the Waveform Generation unit. The OCOA output is changed according
to its COMOA1:0 bits setting. Note that the FOCOA bit is implemented as a strobe. Therefore it is
the value present in the COMOA1:0 bits that determines the effect of the forced compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCROA as TOP.

The FOCOA bit is always read as zero.

108 A T90C AN 1 25 1 —

* Bit 6, 3 - WGMO01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 13-1 and “Modes of Operation”

on page 103.
Table 13-1. Waveform Generation Mode Bit Description("
Mode WGMO01 WGMO00 | Timer/Counter _ TOP Update of TOVO Flag
(CTCO) (PWMO0) | Mode of Operation OCROA at Set on

0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCROA Immediate MAX
3 1 1 Fast PWM OxFF TOP MAX

Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

e Bit 5:4 — COMO01:0: Compare Match Output Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COMO0A1:0
bits are set, the OCOA output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOA pin
must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOA1:0 bits depends on the
WGMO01:0 bit setting. Table 13-2 shows the COMOA1:0 bit functionality when the WGMO01:0 bits
are set to a normal or CTC mode (non-PWM).

Table 13-2. Compare Output Mode, non-PWM Mode

COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Toggle OCOA on compare match
1 0 Clear OCOA on compare match
1 1 Set OCOA on compare match

Table 13-3 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to fast PWM
mode.

Table 13-3. Compare Output Mode, Fast PWM Mode("

COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Reserved
1 0 Clear OCOA on compare match.
Set OCOA at TOP
1 1 Set OCOA on compare match.

Clear OCOA at TOP

A IIIEI% 109

4250G-CAN-09/05

AIMEL

Note: 1. A special case occurs when OCROA equals TOP and COMOA1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 104
for more details.

Table 13-4 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to phase cor-

rect PWM mode.

Table 13-4. Compare Output Mode, Phase Correct PWM Mode("

COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Reserved
1 0 Clear OCOA on compare match when up-counting.
Set OCOA on compare match when downcounting.
1 1 Set OCOA on compare match when up-counting.

Clear OCOA on compare match when downcounting.

Note: 1. A special case occurs when OCROA equals TOP and COMO0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 106 for more details.

* Bit 2:0 — CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 13-5. Clock Select Bit Description

CS02 CS01 CS00 | Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clk;,o/(No prescaling)
0 1 0 clkyo/8 (From prescaler)
0 1 1 clk,,o/64 (From prescaler)
1 0 0 clk,,o/256 (From prescaler)
1 0 1 clk,,o/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

13.9.2 Timer/Counter0 Register - TCNTO

Bit 7 6 5 4 3 2 1 0

I TCNTO[7:0] I TCNTO
Read/Write R/W R/IW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a compare match between TCNTO and the OCROA Register.

110 AT90 C AN 1 25 1 —

4250G-CAN-09/05

13.9.3 Output Compare Register A — OCR0OA

Bit 7 6 5 4 3 2 1 0

| OCROA[7:0] | ocro
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOA pin.

13.94 Timer/Counter0 Interrupt Mask Register — TIMSKO

Bit 7 6 5 4 3 2 1 0
| - | - | - | - - - OCIEOA | TOIEO | TIMSKO

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit7..2 — Reserved Bits
These are reserved bits for future use.

e Bit 1 — OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/CounterO occurs, i.e., when the OCFOA bit is set in the
Timer/Counter O Interrupt Flag Register — TIFRO.

e Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEOQ bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOVO bit is set in the Timer/Counter 0 Inter-

rupt Flag Register — TIFRO.

13.9.5 Timer/Counter0 Interrupt Flag Register — TIFRO

Bit 7 6 5 4 3 2 1 0
| - | - | | - OCFOA | TOVo | TIFRO

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 1 — OCFOA: Output Compare Flag 0 A

The OCFOA bit is set (one) when a compare match occurs between the Timer/Counter0 and the
data in OCROA — Output Compare Register0. OCFOA is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCFOA is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIEOA (Timer/Counter0 Compare match Interrupt
Enable), and OCFOA are set (one), the Timer/Counter0 Compare match Interrupt is executed.

* Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOVO is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIEO (Timer/CounterO Overflow Inter-
rupt Enable), and TOVO are set (one), the Timer/Counter0 Overflow interrupt is executed. In
phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at

0x00.

A IIIEI% 111

4250G-CAN-09/05

AIMEL

14. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)

14.1 Features

14.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:

* True 16-bit Design (i.e., Allows 16-bit PWM)

* Three independent Output Compare Units

* Double Buffered Output Compare Registers

* One Input Capture Unit

* Input Capture Noise Canceler

* Clear Timer on Compare Match (Auto Reload)

* Glitch-free, Phase Correct Pulse Width Modulator (PWM)

* Variable PWM Period

* Frequency Generator

* External Event Counter

* Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1 for Timer/Counter1 - TOV3,
OCF3A, OCF3B, and ICF3 for Timer/Counter3)

Many register and bit references in this section are written in general form.

* A lower case “n” replaces the Timer/Counter number, in this case 1 or 3. However, when
using the register or bit defines in a program, the precise form must be used, i.e., TCNT1 for
accessing Timer/Counter1 counter value and so on.

* A lower case “X” replaces the Output Compare unit channel, in this case A, B or C. However,
when using the register or bit defines in a program, the precise form must be used, i.e.,
OCRNA for accessing Timer/Countern output compare channel A value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 14-1. For the actual
placement of 1/O pins, refer to “Pinout AT90CAN128 - TQFP” on page 4. CPU accessible 1/0
Registers, including I/O bits and 1/O pins, are shown in bold. The device-specific I/O Register
and bit locations are listed in the “16-bit Timer/Counter Register Description” on page 134.

112 AT90 C AN 1 25 1 —

4250G-CAN-09/05

AT90CAN128

Figure 14-1. 16-bit Timer/Counter Block Diagram"

Count TOVn
>
Clear (Int.Req.)

Control Logic
Direction clk, Clock Select

Edge
Detector

A
TOP | BOTTOM

Yyvy /__\

———] (From Prescaler)
imer/Counter

TCNTn

OCFnA

r(lnt.Req.)
o | Waveform »| OCnA

Generation

OCFnB
(Int.Req.)

Values

Waveform

> .
Generation

» OCnB

OCFnC
(Int.Req.)

DATABUS

Waveform
Generation

| OCnC

(From Analog
Comparator Ouput)

ICFn (Int.Req.)

EEEEEEEESNEEEEEEEEEEEENEE

Edge Noise

ICRn Detector Canceler

-L

ICPn

TCCRnA | | TCCRnB | | TCCRnC

Note: 1. Refer to Figure 2-2 on page 4, Table 10-6 on page 75, and Table 10-15 on page 82 for
Timer/Counter1 and 3 pin placement and description.

14.2.1 Registers

The Timer/Counter (TCNTn), Output Compare Registers (OCRnx), and Input Capture Register
(ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16-bit
registers. These procedures are described in the section “Accessing 16-bit Registers” on page
115. The Timer/Counter Control Registers (TCCRnx) are 8-bit registers and have no CPU
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible
in the Timer Interrupt Flag Register (TIFRn). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

A mEl% 113

4250G-CAN-09/05

14.2.2

14.2.3

114

Definitions

Compatibility

AIMEL

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCRnx) are compared with the Timer/Counter
value at all time. The result of the compare can be used by the Waveform Generator to generate
a PWM or variable frequency output on the Output Compare pin (OCnx). See “Output Compare
Units” on page 122.. The compare match event will also set the Compare Match Flag (OCFnx)
which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (See
“Analog Comparator” on page 267.) The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCRNA Register, the ICRn Register, or by a set of fixed values. When using
OCRDNA as TOP value in a PWM mode, the OCRNnA Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used
as an alternative, freeing the OCRnNA to be used as PWM output.

The following definitions are used extensively throughout the section:

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.
MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65,535).

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF,
or Ox03FF, or to the value stored in the OCRNA or ICRn Register. The assignment is
dependent of the mode of operation.

TOP

The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit
AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version
regarding:

+ All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt

Registers.

* Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.

* Interrupt Vectors.
The following control bits have changed name, but have same functionality and register location:

* PWMnO is changed to WGMnO.
* PWMn1 is changed to WGMn1.
* CTCn is changed to WGMn2.
The following registers are added to the 16-bit Timer/Counter:
+ Timer/Counter Control Register C (TCCRnC).
» Output Compare Register C, OCRnCH and OCRnCL, combined OCRNC.

AT 90 C /AN 123 500000

4250G-CAN-09/05

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

The following bits are added to the 16-bit Timer/Counter Control Registers:

» COMNC1:0 are added to TCCRnA.
* FOCnA, FOCnB and FOCNC are added to TCCRnC.
* WGMn3 is added to TCCRnB.
Interrupt flag and mask bits for output compare unit C are added.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

14.3 Accessing 16-bit Registers

4250G-CAN-09/05

The TCNTn, OCRnx, and ICRn are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnx 16-bit
registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

A IIIEI% 115

14.3.1

116

AIMEL

Code Examples

The following code examples show how to access the 16-bit timer registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCRnx and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Assembly Code Examples"

. Set TCNTn to OxO1FF

| di r17, o0x01

| di r16, OxFF

sts TCNTnH, r 17

sts TCNTNnL, r 16

: Read TCNTn into r17:r16
| ds r16, TCNTnL

| ds r17, TCNTnH

C Code Examples™

unsigned int i;

[* Set TCNTn to OxO1lFF */
TCNTn = Ox1FF;

/* Read TCNTn into i */

i = TCNTn;

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit timer registers,
then the result of the access outside the interrupt will be corrupted. Therefore, when both the
main code and the interrupt code update the temporary register, the main code must disable the
interrupts during the 16-bit access.

AT 90 C /AN 123 500000

4250G-CAN-09/05

4250G-CAN-09/05

The following code examples show how to do an atomic read of the TCNTn Register contents.

Reading any of the OCRnx or ICRn Registers can be done by using the same principle.

Assembly Code Example("

TI ML6_ReadTCNTn:
; Save global interrupt flag
in r 18, SREG
; Disable interrupts
cli
: Read TCNTn into r17:r16
| ds r16, TCNTnL
| ds r17, TCNTnH
; Restore global interrupt flag
out SREG, r 18
ret

C Code Example!")

unsi gned int TIML6_ReadTCNTn(voi d)
{

unsi gned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */

i = TCNTn;

/* Restore global interrupt flag */

SREG = sreg;

return i;

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

ATMEL

117

AIMEL

The following code examples show how to do an atomic write of the TCNTn Register contents.
Writing any of the OCRnx or ICRn Registers can be done by using the same principle.

Assembly Code Example("

TIML6_WiteTCNTn:
; Save global interrupt flag
in r18, SREG
; Disable interrupts

cli

; Set TCNTn to rl17:r16

sts TCNTnH, r17

sts TCNTnL,r16

; Restore global interrupt flag
out SREG r18

ret

C Code Example!")

void TIML6_WiteTCNTn(unsigned int i)
{
unsi gned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG
/* Disable interrupts */
_CLI();
/* Set TCNTn to i */
TCNTn = i;
/* Restore global interrupt flag */
SREG = sreg;

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNTn.

14.3.2 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

14.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits
located in the Timer/Counter control Register B (TCCRNB). For details on clock sources and
prescaler, see “Timer/Counter3/1/0 Prescalers” on page 95.

118 AT90C AN 1 25 1 —

AT90CAN128

14.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

DATA B -bi
- US (8-bit) > o
n
(Int.Req.)
Clock Select
_ Count Edge Tn
[TONTnH(sbity | TCNTL(8bity || Clear | ek, Detector [~
- Control Logic [«
TCNTn (16-bit Counter) | ¢ Drection
(From Prescaler)
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNTn by 1.
Direction Select between increment and decrement.
Clear Clear TCNTn (set all bits to zero).
clks, Timer/Counter clock.
TOP Signalize that TCNTn has reached maximum value.
BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight
bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNTnH I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). The clky, can be generated from an external or internal clock source,
selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the
timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OCnx. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 125.

A IIIEI% 119

4250G-CAN-09/05

AIMEL

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

14.6 Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICPn pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 14-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded.

Figure 14-3. Input Capture Unit Block Diagram

DATA BUS (s-bit
- T (8-bit) >
TEMP (8-bit)
ICRnH (8-bit) | ICRnL (8-bit) | [TCNTnH@8-bity [TONTNL Bbit) |
1 \WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
ICNC3 ICES3
Noise Edge
ICP3 > Canceler ™ Detector » |CF3 (Int.Req.)
ACIC* ICNC1 ICES1
ICP1 > ¢ ¢
Noise Edge .
Canceler | Detector »-ICF1 (Int.Req.)
ACO*

Analog
Comparator

Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 IC Unit— not
Timer/Counter3.

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNTn) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at
the same system clock as the TCNTn value is copied into ICRn Register. If enabled (ICIEn = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICFn flag is automatically

120 A T90C AN 1 25 1 —

cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by
writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low
byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICRnH I/O location it will
access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes
the ICRn Register for defining the counter’'s TOP value. In these cases the Waveform Genera-
tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH 1/O location
before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 115.

14.6.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICPn). Only
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the Tn pin (Figure 12-1 on page 96). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICRn to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.

14.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICRn Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

14.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high

A IIIEI% 121

4250G-CAN-09/05

AIMEL

priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICRn
Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICFn flag is not required (if an interrupt handler is used).

14.7 Output Compare Units

122

The 16-bit comparator continuously compares TCNTn with the Output Compare Register
(OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output
Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCFnx flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See “Modes of Operation” on page 125.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 14-4 shows a block diagram of the Output Compare unit. The elements of the block dia-
gram that are not directly a part of the Output Compare unit are gray shaded.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Figure 14-4. Output Compare Unit, Block Diagram

DATA BUS (g-bit
1 1 i = >
TEMP (8-bit)
—] ¥ ¥
| oCRnxH Buf.(8-bit) | OCRnxL But.(8-bit) | [ToNTnH bty | TCNTRL (8-bit)
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
|
—Y ‘
OCRnxH (8-bit) | OCRnxL (8-bit) |
OCRnNx (16-bit Register)
| = (16-bit Comparator) |
> OCFnx (Int.Req.)
y
TOP —P
Waveform Generator OCnx
BOTTOM ——

WGMn3:0 COMnx1:0

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCRnx Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCRnx directly. The content of the OCRnx (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICRn Register). Therefore OCRnx is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be
written first. When the high byte 1/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 115.

14.71 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCnx) bit. Forcing compare match will not set the
OCFnx flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare

A IIIEI% 123

4250G-CAN-09/05

14.7.2

14.7.3

AIMEL

match had occurred (the COMnx1:0 bits settings define whether the OCnx pin is set, cleared or
toggled).

Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCRnNx to be initialized to the
same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNTn when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to OXFFFF.
Similarly, do not write the TCNTn value equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-
pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value.
Changing the COMnx1:0 bits will take effect immediately.

14.8 Compare Match Output Unit

124

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses
the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next compare match.
Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 14-5 shows a simplified
schematic of the logic affected by the COMnx1:0 bit setting. The 1/0 Registers, 1/0 bits, and 1/0
pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR
and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the OCnx
state, the reference is for the internal OCnx Register, not the OCnx pin. If a system reset occur,
the OCnx Register is reset to “0”.

AT 90 C /AN 123 500000

4250G-CAN-09/05

14.8.1

14.8.2

AT90CAN128

Figure 14-5. Compare Match Output Unit, Schematic

—D

COMnx1
COMnx0 Waveform
D Q
FOCnx Generator
— 1
OCnx
OCnx 0 Pin
A
»D Q
" [
-
?,é PORT
2
o »D Q
\ DDR
clk,q

Compare Output Function

The general I/O port function is overridden by the Output Compare (OCnx) from the Waveform
Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 14-1, Table 14-2 and Table 14-3 for
details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the out-
put is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of
operation. See “16-bit Timer/Counter Register Description” on page 134.

The COMnx1:0 bits have no effect on the Input Capture unit.

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the
OCnx Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 14-1 on page 135. For fast PWM mode refer to Table 14-2 on
page 135, and for phase correct and phase and frequency correct PWM refer to Table 14-3 on
page 136.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCnx strobe bits.

14.9 Modes of Operation

4250G-CAN-09/05

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output
mode (COMnx1:0) bits. The Compare Output mode bits do not affect the counting sequence,

A IIIEI% 125

14.9.1

14.9.2

126

Normal Mode

AIMEL

while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare
match (See “Compare Match Output Unit” on page 124.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 133.

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = OxFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in
the same timer clock cycle as the TCNTn becomes zero. The TOVn flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOVn flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

AT90CAN128

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 =
12). The OCRNA or ICRn define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-6. The counter value (TCNTn)
increases until a compare match occurs with either OCRNnA or ICRn, and then counter (TCNTn)
is cleared.

Figure 14-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set

T or ICFn Interrupt Flag Set
ﬁ (Interrupt on TOP)
A A _
_ _ _ ¥
_ \ B

TCNTn / a4

?nggle) EEn (COMNAT:0 = 1)

Period I 1 I 2 I 3 I 4 I

4250G-CAN-09/05

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCFnA or ICFn flag according to the register used to define the TOP value. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing the TOP to a value close to BOTTOM when the counter is running with none or a low
prescaler value must be done with care since the CTC mode does not have the double buffering
feature. If the new value written to OCRNA or ICRn is lower than the current value of TCNTn, the
counter will miss the compare match. The counter will then have to count to its maximum value
(OxFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many
cases this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCRNA for defining TOP (WGMn3:0 = 15) since the OCRNA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COMNA1:0 = 1). The OCnA value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OCnA = 1). The waveform generated will have a maximum fre-
quency of focna = ok 110/2 when OCRNA is set to zero (0x0000). The waveform frequency is
defined by the following equation:

p _ Jeik 1o
70Cnd 2. N.(1+ OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

14.9.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is set on
the compare match between TCNTn and OCRnx, and cleared at TOP. In inverting Compare
Output mode output is cleared on compare match and set at TOP. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct
and phase and frequency correct PWM modes that use dual-slope operation. This high fre-
quency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or
OCRNA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the max-
imum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

R _ log(ToP+1)
FPWM Iog(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values OxO0FF, Ox01FF, or 0x03FF (WGMn3:0 =5, 6, or 7), the value in ICRn (WGMn3:0 =
14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 14-7. The figure

A IIIEI% 127

4250G-CAN-09/05

AIMEL

shows fast PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn value is in the
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent compare matches between OCRnx and TCNTn. The OCnx interrupt flag will be
set when a compare match occurs.

Figure 14-7. Fast PWM Mode, Timing Diagram

OCRNx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

P

Y Y Y

w V]

OCnx J J
OCnx [] (COMNx1:0 = 3)

oot i}

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition
the OCnA or ICFn flag is set at the same timer clock cycle as TOVn is set when either OCRnA or
ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

(COMnx1:0 = 2)

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCRnNx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP
value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICRn value written is lower than the current value of TCNTn. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCRNA Register however, is double buffered. This feature allows the OCRnA I/O location
to be written anytime. When the OCRNA 1/O location is written the value written will be put into
the OCRnNA Buffer Register. The OCRnA Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is done
at the same timer clock cycle as the TCNTn is cleared and the TOVn flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA
as TOP is clearly a better choice due to its double buffer feature.

128 A T90C AN 1 25 1 —

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMnx1:0 to three (see Table on page 135). The actual OCnx
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_0OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at
the compare match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jak o
Jocwpwn = (11 TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COMnNx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1). The waveform
generated will have a maximum frequency of focna = fak 1o/2 When OCRNA is set to zero
(0x0000). This feature is similar to the OCnA toggle in CTC mode, except the double buffer fea-
ture of the Output Compare unit is enabled in the fast PWM mode.

14.9.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is
cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRNA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

_ log(TOP+1)
Recpwn = —iogy —

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or Ox03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn
(WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-8. The figure
shows phase correct PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn

A IIIEI% 129

4250G-CAN-09/05

AIMEL

value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx inter-
rupt flag will be set when a compare match occurs.

Figure 14-8. Phase Correct PWM Mode, Timing Diagram

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

P 2
TCNTn \\/\\/

/
OCnx (COMnNx1:0 = 2)
OCnx (COMnx1:0 = 3)
Period I 1 J 2 X 3 . 4 |

| |

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When
either OCRNA or ICRn is used for defining the TOP value, the OCnA or ICFn flag is set accord-
ingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer
value (at TOP). The interrupt flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCRnNx Registers are written. As the third period shown in Figure 14-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCRnx Reg-
ister. Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COMnx1:0 to three (See Table on page 136). The
actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as

130 A T90C AN 1 25 1 —

output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Regis-
ter at the compare match between OCRnx and TCNTn when the counter increments, and
clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

_ Jakio
TocnxpcPwm = 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

14.9.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 14-
8 and Figure 14-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICRn or OCRNA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and
the maximum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM resolution in bits can
be calculated using the following equation:

_ log(TOP+1)
Rercrwm = —og@y)

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 14-9. The figure shows phase and frequency correct
PWM mode when OCRnNA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx interrupt flag will be set when a
compare match occurs.

A IIIEI% 131

4250G-CAN-09/05

AIMEL

Figure 14-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnx/TOP Update and
TOVn Interrupt Flag Set
(Interrupt on Bottom)

AN V
TCNTn

OCnx (COMNX1:0 = 2)
OCnx (COMnXx1:0 = 3)
Period I 1 I 2 I 3 I 4 I

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn
is used for defining the TOP value, the OCnA or ICFn flag set when TCNTn has reached TOP.
The interrupt flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

As Figure 14-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table on
page 136). The actual OCnx value will only be visible on the port pin if the data direction for the
port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing)
the OCnx Register at the compare match between OCRnx and TCNTn when the counter incre-
ments, and clearing (or setting) the OCnx Register at compare match between OCRnx and
TCNTn when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

~ Jakio
JocnxprcPwm = 53 T0P

132 AT90C AN 1 25 1 —

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

14.10 Timer/Counter Timing Diagrams

4250G-CAN-09/05

The Timer/Counter is a synchronous design and the timer clock (clky,,) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for
modes utilizing double buffering). Figure 14-10 shows a timing diagram for the setting of OCFnx.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

clk,q

clk,
(clk,o/1)
TCNTn —X OCRnx - 1 X OCRnx OCRnx + 1 OCRnx + 2
OCRnNx OCRnx Value

OCFnx

Figure 14-11 shows the same timing data, but with the prescaler enabled.

Figure 14-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (f; ,0/8)

e A
(c?itg/"s> F r r r

TCNTn X OCRnNx - 1 X OCRnNx OCRnNx + 1 X OCRnx + 2
OCRnNx OCRnNXx Value
OCFnx

Figure 14-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOVn flag at BOTTOM.

A IIIEI% 133

AIMEL

Figure 14-12. Timer/Counter Timing Diagram, no Prescaling

clk,o

clk,
(clk,o/1)

(CTCT§?IQWM) >< TOP - 1 TOP BOTTOM BOTTOM + 1

TCNTn T
(PC and PFC PWIM) _>< TOP -1 TOP TOP -1 TOP -2

TOVn (FPWM)
and ICFn (if used
as TOP)

OCRnNx
(Update at TOP)

Old OCRnx Value New OCRnx Value
! !

Figure 14-13 shows the same timing data, but with the prescaler enabled.

Figure 14-13. Timer/Counter Timing Diagram, with Prescaler (fg ;,0/8)

S A M A
(S::Q%) F r r r

TCNTn
(CTC and FPWM) _|

TOP -1 TOP BOTTOM BOTTOM + 1

><|

TCNTn T _
(PCandPFCPWM)_X TOP - 1 TOP TOP - 1 TOP -2

TOVn(FPWM)

and ICF n(if used
as TOP)

(Upcgtiztn?om Old OCRnx Value New OCRnx Value

14.11 16-bit Timer/Counter Register Description

14.11.1 Timer/Counter1 Control Register A— TCCR1A

Bit 7 6 5 4 3 2 1 0
| com1a1 | com1Ao | com1B1 | COM1BO | COM1C1 | COM1CO | WGM11 | WGM10 | TCCR1A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14.11.2 Timer/Counter3 Control Register A - TCCR3A

Bit 7 6 5 4 3 2 1 0
| comsa1 | comsao | com3B1 | COM3BO | COM3C1 | COM3CO | WGM31 | WGM30 | TCCR3A

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

134 AT90C AN 1 25 1 —

4250G-CAN-09/05

¢ Bit 7:6 — COMnA1:0: Compare Output Mode for Channel A
¢ Bit 5:4 — COMnB1:0: Compare Output Mode for Channel B

¢ Bit 3:2 - COMNnC1:0: Compare Output Mode for Channel C

The COMnA1:0, COMnB1:0 and COMnC1:0 control the Output Compare pins (OCnA, OCnB
and OCnC respectively) behavior. If one or both of the COMnA1:0 bits are written to one, the
OCnA output overrides the normal port functionality of the 1/0O pin it is connected to. If one or
both of the COMnB1:0 bit are written to one, the OCnB output overrides the normal port func-
tionality of the 1/O pin it is connected to. If one or both of the COMNnC1:0 bit are written to one,
the OCnC output overrides the normal port functionality of the I/O pin it is connected to. How-
ever, note that the Data Direction Register (DDR) bit corresponding to the OCnA, OCnB or
OCnC pin must be set in order to enable the output driver.

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0 bits is
dependent of the WGMn3:0 bits setting. Table 14-1 shows the COMnx1:0 bit functionality when
the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 14-1. Compare Output Mode, non-PWM
COMnA1/COMnB1/ COMnA0/COMnBO/ Descriotion
COMNCH1 COMNCO P

0 0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

0 1 Toggle OCnA/OCnB/OCnC on Compare Match.

1 0 Clear OCnA/OCnB/OCNnC on Compare Match (Set
output to low level).

1 1 Set OCnA/OCnB/OCnC on Compare Match (Set
output to high level).

Table 14-2 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast

PWM mode.
Table 14-2. Compare Output Mode, Fast PWM ()
COMnA1/COMnB1/ COMnA0/COMNnBO/ Descriotion
COMnCA1 COMNCO P
0 0 Normal port operation, OCnA/OCnB/OCnC
disconnected.
WGMnN3=0: Normal port operation,
0 1 OCnA/OCnB/OCnC disconnected.
WGMn3=1: Toggle OCnA on Compare Match,
OCnB/OCnC reserved.
1 0 Clear OCnA/OCnB/OCnC on Compare Match
Set OCnA/OCnB/OCnC at TOP
1 1 Set OCnA/OCnB/OCnC on Compare Match
Clear OCnA/OCnB/OCnC at TOP

Note: 1.

A special case occurs when OCRnA/OCRNnB/OCRNC equals TOP and

COMnA1/COMNnB1/COMNC1 is set. In this case the compare match is ignored, but the set or
clear is done at TOP. See “Fast PWM Mode” on page 127. for more details.

4250G-CAN-09/05

ATMEL

135

136

AIMEL

Table 14-3 shows the COMnNx1:0 bit functionality when the WGMn3:0 bits are set to the phase
correct or the phase and frequency correct, PWM mode.

Table 14-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct

PWM

COMnA1/COMnB1/
COMnC1

COMnA0/COMNnBO/
COMnCoO

Description

0

0

Normal port operation, OCnA/OCnB/OCnC
disconnected.

WGMn3=0: Normal port operation,
OCnA/OCnB/OCnC disconnected.
WGMn3=1: Toggle OCnA on Compare Match,
OCnB/OCnC reserved.

Clear OCnA/OCnB/OCnC on Compare Match when
up-counting.

Set OCnA/OCnB/OCnC on Compare Match when
downcounting.

Set OCnA/OCnB/OCnC on Compare Match when up-
counting.

Clear OCnA/OCnB/OCnC on Compare Match when
downcounting.

Note: 1. A special case occurs when OCnA/OCnB/OCnC equals TOP and
COMNA1/COMNnB1/COMNCH1 is set. See “Phase Correct PWM Mode” on page 129. for more

details.

* Bit 1:0 - WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 14-4. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types
of Pulse Width Modulation (PWM) modes. (See “Modes of Operation” on page 125.).

AT 90 C /AN 123 500000

4250G-CAN-09/05

Table 14-4. Waveform Generation Mode Bit Description (")
WGMn2 WGMn1 WGMn0 | Timer/Counter Update of TOVn Flag
Mode | WGMn3 | ~1cn) | (PWMn1) | (PWMn0) | Mode of Operation TOP OCRnx at Set on

0 0 0 0 0 Normal OxFFFF | Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF | TOP BOTTOM
3 0 0 1 1 Ei\tN M, Phase Correct, 10- | 4 43rF | TOP BOTTOM
4 0 1 0 0 CTC OCRNA | Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit OxO0FF | TOP TOP

6 0 1 1 0 Fast PWM, 9-bit O0x01FF | TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF | TOP TOP

8 1 0 0 0 PWM, Phase and ICRn | BOTTOM BOTTOM

Frequency Correct
9 1 0 0 1 PWM, Phase and OCRnA | BOTTOM BOTTOM
Frequency Correct

10 1 0 1 0 PWM, Phase Correct ICRn TOP BOTTOM
1 1 0 1 1 PWM, Phase Correct OCRnA | TOP BOTTOM
12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICRn TOP TOP

15 1 1 1 1 Fast PWM OCRNA | TOP TOP

Note:

1.

The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

14.11.3 Timer/Counter1 Control Register B— TCCR1B

Bit 7 6 5 4 3 2 1 0
| ICNC1 | ICES1 | - |WGM13 WGM12 | CS12 cs11

Read/Write R/W R/W R/W R/W RIW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14.11.4 Timer/Counter3 Control Register B— TCCR3B

Bit 7 6 5 4 3 2 1 0
| ICNC3 | ICES3 | - |WGM33 WGM32 CS32 Cs31

Read/Write R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

4250G-CAN-09/05

e Bit 7 - ICNCn: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICPn) is filtered. The filter function requires four
successive equal valued samples of the ICPn pin for changing its output. The Input Capture is

therefore delayed by four Oscillator cycles when the noise canceler is enabled.

* Bit 6 — ICESn: Input Capture Edge Select

ATMEL

cs10 | TCCR1B

CS30 | TCCR3B

137

14.11.5

138

AIMEL

This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a capture
event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the
Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the
TCCRnNA and the TCCRnB Register), the ICPn is disconnected and consequently the Input Cap-
ture function is disabled.

* Bit 5 - Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCRnB is written.

¢ Bit 4:3 — WGMn3:2: Waveform Generation Mode
See TCCRnA Register description.

e Bit2:0 - CSn2:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
14-10 and Figure 14-11.

Table 14-5. Clock Select Bit Description

CSn2 CSn1 CSn0 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk,,o/8 (From prescaler)
0 1 1 clk;,o/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk,o/1024 (From prescaler)
1 1 0 External clock source on Tn pin. Clock on falling edge.
1 1 1 External clock source on Tn pin. Clock on rising edge.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

Timer/Counter1 Control Register C - TCCR1C

Bit 7 6 5 4 3 2 1 0
| Focia | FociB | Focic | - - - - -] Tccric

Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

AT 90 C /AN 123 500000

4250G-CAN-09/05

14.11.6 Timer/Counter3 Control Register C — TCCR3C

Bit 7 6 5 4 3 2 1 0
| Focsa | Focse | Focsc | -] Tccrac

Read/Write RIW RIW RIW R R R

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCnA: Force Output Compare for Channel A
* Bit 6 - FOCnB: Force Output Compare for Channel B

e Bit 5- FOCnC: Force Output Compare for Channel C

The FOCnA/FOCNnB/FOCNC bits are only active when the WGMn3:0 bits specifies a non-PWM
mode. However, for ensuring compatibility with future devices, these bits must be set to zero
when TCCRnNA is written when operating in a PWM mode. When writing a logical one to the
FOCnA/FOCNnB/FOCNC bit, an immediate compare match is forced on the Waveform Genera-
tion unit. The OCnA/OCnB/OCnC output is changed according to its COMnx1:0 bits setting.
Note that the FOCnA/FOCNnB/FOCNC bits are implemented as strobes. Therefore it is the value
present in the COMnx1:0 bits that determine the effect of the forced compare.

A FOCnA/FOCNB/FOCNC strobe will not generate any interrupt nor will it clear the timer in Clear
Timer on Compare match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCNB/FOCNC bits are always read as zero.

14.11.7 Timer/Counter1 — TCNT1H and TCNT1L

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNT1IL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

14.11.8 Timer/Counter3 — TCNT3H and TCNT3L

Bit 7 6 5 4 3 2 1 0
TCNT3[15:8] TCNT3H
TCNT3[7:0] TCNT3L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter /O locations (TCNTnH and TCNTnL, combined TCNTn) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 115.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a com-
pare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following timer clock
for all compare units.

A IIIEI% 139

4250G-CAN-09/05

AIMEL

14.11.9 Output Compare Register A— OCR1AH and OCR1AL

Bit 7 6 5 4 3 2 1 0
OCR1A[15:8] OCR1AH
OCR1A[7:0] OCR1AL
Read/Write R/W R/IW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.11.10 Output Compare Register B— OCR1BH and OCR1BL

Bit 7 6 5 4 3 2 1 0
OCR1B[15:8] OCR1BH
OCR1BJ[7:0] OCR1BL
Read/Write R/W R/W R/W RW R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

14.11.11 Output Compare Register C - OCR1CH and OCR1CL

Bit 7 6 5 4 3 2 1 0
OCR1C[15:8] OCR1CH
OCR1C[7:0] OCRICL

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

14.11.12 Output Compare Register A— OCR3AH and OCR3AL

Bit 7 6 5 4 3 2 1 0
OCR3A[15:8] OCR3AH
OCR3A[7:0] OCR3AL
Read/Write R/W R/IW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.11.13 Output Compare Register B— OCR3BH and OCR3BL

Bit 7 6 5 4 3 2 1 0
OCR3BI[15:8] OCR3BH
OCR3BJ[7:0] OCR3BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

14.11.14 Output Compare Register C — OCR3CH and OCR3CL

Bit 7 6 5 4 3 2 1 0
OCR3C[15:8] OCR3CH
OCR3CJ[7:0] OCR3CL
Read/Write R/W R/W R/W R/IW R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary high byte register (TEMP). This temporary register is shared by all the other 16-
bit registers. See “Accessing 16-bit Registers” on page 115.

120 AT90C AN 1 25 1 —

14.11.15 Input Capture Register — ICR1H and ICR1L

14.11.16

Bit 7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICR1L
Read/Write R/W R/IW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Input Capture Register — ICR3H and ICR3L

Bit 7 6 5 4 3 2 1 0
ICR3[15:8] ICR3H
ICR3[7:0] ICR3L
Read/Write R/W R/W R/IW RIW R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the
ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 115.

14.11.17 Timer/Counter1 Interrupt Mask Register — TIMSK1

Bit 7 6 5 4 3 2 1 0
I - | - | et | - OCIE1C | OCIE1B | OCIE1A | TOIE1 | TIMSK1

Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14.11.18 Timer/Counter3 Interrupt Mask Register — TIMSK3

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0
I - | - | wcEes | - OCIE3C | OCIE3B | OCIE3A | TOIE3 | TIMSK3

Read/Write R R RIW R RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7..6 — Reserved Bits
These bits are reserved for future use.

e Bit 5 - ICIEn: Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Input Capture interrupt is enabled. The corresponding Interrupt
Vector (See “Interrupts” on page 59.) is executed when the ICFn flag, located in TIFRn, is set.

¢ Bit 4 — Reserved Bit
This bit is reserved for future use.

¢ Bit 3 - OCIEnC: Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 59.) is executed when the OCFnC flag, located in
TIFRnN, is set.

A IIIEI% 141

AIMEL

e Bit 2 - OCIEnB: Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 59.) is executed when the OCFnB flag, located in
TIFRnN, is set.

¢ Bit 1 — OCIEnA: Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 59.) is executed when the OCFnA flag, located in
TIFRnN, is set.

¢ Bit 0 — TOIEn: Timer/Counter Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding Interrupt Vector
(See “Interrupts” on page 59.) is executed when the TOVn flag, located in TIFRn, is set.

14.11.19 Timer/Counter1 Interrupt Flag Register — TIFR1

Bit 7 6 5 4 3 2 1 0

| - | - [ek | - OCFI1C | OCF1B | OCF1A | TOVi | TIFR1
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.11.20 Timer/Counter3 Interrupt Flag Register — TIFR3

Bit 7 6 5 4 3 2 1 0

I - | - | i | - OCF3C | OCF3B | OCF3A | TOV3 | TIFR3
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..6 — Reserved Bits
These bits are reserved for future use.

¢ Bit 5 - ICFn: Input Capture Flag

This flag is set when a capture event occurs on the ICPn pin. When the Input Capture Register
(ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn flag is set when the
counter reaches the TOP value.

ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICFn can be cleared by writing a logic one to its bit location.

¢ Bit 4 — Reserved Bit
This bit is reserved for future use.

* Bit 3 - OCFnC: Output Compare C Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output
Compare Register C (OCRNC).

Note that a Forced Output Compare (FOCnC) strobe will not set the OCFnC flag.

OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is exe-
cuted. Alternatively, OCFnC can be cleared by writing a logic one to its bit location.

142 AT90C AN 1 25 1 —

4250G-CAN-09/05

4250G-CAN-09/05

* Bit 2 - OCFnB: Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output
Compare Register B (OCRnB).

Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB flag.
OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is exe-

cuted. Alternatively, OCFnB can be cleared by writing a logic one to its bit location.

* Bit 1 — OCFnA: Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output
Compare Register A (OCRNA).

Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA flag.
OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is exe-

cuted. Alternatively, OCFnA can be cleared by writing a logic one to its bit location.

* Bit 0 — TOVn: Timer/Counter Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes,
the TOVn flag is set when the timer overflows. Refer to Table 14-4 on page 137 for the TOVn
flag behavior when using another WGMn3:0 bit setting.

TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is executed.
Alternatively, TOVn can be cleared by writing a logic one to its bit location.

A IIIEI% 143

AIMEL

15. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

15.1 Features

15.2 Overview

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The main
features are:

* Single Channel Counter

* Clear Timer on Compare Match (Auto Reload)

* Glitch-free, Phase Correct Pulse Width Modulator (PWM)

* Frequency Generator

* 10-bit Clock Prescaler

* Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)

* Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

Many register and bit references in this section are written in general form.

* A lower case “n” replaces the Timer/Counter number, in this case 2. However, when using
the register or bit defines in a program, the precise form must be used, i.e., TCNT2 for
accessing Timer/Counter2 counter value and so on.

* A lower case “X” replaces the Output Compare unit channel, in this case A. However, when
using the register or bit defines in a program, the precise form must be used, i.e., OCR2A for
accessing Timer/Counter2 output compare channel A value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 15-1. For the actual
placement of I/O pins, refer to Figure 2-2 on page 4. CPU accessible I/O Registers, including 1/0
bits and I/O pins, are shown in bold. The device-specific /0 Register and bit locations are listed
in the “8-bit Timer/Counter Register Description” on page 155.

144 ATI0C AN 2 S

4250G-CAN-09/05

Figure 15-1. 8-bit Timer/Counter2 Block Diagram

A
< :: TCCRnx
count > TOVn
clear (IntReq.)
Control Logic
direction clky,
1 [—{TOSC2
BOTTOM TIC
Oscillator
Prescaler
Yvy TOSC1

Timer/Counter
4—+{ TCNTn | [=0]
=0

* OCnx clkyo
() (Int.Req.)
i LI f
— Waveform

|<£ |:__| "| Generation | OCnx
< A
o

<->| OCRnx

. [— clk o
Synchronized Status flags

* Synchronization Unit

[f—clk g

Status flags 9
J = ASSRn A

asynchronous mode
select (ASn)

A

Y

4

\

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Inter-
rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register
(TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2).
TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkry).

The double buffered Output Compare Register (OCR2A) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC2A). See “Output
Compare Unit” on page 147. for details. The compare match event will also set the compare flag
(OCF2A) which can be used to generate an Output Compare interrupt request.

A IIIEI% 145

4250G-CAN-09/05

15.2.1 Definitions

AIMEL

The following definitions are used extensively throughout the section:

BOTTOM | The counter reaches the BOTTOM when it becomes zero (0x00).
MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCR2A Register. The assignment is depen-
dent on the mode of operation.

15.3 Timer/Counter Clock Sources

15.4 Counter Unit

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source is selected by the clock select logic which is controlled by the
clock select (CS22:0) bits located in the Timer/Counter control register (TCCR2).The clock
source clky, is by default equal to the MCU clock, clk,o. When the AS2 bit in the ASSR Register
is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to
TOSC1 and TOSC2 or directly from TOSC1. For details on asynchronous operation, see “Asyn-
chronous Status Register — ASSR” on page 158. For details on clock sources and prescaler, see
“Timer/Counter2 Prescaler” on page 161.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
15-2 shows a block diagram of the counter and its surrounding environment.

Figure 15-2. Counter Unit Block Diagram

TOVn

DATA BUS > (ntReq)

<
) t
clear clk

TCNTn d Control Logic [" Prescaler
direction

bottom T Ttop |k|
Ci
[e]

—® TOSC2

count

TIC
Oscillator

-l

TOSC1

Figure 15-3.

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clky, Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.
bottom Signalizes that TCNT2 has reached minimum value (zero).

126 A TO0C AN 1 25 1 —

4250G-CAN-09/05

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). clkr, can be generated from an external or internal clock source,
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2A). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC2A. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 149.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by
the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

15.5 Output Compare Unit

4250G-CAN-09/05

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match will set
the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled (OCIE2A = 1), the
Output Compare Flag generates an Output Compare interrupt. The OCF2A flag is automatically
cleared when the interrupt is executed. Alternatively, the OCF2A flag can be cleared by software
by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the WGM21:0 bits and Compare Output
mode (COM2A1:0) bits. The max and bottom signals are used by the Waveform Generator for
handling the special cases of the extreme values in some modes of operation (“Modes of Oper-
ation” on page 149).

Figure 15-4 shows a block diagram of the Output Compare unit.

Figure 15-4. Output Compare Unit, Block Diagram
DATA BUS

OCRnx TCNTn

Iy L1

| = (8-bit Comparator) |

OCFnx (Int.Req.)

Y

top —>

bottom | Waveform Generator OCnx

(I

WGMn1:0 COMnX1:0

FOCn >

The OCR2A Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2A Compare

A IIIEI% 147

15.5.1

15.5.2

15.5.3

AIMEL

Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR2A Buffer Register, and if double buffering is
disabled the CPU will access the OCR2A directly.

Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2A) bit. Forcing compare match will not set the
OCF2A flag or reload/clear the timer, but the OC2A pin will be updated as if a real compare
match had occurred (the COM2A1:0 bits settings define whether the OC2A pin is set, cleared or
toggled).

Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2A to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2A value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC2A should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC2A value is to use the Force Output Com-
pare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM2A1:0 bits are not double buffered together with the compare value.
Changing the COM2A1:0 bits will take effect immediately.

15.6 Compare Match Output Unit

148

The Compare Output mode (COM2A1:0) bits have two functions. The Waveform Generator
uses the COM2A1:0 bits for defining the Output Compare (OC2A) state at the next compare
match. Also, the COM2A1:0 bits control the OC2A pin output source. Figure 15-5 shows a sim-
plified schematic of the logic affected by the COM2A1:0 bit setting. The 1/O Registers, 1/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COM2A1:0 bits are shown. When referring to the
OC2A state, the reference is for the internal OC2A Register, not the OC2A pin.

AT 90 C /AN 123 500000

4250G-CAN-09/05

15.6.1

15.6.2

AT90CAN128

Figure 15-5. Compare Match Output Unit, Schematic

e

COMnx1
COMnx0 Waveform
D Q
FOCnx Generator
— 1
OCnx
OCnx 0 Pin
A
»D Q
® [
-
g PORT
&
a »D Q
\ DDR
clk;o

Compare Output Function

The general I/O port function is overridden by the Output Compare (OC2A) from the Waveform
Generator if either of the COM2A1:0 bits are set. However, the OC2A pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC2A pin (DDR_OC2A) must be set as output before the OC2A value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2A state before the
output is enabled. Note that some COM2A1:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 155.

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM2A1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM2A1:0 = 0 tells the Waveform Generator that no action on the
OC2A Register is to be performed on the next compare match. For compare output actions in
the non-PWM modes refer to Table 15-2 on page 156. For fast PWM mode, refer to Table 15-3
on page 156, and for phase correct PWM refer to Table 15-4 on page 157.

A change of the COM2A1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2A strobe bits.

15.7 Modes of Operation

4250G-CAN-09/05

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Output
mode (COM2A1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM2A1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM
modes the COM2A1:0 bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 148.).

A IIIEI% 149

15.7.1

15.7.2

150

Normal Mode

AIMEL
For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 153.

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 flag, the timer resolution can be increased by software. There
are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-6. The counter value (TCNT2)
increases until a compare match occurs between TCNT2 and OCR2A, and then counter
(TCNTZ2) is cleared.

Figure 15-6. CTC Mode, Timing Diagram

OCnx Interrupt Flag Set

-

y y

o V1V Vi

OCnx -
(Toggle)

(COMnx1:0 =1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2A flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing the TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR2A is lower than the current
value of TCNT2, the counter will miss the compare match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the compare match can
occur.

AT 90 C /AN 123 500000

4250G-CAN-09/05

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fycoa =
fax 1o/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following
equation:
P _ Jeik_io
OCnx — 2.N.(1+ OCRnx)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

15.7.3 Fast PWM Mode

4250G-CAN-09/05

The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare
match between TCNT2 and OCR2A, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 15-7. The TCNT2 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2A and TCNT2.

Figure 15-7. Fast PWM Mode, Timing Diagram

OCRnx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

AN /
/ / 1% d
OCnx (COMnx1:0 = 2)

OCnx |_| (COMnx1:0 = 3)
- | PN VN N I _,|
Period |<—1 I 2 I I 4 I I 6 i 7

A IIIEI% 151

AIMEL

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2A pin.
Setting the COM2A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM2A1:0 to three (See Table 15-3 on page 156). The actual
OC2A value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OC2A Register at the compare
match between OCR2A and TCNT2, and clearing (or setting) the OC2A Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Je 1o
Tocnxpwm = 3288

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2A to toggle its logical level on each compare match (COM2A1:0 = 1). The waveform
generated will have a maximum frequency of f 5 = fo 10/2 when OCR2A is set to zero. This
feature is similar to the OC2A toggle in CTC mode, exce_pt the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

15.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare match
between TCNT2 and OCR2A while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8.
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT2 slopes represent compare matches between OCR2A and TCNT2.

152 ATO0C AN 1 2S5 —

Figure 15-8. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

-t
-
-t
¢
-
¢

S INS NN

OCnx |_| |_ (COMnx1:0 = 2)
OCnx |—| |—| |— (COMNX1:0 = 3)
Period I 1 I 2 I 3 I

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM2A1:0 to three (See Table 15-4 on page 157).
The actual OC2A value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OC2A Register at the
compare match between OCR2A and TCNT2 when the counter increments, and setting (or
clearing) the OC2A Register at compare match between OCR2A and TCNT2 when the counter
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

_ Jaw o
Tocaxpcrwm = N 570

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

15.8 Timer/Counter Timing Diagrams
The following figures show the Timer/Counter in synchronous mode, and the timer clock (clky,)
is therefore shown as a clock enable signal. In asynchronous mode, clk,o should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when interrupt flags are
set. Figure 15-9 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

A IIIEI% 153

4250G-CAN-09/05

AIMEL

Figure 15-9. Timer/Counter Timing Diagram, no Prescaling

clk,q

clky,
(clk,o/1)

TCNTn

TOVn

B S S S

MAX -1 MAX

BOTTOM BOTTOM + 1

Figure 15-10 shows the same timing data, but with the prescaler enabled.

Figure 15-10. Timer/Counter Timing Diagram, with Prescaler (f ,6/8)

clk,q

clky,
(clk,,/8)

TCNTn

TOVn

[[

i R]

MAX -1 MAX

BOTTOM >< BOTTOM + 1

Figure 15-11 shows the setting of OCF2A in all modes except CTC mode.

Figure 15-11. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fyy ,0/8)

clk,q

clky,
(clk,0/8)

TCNTn

OCRnNx

OCFnx

154

[[

Hiiinuivnuuunuuuuuuuuuuuuuut

OCRnx -1 OCRnXx

OCRnx + 1 OCRnx + 2

OCRnx Val

ue

AT90CAN128 mees———

4250G-CAN-09/05

AT90CAN128

Figure 15-12 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 15-12. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fey_yo/8)

ST
(0?22/”8) r r

TCNTn]
(cTC) TOP - 1 TOP BOTTOM >< BOTTOM + 1

OCRnx TOP

OCFnx

15.9 8-bit Timer/Counter Register Description

15.9.1 Timer/Counter2 Control Register A—- TCCR2A

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0
| Foc2A | wGm20 | cOM2A1 | COM2A0 | WGM21 | CS22 | CS21 €S20] TCCR2A

Read/Write W RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2A is written when
operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare
match is forced on the Waveform Generation unit. The OC2A output is changed according to its
COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the
value present in the COM2A1:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.
e Bit 6, 3 - WGM21:0: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for the maximum (TOP)

counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and

A IIIEI% 155

two types of Pulse Width Modulation (PWM) modes. See Table 15-1

AIMEL

and “Modes of Operation”

on page 149.
Table 15-1. Waveform Generation Mode Bit Description("
WGM21 WGM20 | Timer/Counter Mode of Update of TOV2 Flag
Mode (CTC2) (PWM2) | Operation TOP OCR2A at Set on
0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2A | Immediate | MAX
3 1 1 Fast PWM OxFF TOP MAX
Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions.

However, the functionality and location of these bits are compatible with previous versions of
the timer.

e Bit 5:4 —- COM2A1:0: Compare Match Output Mode A

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0
bits are set, the OC2A output overrides the normal port functionality of the 1/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to OC2A pin must be
set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM21:0 bit setting. Table 15-2 shows the COM2A1:0 bit functionality when the WGM21:0 bits
are set to a normal or CTC mode (non-PWM).

Table 15-2. Compare Output Mode, non-PWM Mode
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Toggle OC2A on compare match.
1 0 Clear OC2A on compare match.
1 1 Set OC2A on compare match.

Table 15-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM

mode.
Table 15-3. Compare Output Mode, Fast PWM Mode("
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Reserved
1 0 Clear OC2A on compare match.
Set OC2A at TOP.
1 1 Set OC2A on compare match.
Clear OC2A at TOP.
Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-

pare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 151
for more details.

156

AT 90 C /AN 123 500000

4250G-CAN-09/05

Table 15-4 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase cor-
rect PWM mode.

Table 15-4. Compare Output Mode, Phase Correct PWM Mode("

COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Reserved
1 0 Clear OC2A on compare match when up-counting.
Set OC2A on compare match when downcounting.
1 1 Set OC2A on compare match when up-counting.

Clear OC2A on compare match when downcounting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 152 for more details.

* Bit 2:0 — CS22:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table

15-5.
Table 15-5. Clock Select Bit Description
CS22 CSs21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clkog/(No prescaling)
0 1 0 clkr,5/8 (From prescaler)
0 1 1 clky,5/32 (From prescaler)
1 0 0 clkyo5/64 (From prescaler)
1 0 1 clkog/128 (From prescaler)
1 1 0 clky,5/256 (From prescaler)
1 1 1 clky,5/1024 (From prescaler)

15.9.2 Timer/Counter2 Register - TCNT2

Bit 7 6 5 4 3 2 1 0
| TCNT2[7:0] | Tont2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,
introduces a risk of missing a compare match between TCNT2 and the OCR2A Register.

15.9.3 Output Compare Register A — OCR2A

Bit 7 6 5 4 3 2 1 0
| OCR2A[7:0] | ocr2a

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

A IIIEI% 157

4250G-CAN-09/05

AIMEL

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2A pin.

15.10 Asynchronous operation of the Timer/Counter2

15.10.1

158

Asynchronous Status Register — ASSR

Bit 7 6 5 4 3 2 1 0
| - | | - EXCLK | AS2 | TCN2UB | OCR2UB | TCR2UB | ASSR

Read/Write R R R RIW R/W R R R

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7..5 — Reserved Bits
These bits are reserved for future use.

e Bit 4 — EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input
buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead
of a 32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is
selected. Note that the crystal Oscillator will only run when this bit is zero.

* Bit 3 - AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the 1/O clock, clk,q and the crystal
Oscillator connected to the Timer/Counter2 Oscillator (TOSC) does nor run. When AS2 is written
to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer/Counter2
Oscillator (TOSC) or from external clock on TOSC1 depending on EXCLK setting. When the
value of AS2 is changed, the contents of TCNT2, OCR2A, and TCCR2A might be corrupted.

* Bit 2 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

* Bit 1 - OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

* Bit 0 - TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When reading
TCNTZ2, the actual timer value is read. When reading OCR2A or TCCR2A, the value in the tem-
porary storage register is read.

AT 90 C /AN 123 500000

4250G-CAN-09/05

15.10.2 Asynchronous Operation of Timer/Counter2
When Timer/Counter2 operates asynchronously, some considerations must be taken.

» Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the timer registers TCNT2, OCR2A, and TCCR2A might be corrupted. A
safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.

Select clock source by setting AS2 and EXCLK as appropriate.

Write new values to TCNT2, OCR2A, and TCCR2A.

To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

Clear the Timer/Counter2 interrupt flags.

f. Enable interrupts, if needed.

The Oscillator is optimized for use with a 32.768 kHz watch crystal. The CPU main clock

frequency must be more than four times the Oscillator or external clock frequency.

When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is transferred to
a temporary register, and latched after two positive edges on TOSC1. The user should not
write a new value before the contents of the temporary register have been transferred to its
destination. Each of the three mentioned registers have their individual temporary register,
which means that e.g. writing to TCNT2 does not disturb an OCR2A write in progress. To
detect that a transfer to the destination register has taken place, the Asynchronous Status
Register — ASSR has been implemented.

® o0 o

When entering Power-save or Extended Standby mode after having written to TCNT2,
OCR2A, or TCCR2A, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if the Output Compare2
interrupt is used to wake up the device, since the Output Compare function is disabled during
writing to OCR2A or TCNT2. If the write cycle is not finished, and the MCU enters sleep
mode before the OCR2UB bit returns to zero, the device will never receive a compare match
interrupt, and the MCU will not wake up.

If Timer/Counter2 is used to wake the device up from Power-save or Extended Standby
mode, precautions must be taken if the user wants to re-enter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the
device will fail to wake up. If the user is in doubt whether the time before re-entering Power-
save mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle
has elapsed:

a. Write a value to TCCR2A, TCNTZ2, or OCR2A.
b. Wait until the corresponding Update Busy flag in ASSR returns to zero.
c. Enter Power-save or ADC Noise Reduction mode.

When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2
is always running, except in Power-down and Standby modes. After a Power-up Reset or
wake-up from Power-down or Standby mode, the user should be aware of the fact that this
Oscillator might take as long as one second to stabilize. The user is advised to wait for at
least one second before using Timer/Counter2 after power-up or wake-up from Power-down
or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after
a wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no
matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

A IIIEI% 159

4250G-CAN-09/05

AIMEL

* Description of wake up from Power-save mode when the timer is clocked asynchronously:
When the interrupt condition is met, the wake up process is started on the following cycle of
the timer clock, that is, the timer is always advanced by at least one before the processor can
read the counter value. After wake-up, the MCU is halted for four cycles, it executes the
interrupt routine, and resumes execution from the instruction following SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect
result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be
done through a register synchronized to the internal I/O clock domain. Synchronization takes
place for every rising TOSC1 edge. When waking up from Power-save mode, and the /O
clock (clk;g) again becomes active, TCNT2 will read as the previous value (before entering
sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from
Power-save mode is essentially unpredictable, as it depends on the wake-up time. The
recommended procedure for reading TCNT2 is thus as follows:

a. Write any value to either of the registers OCR2A or TCCR2A.

b. Wait for the corresponding Update Busy Flag to be cleared.

c. Read TCNT2.
During asynchronous operation, the synchronization of the interrupt flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the setting of
the interrupt flag. The Output Compare pin is changed on the timer clock and is not
synchronized to the processor clock.

15.10.3 Timer/Counter2 Interrupt Mask Register — TIMSK2

Bit 7 6 5 4 3 2 1 0

| | | | - OCIE2A | TOIE2 | TIMSK2
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7..2 — Reserved Bits
These bits are reserved for future use.

e Bit 1 - OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is set in the
Timer/Counter2 Interrupt Flag Register — TIFR2.

e Bit 0 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIEZ2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter2 Interrupt
Flag Register — TIFR2.

15.10.4 Timer/Counter2 Interrupt Flag Register — TIFR2

Bit 7 6 5 4 3 2 1 0

| | | | - OCF2A | TOvV2 | TIFR2
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

160 A T90C AN 1 25 1 —

4250G-CAN-09/05

e Bit 7..2 — Reserved Bits
These bits are reserved for future use.

e Bit 1 - OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2A — Output Compare Register2. OCF2A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2 (Timer/Counter2 Compare match Interrupt
Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

¢ Bit 0 — TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

15.11 Timer/Counter2 Prescaler

Figure 15-13. Prescaler for Timer/Counter2

AS2 EXCLK

TOSC2 ¢ Enable

32 kHz
Oscillator|

10-BIT T/C PRESCALER
Clear

A

TOSC1

clkyyg/8
clky,g/32
clky,g/64
clky,5/256

clkyp/128
Clky,/1024

EXCLK

PSR2

€<— O
<

Cs20
Cs21
Cs22

524

TIMER/COUNTER2 CLOCK SOURCE
clky,

The clock source for Timer/Counter2 is named clky,s. Clkyog is by default connected to the main
system 1/O clock clk,q. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously

clocked from the TOSC oscillator or TOSC1 pin. This enables use of Timer/Counter2 as a Real
Time Counter (RTC).

A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an indepen-
dent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz
crystal. Setting AS2 and resetting EXCLK enables the TOSC oscillator.

AIMEL 161
4250G-CAN-09/05 Y)

15.11.1

162

AIMEL

Figure 15-14. Timer/Counter2 Crystal Oscillator Connections

12-22 pF
—F—¢——| TOSC2
32768 KHz [
« 35— 4 | Tosct
12 -22 pF

GND

A external clock can also be used using TOSC1 as input. Setting AS2 and EXCLK enables this
configuration.

Figure 15-15. Timer/Counter2 External Clock Connections

NC —— - TOSC2
External
Clock —— TOSC1
Signal

For Timer/Counter2, the possible prescaled selections are: clky,5/8, Clk,5/32, clky,5/64,
clkros/128, clkr,5/256, and clky,5/1024. Additionally, clky,g as well as O (stop) may be selected.
Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to operate with a pre-
dictable prescaler.

General Timer/Counter Control Register —- GTCCR

Bit 7 6 5 4 3 2 1 0
| tsm | = | = | = PSR2 | PSR310 | GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit1 - PSR2: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the “Bit 7 — TSM: Timer/Counter Syn-
chronization Mode” on page 97 for a description of the Timer/Counter Synchronization mode.

AT 90 C /AN 123 500000

4250G-CAN-09/05

16. Output Compare Modulator - OCM

16.1 Overview
Many register and bit references in this section are written in general form.

* A lower case “n” replaces the Timer/Counter number, in this case 0 and 1. However, when
using the register or bit defines in a program, the precise form must be used, i.e., TCNTO for
accessing Timer/CounterQ counter value and so on.

* A lower case “X” replaces the Output Compare unit channel, in this case A or C. However,
when using the register or bit defines in a program, the precise form must be used, i.e.,
OCROA for accessing Timer/CounterQ output compare channel A value and so on.

The Output Compare Modulator (OCM) allows generation of waveforms modulated with a carrier
frequency. The modulator uses the outputs from the Output Compare Unit C of the 16-bit
Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. For more details
about these Timer/Counters see “16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)”
on page 112 and “8-bit Timer/Counter0 with PWM” on page 98.

Figure 16-1. Output Compare Modulator, Block Diagram

Timer/Counter 1 oc1c

Pin

OCOA/OC1C/PB7

Timer/Counter O OCOA

When the modulator is enabled, the two output compare channels are modulated together as
shown in the block diagram (Figure 16-1).

16.2 Description

The Output Compare unit 1C and Output Compare unit OA shares the PB7 port pin for output.
The outputs of the Output Compare units (OC1C and OCOA) overrides the normal PORTB7
Register when one of them is enabled (i.e., when COMnx1:0 is not equal to zero). When both
OC1C and OCOA are enabled at the same time, the modulator is automatically enabled.

When the modulator is enabled the type of modulation (logical AND or OR) can be selected by
the PORTB7 Register. Note that the DDRB7 controls the direction of the port independent of the
COMnx1:0 bit setting.

The functional equivalent schematic of the modulator is shown on Figure 16-2. The schematic
includes part of the Timer/Counter units and the port B pin 7 output driver circuit.

A IIIEI% 163

4250G-CAN-09/05

AIMEL

Figure 16-2. Output Compare Modulator, Schematic

COMOA1 Vee
COMOAO Dﬁ
comict Z)I—M m

COM1COo

(FromT/Ic1 — D Q
Waveform Generator)

|

|

Pin

OCO0A/OC1C/PB7

(FromT/Ico —» D Q
Waveform Generator)

)
D
ey L ™

DATABUS

PORTB7 DDRB7

16.2.1 Timing Example
Figure 16-3 illustrates the modulator in action. In this example the Timer/Counter1 is set to oper-
ate in fast PWM mode (non-inverted) and Timer/CounterQ uses CTC waveform mode with toggle
Compare Output mode (COMnx1:0 = 1).

Figure 16-3. Output Compare Modulator, Timing Diagram

=

oc1C
(FPWM Mode) |

I
ereesn || LUUTUDUUUUUILUTUUU UL
eorror o | [|LLUIL_ L] 1]

(Period) <" 2 3

In this example, Timer/Counter0Q provides the carrier, while the modulating signal is generated
by the Output Compare unit C of the Timer/Counter1.

164 A TO0C AN 1 2 S 1 —

16.2.2 Resolution of the PWM Signal
The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction factor is
equal to the number of system clock cycles of one period of the carrier (OCOA). In this example
the resolution is reduced by a factor of two. The reason for the reduction is illustrated in Figure
16-3 at the second and third period of the PB7 output when PORTB7 equals zero. The period 2
high time is one cycle longer than the period 3 high time, but the result on the PB7 output is
equal in both periods.

A mEl% 165

4250G-CAN-09/05

AIMEL

17. Serial Peripheral Interface — SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
AT90CAN128 and peripheral devices or between several AVR devices. The AT90CAN128 SPI
includes the following features:

17.1 Features
* Full-duplex, Three-wire Synchronous Data Transfer

* Master or Slave Operation

* LSB First or MSB First Data Transfer

* Seven Programmable Bit Rates

* End of Transmission Interrupt Flag

* Write Collision Flag Protection

* Wake-up from Idle Mode

* Double Speed (CK/2) Master SPI Mode

Figure 17-1. SPI Block Diagram"

MISO
y wisol
clkio MSB LSB Mo
e .« o s 9
l 8 BIT SHIFT REGISTER 9
READ DATA BUFFER 2
DIVIDER o
12/418/16/32/64/128 . ; =
A4 O
(@]
L 4 4 CLOCK z
SPI CLOCK (MASTER) | o
SELECT CLOCK ¢ S >
LOGIC ¥
><‘ I Y 7 S S -7
N| x| x SS
ol & & 3
I (a]
= ow| X
25 8
4MSTR
SPI CONTROL +SPE
_ Wiy E lD—: 6' % o g
w Q x 8 ol o] O @ ol ol o o
2l O S »| o a 2| O o o *
n
A A 4 ‘ ‘ ‘ ‘ ‘(/) |SP| CONTROL REGISTER
| SPI STATUS REGISTER |
‘ . 8 %
A
v v

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Refer to Figure 2-2 on page 4, and Table 10-6 on page 75 for SPI pin placement.

166 A TO0C AN 1 2 S 1 —

4250G-CAN-09/05

The interconnection between Master and Slave CPUs with SPI is shown in Figure 17-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out — Slave In, MOSI, line, and from Slave to Master on the Master In
— Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
transmission flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of transmission
flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is
requested. The Slave may continue to place new data to be sent into SPDR before reading the
incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 17-2. SPI Master-slave Interconnection
MSB MASTER LSB 50 miso MSB SLAVE LSB

A

8 BIT SHIFT REGISTER |——¢————+——| 8 BIT SHIFT REGISTER T

IMOSI MOSI:

SHIFT
ENABLE

SPI 'SCK sck
CLOCK GENERATOR g —

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed f;.,/4.

A IIIEI% 167

4250G-CAN-09/05

AIMEL

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 17-1. For more details on automatic port overrides, refer to “Alternate Port
Functions” on page 70.

Table 17-1. SPI Pin Overrides!"

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined

SCK User Defined Input

sSs User Defined Input

Note: 1. See “Alternate Functions of Port B” on page 75 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission.

168 A T90C AN 1 25 1 —

4250G-CAN-09/05

DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the
SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits
for these pins. E.g. if MOSI is placed on pin PB2, replace DD_MOSI with DDB2 and DDR_SPI
with DDRB.

Assembly Code Example("

SPI _Masterlnit:
; Set MOSI and SCK output, all others input

| di r17, (1<<DD _MOSI) | (1<<DD_SCK)

out DDR_SPI, r17

; Enable SPI, Master, set clock rate fck/16
| di r17, (1<<SPE) | (1<<MSTR) | (1<<SPRO)
out SPCR, r 17

ret

SPI _MasterTransmit:
; Start transmi ssion of data (r16)
out SPDR, r 16
Wait_Transmit:
; Wait for transnission conplete
in r17, SPSR
shrs rl7, SPIF
rjnp Wait _Transmit
ret

C Code Example("

void SPI_Masterlnit(void)

{
/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD _MOSI) | (1<<DD_SCK);
/* Enable SPI, Master, set clock rate fck/ 16 */
SPCR = (1<<SPE) | (1<<M5TR) | (1<<SPR0);

voi d SPlI _MasterTransnit(char cData)
{
[* Start transm ssion */
SPDR = cDat a;
/* Wait for transm ssion conplete */
whil e(! (SPSR & (1<<SPI F)));

Note:

1. The example code assumes that the part specific header file is included.

ATMEL

169

AIMEL

The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Assembly Code Example("

SPI _Slavelnit:
; Set M SO output, all others input

| di r17, (1<<DD_M SO
out DDR_SPI, r17

;. Enabl e SPI

| di r17, (1<<SPE)

out SPCR, r 17

ret

SPI _Sl aveRecei ve:
; Wit for reception conplete
shi s SPSR, SPI F
rjnp SPI _Sl aveRecei ve
: Read received data and return
in r 16, SPDR
ret

C Code Example!")

void SPI _Sl avel nit(void)
{
/* Set M SO output, all others input */
DDR SPI = (1<<DD M SO);
/* Enable SPI */
SPCR = (1<<SPE);

char SPI _Sl aveRecei ve(voi d)
{
/* Wait for reception conplete */
whil e(! (SPSR & (1<<SPI F)));
/* Return data register */
return SPDR;

Note: 1. The example code assumes that the part specific header file is included.

17.2 SS Pin Functionality

17.2.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which

170 AT90 C AN 1 25 1 —

17.2.2 Master Mode

means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.
2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG
is set, the interrupt routine will be executed.
Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

17.2.3 SPI Control Register - SPCR

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0
| sPE | sPE | DORD | MSTR | CPOL | CPHA | SPR1 | SPRO | SPCR

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and if the
Global Interrupt Enable bit in SREG is set.

» Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

e Bit 5—- DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
* Bit 4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,

A IIIEI% 171

AIMEL

and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

» Bit 3 - CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL functionality is sum-

marized below:

Table 17-2. CPOL Functionality
CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

¢ Bit 2 — CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL
functionality is summarized below:

Table 17-3. CPHA Functionality
CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

* Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have
no effect on the Slave. The relationship between SCK and the clk,q frequency f, is shown in
the following table:

Table 17-4. Relationship Between SCK and the Oscillator Frequency
SPI2X SPR1 SPRO SCK Frequency
0 0 0 fokio/4
0 0 1 f o/ 16
0 1 0 fokio/64
0 1 1 fakio/128
1 0 0 fkio/2
1 0 1 fokio/8
1 1 0 fokio/32
1 1 1 f i/ 64

AT 90 C /AN 123 500000

4250G-CAN-09/05

17.2.4 SPI Status Register - SPSR

Bit 7 6 5 4 3 2 1 0

| spF WCOL - - - sPi2x | sPsrR
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE in
SPCRis set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

* Bit 6 — WCOL: Write COLlIision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

* Bit 5..1 — Res: Reserved Bits
These bits are reserved bits in the AT90CAN128 and will always read as zero.

* Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 17-4). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f;./4
or lower.

The SPI interface on the AT90CAN128 is also used for program memory and EEPROM down-
loading or uploading. See page 344 for serial programming and verification.

17.2.5 SPI Data Register - SPDR

17.3 Data Modes

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0

| SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPDO | SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value X X X X X X X X Undefined

» Bits 7:0 - SPD7:0: SPI Data

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
17-3 and Figure 17-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-

A IIIEI% 173

AIMEL

nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing

Table 17-2 and Table 17-3, as done below:

Table 17-5. CPOL Functionality
Leading Edge Trailing Edge SPI Mode
CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1
CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2
CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3
Figure 17-3. SPI Transfer Format with CPHA =0
[3 I
mode 0
SCK (CPOL=1)""]
[SAMPLE |
L. MOSI/MISO
[CHANGE 0
wosien \ L R A A A
CHANGE 0
| MISOPIN —(>'(>'(>'< >'< >'(>'< >'< >'Q
s 0 /
MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first DORD =1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit6 MSB

Figure 17-4. SPI Transfer Format with CPHA = 1
mode 1
| motes

[~ SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

MO KO KON
| meomn. A KO H KX
[s

MSB first (DORD = 0) MSB Bit6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB

A /
HO AR AL
/

!

174 AT C AN 1 25 1 —

4250G-CAN-09/05

18. USART (USARTO0 and USART1)

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device. The main features are:

18.1 Features
* Full Duplex Operation (Independent Serial Receive and Transmit Registers)
* Asynchronous or Synchronous Operation
* Master or Slave Clocked Synchronous Operation
* High Resolution Baud Rate Generator
* Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
* Odd or Even Parity Generation and Parity Check Supported by Hardware
* Data OverRun Detection
* Framing Error Detection
* Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
* Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
* Multi-processor Communication Mode
* Double Speed Asynchronous Communication Mode

18.2 Overview
Many registers and bit references in this section are written in general form.
* A lower case “n” replaces the USART number, in this case 0 or 1. However, when using the

register or bit defines in a program, the precise form must be used, i.e., UDRO for accessing
USARTO I/O data value and so on.

18.3 Dual USART

The AT90CAN128 has two USART’s, USARTO and USART1. The functionality for both
USART’s is described below. USARTO and USART1 have different I/O registers as shown in
“Register Summary” on page 401.

A simplified block diagram of the USARTn Transmitter is shown in Figure 18-1. CPU accessible
I/0 Registers and I/O pins are shown in bold.

A IIIEI% 175

4250G-CAN-09/05

AIMEL

Figure 18-1. USARTN Block Diagram

UBRRn[H:L]

Y

|

|

| CLKio
|

|

I BAUD RATE GENERATOR |«

|

|

|

|

PARITY
CHECKER

UDRn (Receive)

\
['sYNC LoGic
PIN | XCKn
»| CONTROL [T 1T
I Transmitter_:
|) X
| UDRnN (Transmit) CONTROL |
* PARITY |
wll | GENERATOR |
of | PIN | o
o | TRANSMIT SHIFT REGISTER . CONTROL | | TxDn
<C >
IQ—: | |
o I Receiver |
I » cLock RX |
| RECOVERY CONTROL |
| |
| DATA PIN I
| RECEIVE SHIFT REGISTER RECOVERY [* CoNTROL [RxDPn
| |
| * |
| |
| |

UCSRAN UCSRBn UCSRCn

Note: 1. Refer to Figure 2-2 on page 4, Table 10-15 on page 82, and Table 10-10 on page 78 for
USARTN pin placement.

The dashed boxes in the block diagram separate the three main parts of the USARTn (listed
from the top): Clock Generator, Transmitter and Receiver. Control registers are shared by all
units. The Clock Generation logic consists of synchronization logic for external clock input used
by synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is
only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a
serial Shift Register, Parity Generator and Control logic for handling different serial frame for-
mats. The write buffer allows a continuous transfer of data without any delay between frames.
The Receiver is the most complex part of the USARTn module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRnN). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

176 AT C AN 1 25 1 —

18.4 Clock Generation

18.4.1

4250G-CAN-09/05

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USARTN supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USARTn
Control and Status Register C (UCSRNC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the
UCSRnNA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register
for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 18-2 shows a block diagram of the clock generation logic.

Figure 18-2. USARTnN Clock Generation Logic, Block Diagram

u2Xn
(feik;q)

UBRRn+1

Prescaling
Down-Counter

A

1 /2 >l /4 > /2 -

clkij, —

DDR_.
Y }

Sync Edge

xn cki Register Detector

XCKn 'y
Pin | Xncko

f

DDR_XCKn UCPOLN

A

UMSELn

rxn clk

Signal description:

txn clk Transmitter clock (Internal Signal).

rxn clk Receiver base clock (Internal Signal).

xn cki Input from XCK pin (internal Signal). Used for synchronous slave
operation.

xn cko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

feik,, System 1/O Clock frequency.

Internal Clock Generation — Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 18-2.

The USARTNn Baud Rate Register (UBRRn) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fclk,,), is loaded with the UBRRn value each time the counter has counted down to zero or
when the UBRRnL Register is written. A clock is generated each time the counter reaches zero.
This clock is the baud rate generator clock output (= fclkio/(UBRRn+1)). The Transmitter divides
the baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator
output is used directly by the Receiver’s clock and data recovery units. However, the recovery

A IIIEI% 177

AIMEL

units use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELnN, U2Xn and DDR_XCKn bits.

Table 18-1 contains equations for calculating the baud rate (in bits per second) and for calculat-
ing the UBRRn value for each mode of operation using an internally generated clock source.

Table 18-1. Equations for Calculating Baud Rate Register Setting
Equation for Calculating Baud Equation for Calculating
Operating Mode Rate (! UBRRnN Value
Asynchronous Normal mode fCLKio 1 ;
BAUD = ———ic— _ CLKio
(U2Xn = 0) 16(UBRRn+ 1) UBRRn = qemorms =1
Asynchronous Double Speed ferkio feLkio
BAUD = /—e—"—r UBRRn = /——— —
mode (U2Xn = 1) 8(UBRRn+ 1) "~ BBAUD
Jerki ferki
Synchronous Master mode BAUD = WR;:JM) UBRRn = % -1

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps).
feik,, System 1/O Clock frequency.
UBRRnN Contents of the UBRRnH and UBRRnL Registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Table 18-9
(see page 198).
18.4.2 Double Speed Operation (U2X)
The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

18.4.3 External Clock
External clocking is used by the synchronous slave modes of operation. The description in this

section refers to Figure 18-2 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-
duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency
is limited by the following equation:

fCLKio
Sxckn < 4

178 AT90C AN 1 25 1 —

Note that fclkio depends on the stability of the system clock source. It is therefore recommended
to add some margin to avoid possible loss of data due to frequency variations.

18.4.4 Synchronous Clock Operation

When synchronous mode is used (UMSELnN = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 18-3. Synchronous Mode XCKn Timing.

UCPOLNn =1 XCKn

wonimon X Y Y Y

Sample

UCPOLn=0 XCKn m

RxDn / TxDn >< \X X X
T— Sample

The UCPOLnN bit UCRSNC selects which XCKn clock edge is used for data sampling and which
is used for data change. As Figure 18-3 shows, when UCPOLn is zero the data will be changed
at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be
changed at falling XCKn edge and sampled at rising XCKn edge.

18.5 Serial Frame

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking.

18.5.1 Frame Formats
The USARTR accepts all 30 combinations of the following as valid frame formats:

+ 1 start bit

*5,6,7,8, or 9 data bits

* no, even or odd parity bit

* 1 or 2 stop bits
A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.

Figure 18-4 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

A IIIEI% 179

4250G-CAN-09/05

AIMEL

Figure 18-4. Frame Formats

L FR J
r FRAME rl
(IDLE) \St/ 0 X 1 X 2 X 3 X 4 X[5]X[6]X[7]X[8]X[P] /Sp1 [SpZ]\ (St/IDLE)

St Start bit, always low.
(n) Data bits (0 to 8).
P Parity bit. Can be odd or even.
Sp Stop bit, always high.
IDLE No transfers on the communication line (RxDn or TxDn).

An IDLE line must be high.

The frame format used by the USARTN is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRnNnB and UCSRnNC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USARTnN Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USARTN Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection
between one or two stop bits is done by the USARTN Stop Bit Select (USBSn) bit. The Receiver
ignores the second stop bit. An FEn (Frame Error) will therefore only be detected in the cases
where the first stop bit is zero.

18.5.2 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as

follows:
Peven = d}’l*'] @D ... @d3@d2@d1 @do@o
Poyg=d, 19..@d3@dy ®d;®dy®1
Peven Parity bit using even parity
pedd Parity bit using odd parity
d, Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

18.6 USART Initialization

The USARTN has to be initialized before any communication can take place. The initialization
process normally consists of setting the baud rate, setting frame format and enabling the Trans-
mitter or the Receiver depending on the usage. For interrupt driven USARTn operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn flag can be used
to check that the Transmitter has completed all transfers, and the RXCn flag can be used to

180 AT 90 C AN 1 25 1 —

check that there are no unread data in the receive buffer. Note that the TXCn flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USARTO initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Assembly Code Example ()

USARTO_I ni t:
; Set baud rate
sts UBRROH, r17
sts UBRROL, r16
; Set frame format: 8data, no parity & 2 stop bits
| di r16, (O0<<UMSELO) | (0<<UPM) | (1<<USBSO0) | (3<<UCSZ0)
sts UCSROC, r16
;. Enabl e receiver and transmtter
| di r16, (1<<RXENQ) | (1<<TXENO)
sts UCSROB, r16
ret

C Code Example (V

voi d USARTO_Init (unsigned int baud)
{
/* Set baud rate */
UBRROH = (unsigned char) (baud>>8);
UBRROL = (unsigned char) baud;
/[* Set frame fornat: 8data, no parity & 2 stop bits */
UCSROC = (O<<UMSELO) | (0O<<UPM)) | (1<<USBSO) | (3<<UCSZz0);
/* Enabl e receiver and transmtter */
UCSROB = (1<<RXENO) | (1<<TXENO);

Note: 1. The example code assumes that the part specific header file is included.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I1/0O modules.

18.7 Data Transmission — USART Transmitter
The USARTR Transmitter is enabled by setting the Transmit Enable (TXENRN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is overrid-
den by the USARTnN and given the function as the Transmitter’s serial output. The baud rate,
mode of operation and frame format must be set up once before doing any transmissions. If syn-

A IIIEI% 181

4250G-CAN-09/05

AIMEL

chronous operation is used, the clock on the XCKn pin will be overridden and used as
transmission clock.

18.7.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USARTO transmit function based on polling of the
Data Register Empty (UDREO) flag. When using frames with less than eight bits, the most signif-
icant bits written to the UDRO are ignored. The USARTO has to be initialized before the function

can be used. For the assembly code, the data to be sent is assumed to be stored in Register
R16.

Assembly Code Example ()

USARTO_Transmi t:
; Wait for enpty transmit buffer
lds r17, UCSROA
sbrs r17, UDREO
rj mp USARTO_Transmit
; Put data (r16) into buffer, sends the data
sts UDRO, rl6
ret

C Code Example

voi d USARTO_Transmit (unsigned char data)

{
[* Wait for enpty transmt buffer */
while (! (UCSRAO & (1<<UDREO)));
/* Put data into buffer, sends the data */
UDRO = dat a;

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for the transmit buffer to be empty by checking the UDREDO flag, before
loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized, the
interrupt routine writes the data into the buffer.

182 AT90C AN 1 25 1 —

18.7.2 Sending Frames with 9 Data Bit
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in UCS-
RnB before the low byte of the character is written to UDRn. The following code examples show
a transmit function that handles 9-bit characters. For the assembly code, the data to be sent is
assumed to be stored in registers R17:R16.

Assembly Code Example (V)

USARTO_Transmi t:
; Wait for enmpty transmit buffer
| ds r18, UCSROA
sbrs r18, UDREO
rinp USARTO_Transmit
; Copy 9th bit fromrl7-bit0 to TXB80 via T-bit of SREG
| ds r18, UCSROB
bst rl7, O
bl d r18, TXB80
sts UCSROB, r18
; Put LSB data (r16) into buffer, sends the data
sts UDRO, r16
ret

C Code Example (V)

void USARTO_Transmit (unsigned int data)
{
[* Wait for enpty transmt buffer */
while (!'(UCSROA & (1<<UDREO)));
/* Copy 9th bit to TXB8 */
UCSROB &= ~(1<<TXB80) ;
if (data & 0x0100)
UCSROB | = (1<<TXB80);
/* Put data into buffer, sends the data */
UDRO = dat a;

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSROB is static. For example, only the TXB80 bit of the UCSRBO Register is
used after initialization.

2. The example code assumes that the part specific header file is included.

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

18.7.3 Transmitter Flags and Interrupts
The USARTnN Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREN) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

A IIIEI% 183

4250G-CAN-09/05

AIMEL

The Data Register Empty (UDRER) flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEN) bit in UCSRBn is written to one, the
USARTN Data Register Empty Interrupt will be executed as long as UDREn is set (provided that
global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Complete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USARTn
Transmit Complete Interrupt will be executed when the TXCn flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn flag, this is done automatically when the interrupt
is executed.

18.7.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

18.7.5 Disabling the Transmitter
The disabling of the Transmitter (setting the TXENN to zero) will not become effective until ongo-
ing and pending transmissions are completed, i.e., when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxDn pin.

18.8 Data Reception — USART Receiver
The USARTN Receiver is enabled by writing the Receive Enable (RXENN) bit in the UCSRnB
Register to one. When the Receiver is enabled, the normal pin operation of the RxDn pin is over-
ridden by the USARTnN and given the function as the Receiver’s serial input. The baud rate,
mode of operation and frame format must be set up once before any serial reception can be
done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer clock.

18.8.1 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register
until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.
When the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift
Register, the contents of the Shift Register will be moved into the receive buffer. The receive
buffer can then be read by reading the UDRn 1/O location.

184 AT90 C AN 1 25 1 —

The following code example shows a simple USARTO receive function based on polling of the
Receive Complete (RXCO) flag. When using frames with less than eight bits the most significant
bits of the data read from the UDRO will be masked to zero. The USARTO has to be initialized
before the function can be used.

Assembly Code Example ()

USARTO_Recei ve:
; Wait for data to be received
| ds r18, UCSROA
shrs r18, RXQO
rinp USARTO_Receive
; Get and return received data from buffer
| ds r16, UDRO
ret

C Code Example
unsi gned char USARTO_Recei ve (void)
{
/* Wait for data to be received */
while (! (UCSROA & (1<<RXQ0)));
/* Get and return received data from buffer */
return UDRO;

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for data to be present in the receive buffer by checking the RXCO flag,
before reading the buffer and returning the value.

18.8.2 Receiving Frames with 9 Data Bits
If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCS-
RnB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn
Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn 1/O
location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn,
DORnN and UPERN bits, which all are stored in the FIFO, will change.

A IIIEI% 185

4250G-CAN-09/05

AIMEL

The following code example shows a simple USARTO receive function that handles both nine bit
characters and the status bits.

Assembly Code Example ()

USARTO_Recei ve:
; Wait for data to be received
| ds r18, UCSROA
sbrs r18, RXQ0
rinp USARTO_Receive
; Get status and 9th bit, then data from buffer
| ds r17, UCSROB
| ds r16, UDRO
 If error, return -1
andi r18, (1<<FEO) | (1<<DOR0O) | (1<<UPEO)
breq USARTO_Recei veNoError
| di ri7, H GH(-1)
| di rl6, LOW-1)
USARTO_Recei veNoError:
; Filter the 9th bit, then return

| sr ri7
andi rl7, 0x01
ret

C Code Example ("

unsi gned int USARTO_Recei ve(voi d)
{
unsi gned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSROA & (1<<RXQ0)));
/* Get status and 9th bit, then data */
[* from buffer */
status = UCSROA;
resh = UCSROB;
resl = UDRO;
/* |f error, return -1 */
if (status & (1<<FEO)| (1<<DCRO)| (1<<UPEOQ))
return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;
return ((resh << 8) | resl);

Note: 1. The example code assumes that the part specific header file is included.

The receive function example reads all the 1/0 Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

186 A TO0C AN 1 2 S 1 —

18.8.3 Receive Complete Flag and Interrupt
The USARTnN Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) flag indicates if there are unread data present in the receive
buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXENn = 0),
the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnNB is set, the USARTn
Receive Complete interrupt will be executed as long as the RXCn flag is set (provided that glo-
bal interrupts are enabled). When interrupt-driven data reception is used, the receive complete
routine must read the received data from UDRn in order to clear the RXCn flag, otherwise a new
interrupt will occur once the interrupt routine terminates.

18.8.4 Receiver Error Flags

The USARTN Receiver has three error flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPENR). All can be accessed by reading UCSRnA. Common for the error flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the error flags, the UCSRnA must be read before the receive
buffer (UDRN), since reading the UDRn I/O location changes the buffer read location. Another
equality for the error flags is that they can not be altered by software doing a write to the flag
location. However, all flags must be set to zero when the UCSRnA is written for upward compat-
ibility of future USART implementations. None of the error flags can generate interrupts.

The Frame Error (FEnN) flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn flag is zero when the stop bit was correctly read (as one),
and the FEn flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn flag
is not affected by the setting of the USBSn bit in UCSRNC since the Receiver ignores all, except
for the first, stop bits. For compatibility with future devices, always set this bit to zero when writ-
ing to UCSRNA.

The Data OverRun (DORn) flag indicates data loss due to a receiver buffer full condition. A Data
OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in
the Receive Shift Register, and a new start bit is detected. If the DORn flag is set there was one
or more serial frame lost between the frame last read from UDRn, and the next frame read from
UDRnN. For compatibility with future devices, always write this bit to zero when writing to UCS-
RnA. The DORn flag is cleared when the frame received was successfully moved from the Shift
Register to the receive buffer.

The Parity Error (UPEN) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see “Parity Bit Calculation” on page 180 and “Parity Checker” on page 187.

18.8.5 Parity Checker
The Parity Checker is active when the high USARTn Parity mode (UPMn1) bit is set. Type of
Parity Check to be performed (odd or even) is selected by the UPMnO bit. When enabled, the
Parity Checker calculates the parity of the data bits in incoming frames and compares the result
with the parity bit from the serial frame. The result of the check is stored in the receive buffer
together with the received data and stop bits. The Parity Error (UPEnN) flag can then be read by
software to check if the frame had a Parity Error.

A IIIEI% 187

4250G-CAN-09/05

AIMEL

The UPEn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRn) is read.

18.8.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will
no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

18.8.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal

operation, due to for instance an error condition, read the UDRn 1/O location until the RXCn flag
is cleared.

The following code example shows how to flush the receive buffer.

Assembly Code Example ()

USARTO_FI ush:
| ds r16, UCSROA
sbhrs r16, RXQO
ret
| ds r16, UDRO
rinmp USARTO_Fl ush

C Code Example (")

voi d USARTO_Fl ush (void)
{

unsi gned char dummy;

whil e (UCSROA & (1<<RXC0)) dummy = UDRO;
}

Note: 1. The example code assumes that the part specific header file is included.

18.9 Asynchronous Data Reception

The USARTN includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

18.9.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 18-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-

188 A T90C AN 1 25 1 —

AT90CAN128

izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxDn line is idle (i.e., no communication activity).

Figure 18-5. Start Bit Sampling

RxDn IDLE START BITO
sme | I Dl DE DTS Lttt
(U2Xn = 0) o o 1 2 3 4 5 6 7 [8]9J10]11 12 13 14 15 16 1 2 3
Sample T ‘ T T T T T T
(U2Xn = 1) 0 1 2 3 7 8 1 2

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

Asynchronous Data Recovery

4250G-CAN-09/05

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 18-6 shows the sampling of the data bits and

the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 18-6. Sampling of Data and Parity Bit

RxDn >< BIT x ><
o y

(U2Xn = 0) 1

Sample H—Lﬂ

(U2Xn = 1) 1

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

A IIIEI% 189

AIMEL

Figure 18-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.

Figure 18-7. Stop Bit Sampling and Next Start Bit Sampling

RxDn STOP 1 (A) (B) (C)

Pt

4 6 7 [8]o9oJ10]ot o1 o1

r
AR

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) flag will be set.

Sample T
(U2Xn = 0) 1 2

Sample H—Lﬂ

(U2Xn = 1) 1

N —— P W ——

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 18-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

18.9.3 Asynchronous Operational Range
The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 18-2) base frequency, the Receiver will not be able to synchronize the frames to the start
bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

___ DS R, = LTS
Rsiow = 547D 5783, fast (DT DS+,
Sum of character size and parity size (D = 5 to 10 bit)
Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed mode.
S¢ First sample number used for majority voting. S = 8 for normal speed and
S¢ = 4 for Double Speed mode.
Sy Middle sample number used for majority voting. S, = 9 for normal speed and

Sy = 5 for Double Speed mode.

Rsow is the ratio of the slowest incoming data rate that can be accepted in relation to

the receiver baud rate.

Re.st s the ratio of the fastest incoming data rate that can be accepted in relation to the
receiver baud rate.

Table 18-2 and Table 18-3 list the maximum receiver baud rate error that can be tolerated. Note
that Normal Speed mode has higher toleration of baud rate variations.

190 A T90C AN 1 25 1 —

Table 18-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode

(U2Xn = 0)
(Data+garity gity | Reow(%) | Reust(%) | Max Total Error (%) RRe::erir:/Tf E?rii I(\f/?)x
5 93.20 106.67 +6.67/-6.8 +3.0
6 94.12 105.79 +5.79/-5.88 +25
7 94.81 105.11 +5.11/-5.19 +2.0
8 95.36 104.58 +4.58/-4.54 +2.0
9 95.81 104.14 +4.14/-4.19 +1.5
10 96.17 103.78 +3.78/-3.83 +1.5

Table 18-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode

(U2Xn =1)
(Data+II3arity Bit) Rsiow (%) Reast (%) Max Total Error (%) Ize::er:/r:f E?ﬁ::' '(\{)'/?)X
5 94.12 105.66 +5.66/-5.88 +25
6 94.92 104.92 +4.92/-5.08 +2.0
7 95.52 104,35 +4.35/-4.48 +15
8 96.00 103.90 +3.90/-4.00 +15
9 96.39 103.53 +3.53/-3.61 +15
10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRRn value
that gives an acceptable low error can be used if possible.

18.10 Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRNA enables a filtering
function of incoming frames received by the USARTn Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

A IIIEI% 191

4250G-CAN-09/05

AIMEL

18.10.1 MPCM Protocol

18.10.2 Using MPCM

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the Receiver is set up for frames with
nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXBn = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit charac-
ter frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnNA is set).
2. The Master MCU sends an address frame, and all slaves receive and read this frame.
In the Slave MCUs, the RXCn flag in UCSRnA will be set as normal.
3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If
so, it clears the MPCMn bit in UCSRNA, otherwise it waits for the next address byte and
keeps the MPCMn setting.
4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.
5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from master. The process then
repeats from 2.
Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using N and N+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver use the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

192 AT90C AN 1 25 1 —

4250G-CAN-09/05

18.11 USART Register Description

18.11.1

18.11.2

18.11.3

USARTO I/O Data Register — UDRO

Bit 7 6 5 4 3 2 1 0
RXBO[7:0] UDRO (Read)
TXBO[7:0] UDRO (Write)
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

USART1 I/O Data Register — UDR1

Bit 7 6 5 4 3 2 1 0
RXB1[7:0] UDR1 (Read)
TXB1[7:0] UDR1 (Write)
Read/Write R/W R/W R/IW R/IW R/W R/IW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7:0 — RxBn7:0: Receive Data Buffer (read access)
e Bit 7:0 — TxBn7:0: Transmit Data Buffer (write access)
The USARTnN Transmit Data Buffer Register and USARTn Receive Data Buffer Registers share
the same 1/O address referred to as USARTn Data Register or UDRn. The Transmit Data Buffer
Register (TXBn) will be the destination for data written to the UDRn Register location. Reading
the UDRnN Register location will return the contents of the Receive Data Buffer Register (RXBn).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDREn flag in the UCSRnA Register is set.
Data written to UDRn when the UDRERN flag is not set, will be ignored by the USARTn Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed.

USARTO Control and Status Register A — UCSROA

Bit 7 6 5 4 3 2 1 0
| rxco | Txco | ubREO | FEO DORO UPEO u2xo | MPCMo | ucsRroA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

18.11.4 USART1 Control and Status Register A — UCSR1A

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0

| rxc1 | Txc1 | UDRE1 | FE1 DOR1 UPE1 u2x1 MPCM1 | UCSR1A
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

¢ Bit 7 - RXCn: USARTn Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

A IIIEI% 193

18.11.5

194

AIMEL

¢ Bit 6 — TXCn: USARTnN Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn flag can generate a Transmit Complete interrupt (see descrip-
tion of the TXCIEn bit).

* Bit 5 - UDREn: USARTn Data Register Empty

The UDRER flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn is
one, the buffer is empty, and therefore ready to be written. The UDRERN flag can generate a Data
Register Empty interrupt (see description of the UDRIEn bit).

UDRER is set after a reset to indicate that the Transmitter is ready.

* Bit 4 - FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. l.e.,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDRN) is read. The FEn bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRnA.

* Bit 3 - DORn: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRnN) is read. Always set this
bit to zero when writing to UCSRnA.

* Bit2 - UPEn: USARTN Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRN) is read. Always set this bit to zero when writing to UCSRnA.

¢ Bit 1 — U2Xn: Double the USARTNn Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

¢ Bit 0 — MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USARNT Receiver that do not contain address
information will be ignored. The Transmitter is unaffected by the MPCMn setting. For more
detailed information see “Multi-processor Communication Mode” on page 191.

USARTO Control and Status Register B— UCSR0B

Bit 7 6 5 4 3 2 1 0

| rRxciEo | TXCIEO | UDRIEO | RXENO | TXENO | UCSZ02 | RXB80 | TXB80 | UCSROB
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

AT 90 C /AN 123 500000

4250G-CAN-09/05

18.11.6 USART1 Control and Status Register B — UCSR1B

Bit 7 6 5 4 3 2 1 0

| RXCIE1 | TXCIE1 | UDRIE1 | RXEN1 | TXEN1 | UCSZ12 | RXB81 | TXB81 | UCSR1B
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — RXCIEn: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXCn flag. A USARTn Receive Complete inter-
rupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG
is written to one and the RXCn bit in UCSRnA is set.

e Bit 6 — TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn flag. A USARTn Transmit Complete inter-
rupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG
is written to one and the TXCn bit in UCSRNA is set.

* Bit 5 - UDRIEn: USARTn Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREN flag. A Data Register Empty interrupt will
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRNA is set.

* Bit 4 - RXENn: Receiver Enable

Writing this bit to one enables the USARTn Receiver. The Receiver will override normal port
operation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

* Bit 3 - TXENn: Transmitter Enable

Writing this bit to one enables the USARTn Transmitter. The Transmitter will override normal
port operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn
to zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

¢ Bit 2 - UCSZn2: Character Size
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRNC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

* Bit 1 - RXB8n: Receive Data Bit 8
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

* Bit 0 — TXB8n: Transmit Data Bit 8
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

18.11.7 USARTO Control and Status Register C — UCSR0OC

Bit 7 6 5 4 3 2 1 0
| - |uwsELo| uPmo1 | UPMOO | USBSO | UCSZ01 | UCSZO00 | UCPOLO | UCSROC

Read/Write R R/W R/W R/W RIW R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

A IIIEI% 195

4250G-CAN-09/05

18.11.8

196

AIMEL

USART1 Control and Status Register C — UCSR1C

Bit 7 6 5 4 3 2 1 0
| - [uwmseLt1| upmi1 | uPM10 | USBS1 | UCSZ11 | UCSZ10 | UCPOIL | UCSRIC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

* Bit 7 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, these bit must be written
to zero when UCSRNC is written.

* Bit 6 - UMSELn: USARTn Mode Select
This bit selects between asynchronous and synchronous mode of operation.

Table 18-4. UMSELn Bit Settings

UMSELnN Mode
0 Asynchronous Operation
1 Synchronous Operation

* Bit 5:4 — UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPMnO setting.
If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

Table 18-5. UPMn Bits Settings

UPMn1 UPMnO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

e Bit 3 - USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

Table 18-6. USBSn Bit Settings

USBSn Stop Bit(s)
0 1-bit
1 2-bit

AT 90 C /AN 123 500000

4250G-CAN-09/05

18.11.9

¢ Bit2:1 - UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

Table 18-7. UCSZn Bits Settings
UCSZn2 UCcsZn1 UCSZno0 Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

* Bit 0 - UCPOLN: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLN bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCKn).

Table 18-8. UCPOLn Bit Settings
UCPOLN Transmitted Data (_:hanged Received Data Sa_mpled
(Output of TxDn Pin) (Input on RxDn Pin)
0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge

Bit

Read/Write

Initial Value

USARTO0 Baud Rate Registers — UBRROL and UBRROH

18.11.10 USART1 Baud Rate Registers — UBRR1L and UBRR1H

4250G-CAN-09/05

Bit

Read/Write

Initial Value

15 14 13 12 11 10 9 8
- - - =] UBRRO[11:8] UBRROH
UBRRO[7:0] UBRROL
7 6 5 4 3 2 1 0
R R RIW RIW R/W R/W
RIW RIW RIW R/W R/W RIW RIW R/W
0 0 0 0 0 0 0
0 0 0 0 0 0 0
15 14 13 12 11 10 9 8
- | -1 - 1 -] UBRR1[11:8] UBRR1H
UBRR1[7:0] UBRRIL
7 6 5 4 3 2 1 0
R R R RIW R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ATMEL

197

AIMEL

* Bit 15:12 — Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRnNH is written.

¢ Bit 11:0 - UBRRn11:0: USARTn Baud Rate Register

This is a 12-bit register which contains the USARTnN baud rate. The UBRRnH contains the four
most significant bits, and the UBRRnL contains the eight least significant bits of the USARTn
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud
rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

18.12 Examples of Baud Rate Setting

For standard crystal, resonator and external oscillator frequencies, the most commonly used
baud rates for asynchronous operation can be generated by using the UBRRn settings in Table
18-9 up to Table 18-12. UBRRn values which yield an actual baud rate differing less than 0.5%
from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the
Receiver will have less noise resistance when the error ratings are high, especially for large
serial frames (see “Asynchronous Operational Range” on page 190). The error values are calcu-
lated using the following equation:

Ermor] = (1- g e 1009,
Table 18-9. Examples of UBRRn Settings for Commonly Frequencies
Baud felk,, = 1.0000 MHz fcik,, = 1.8432 MHz fclk;, = 2.0000 MHz
Rate U2Xn=10 U2Xn =1 U2Xn =0 U2Xn =1 U2Xn=10 U2Xn =1
(bps) UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 21%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - - -
500k - - - - - - - - - - - -
™ - - - - - - - - - - - -
Max. (! 62.5 kbps 125 kbps 115.2 kbps 230.4 Kbps 125 kpbs 250 kbps

Note: 1. UBRRn =0, Error = 0.0%

198 A T90 C AN 1 25 1 —

Table 18-10. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud fclk,, = 3.6864 MHz fclk,, = 4.0000 MHz fclk,, = 7.3728 MHz

Rate U2xXn=0 U2xXn=1 U2xXn=0 U2Xn =1 U2xXn=0 u2xXn=1

(bps) UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 21% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
500k - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
™ - - - - - - - - - - 0 -7.8%
Max.(" 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kpbs 921.6 kbps

Note: 1. UBRRn =0, Error = 0.0%

A IIIEI% 199

4250G-CAN-09/05

AIMEL

Table 18-11. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud fclk;, = 8.0000 MHz felk;,, = 10.000 MHz fclk,, = 11.0592 MHz

Rate U2xXn=0 U2Xn=1 U2Xn=0 U2Xn =1 U2xXn=0 u2xXn =1
(bps) UBRRn |[Error UBRRn |[Error UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error
2400 207 0.2% 416 -0.1% 259 0.2% 520 0.0% 287 0.0% 575 0.0%
4800 103 0.2% 207 0.2% 129 0.2% 259 0.2% 143 0.0% 287 0.0%
9600 51 0.2% 103 0.2% 64 0.2% 129 0.2% 71 0.0% 143 0.0%
14.4k 34 -0.8% 68 0.6% 42 0.9% 86 0.2% 47 0.0% 95 0.0%
19.2k 25 0.2% 51 0.2% 32 -1.4% 64 0.2% 35 0.0% 71 0.0%
28.8k 16 2.1% 34 -0.8% 21 -1.4% 42 0.9% 23 0.0% 47 0.0%
38.4k 12 0.2% 25 0.2% 15 1.8% 32 -1.4% 17 0.0% 35 0.0%
57.6k 8 -3.5% 16 21% 10 -1.5% 21 -1.4% 11 0.0% 23 0.0%
76.8k 6 -7.0% 12 0.2% 7 1.9% 15 1.8% 8 0.0% 17 0.0%
115.2k 3 8.5% 8 -3.5% 4 9.6% 10 -1.5% 5 0.0% 1 0.0%
230.4k 1 8.5% 3 8.5% 2 -16.8% 4 9.6% 2 0.0% 5 0.0%
250k 1 0.0% 3 0.0% 2 -33.3% 4 0.0% 2 -7.8% 5 -7.8%
500k 0 0.0% 1 0.0% - - 2 -33.3% - - 2 -7.8%
™ - - 0 0.0% - - - - - - - -
Max. (" 0.5 Mbps 1 Mbps 625 kbps 1.25 Mbps 691.2 kbps 1.3824 Mbps

Note: 1. UBRRn =0, Error = 0.0%

200 ATO0C AN 12 S e —

4250G-CAN-09/05

Table 18-12. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud fclk,, = 12.0000 MHz fclk,, = 14.7456 MHz fclk,, = 16.0000 MHz

Rate U2Xn=0 U2Xn =1 U2Xn =0 U2Xn =1 U2Xn=0 U2Xn =1
(bps) UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error UBRRn |Error
2400 312 -0.2% 624 0.0% 383 0.0% 767 0.0% 416 -0.1% 832 0.0%
4800 155 0.2% 312 -0.2% 191 0.0% 383 0.0% 207 0.2% 416 -0.1%
9600 77 0.2% 155 0.2% 95 0.0% 191 0.0% 103 0.2% 207 0.2%
14.4k 51 0.2% 103 0.2% 63 0.0% 127 0.0% 68 0.6% 138 -0.1%
19.2k 38 0.2% 77 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
28.8k 25 0.2% 51 0.2% 31 0.0% 63 0.0% 34 -0.8% 68 0.6%
38.4k 19 -2.5% 38 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
57.6k 12 0.2% 25 0.2% 15 0.0% 31 0.0% 16 2.1% 34 -0.8%
76.8k 9 -2.7% 19 -2.5% 1 0.0% 23 0.0% 12 0.2% 25 0.2%
115.2k 6 -8.9% 12 0.2% 7 0.0% 15 0.0% 8 -3.5% 16 21%
230.4k 2 11.3% 6 -8.9% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
250k 2 0.0% 5 0.0% 3 -7.8% 6 5.3% 3 0.0% 7 0.0%
500k - - 2 0.0% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0%
™ - - - - 0 -7.8% 1 -7.8% 0 0.0% 1 0.0%
Max. (" 750 kbps 1.5 Mbps 921.6 kbps 1.8432 Mbps 1 Mbps 2 Mbps

Note: 1. UBRRn =0, Error = 0.0%

A IIIEI% 201

4250G-CAN-09/05

AIMEL

19. Two-wire Serial Interface

19.1 Features
* Simple yet Powerful and Flexible Communication Interface, only Two Bus Lines Needed
* Both Master and Slave Operation Supported
* Device can Operate as Transmitter or Receiver
» 7-bit Address Space allows up to 128 Different Slave Addresses
* Multi-master Arbitration Support
* Up to 400 kHz Data Transfer Speed
» Slew-rate Limited Output Drivers
* Noise Suppression Circuitry Rejects Spikes on Bus Lines
* Fully Programmable Slave Address with General Call Support
* Address Recognition Causes Wake-up when AVR is in Sleep Mode

19.2 Two-wire Serial Interface Bus Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 19-1. TWI Bus Interconnection

Device 1 Device 2 Device3 | Device n

VCC

T
R1 DRZ

SDA = >

SCL =

\J

19.21 TWI Terminology
The following definitions are frequently encountered in this section.

Table 19-1. TWI Terminology

Term Description

The device that initiates and terminates a transmission. The master also generates the
Master

SCL clock
Slave The device addressed by a master

Transmitter The device placing data on the bus

Receiver The device reading data from the bus

202 AT90C AN 12 S o —

19.2.2 Electrical Interconnection

As depicted in Figure 19-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-wire Serial Interface Characteristics” on page 365. Two
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.

19.3 Data Transfer and Frame Format

19.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 19-2. Data Validity

SDA

SCL

Data Stable Data Stable

Data Change

19.3.2 START and STOP Conditions

4250G-CAN-09/05

The master initiates and terminates a data transmission. The transmission is initiated when the
master issues a START condition on the bus, and it is terminated when the master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behaviour, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

A IIIEI% 203

19.3.3

19.3.4

204

AIMEL

Figure 19-3. START, REPEATED START and STOP Conditions

START STOP START REPEATED START STOP

Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed slave is busy, or for some other reason can not service the mas-
ter's request, the SDA line should be left high in the ACK clock cycle. The master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 19-4. Address Packet Format

Addr MSB AddrLSB R/W

/XKRXX/

START

Data Packet Format
All data packets transmitted on the TWI bus are 9 bits long, consisting of one data byte and an
acknowledge bit. During a data transfer, the master generates the clock and the START and
STOP conditions, while the receiver is responsible for acknowledging the reception. An

AT 90 C /AN 123 500000

AT90CAN128

Acknowledge (ACK) is signalled by the receiver pulling the SDA line low during the ninth SCL
cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 19-5. Data Packet Format

|
! Data MSB DataLSB ACK !

- | [
Aggregate N\ | j !
SDA |
| |

. I i
SDA from N i i
Transmitter \ | !
| |

,,,,,, ! 1
SDA from a) |
Receiver /| !
| |
| |
SCL from | 3

Master ‘ (N

i ! 2 / 8 ° i STOP, REPEATED
SLA+R/W | Data Byte ! START or Next

| |

Data Byte

19.3.5 Combining Address and Data Packets Into a Transmission

SDA

Addr MSB

X X X XX -

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the master and the slave. The slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the
slave, or the slave needs extra time for processing between the data transmissions. The slave
extending the SCL low period will not affect the SCL high period, which is determined by the
master. As a consequence, the slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 19-6 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 19-6. Typical Data Transmission

AddrLSB R/W ACK Data MSB DataLSB ACK

S IANVAWANRYAVAVANEEVAVANRYAVAVANYA
2 § 7 8 9 1 2] 7 8 9

START

SLA+R/W Data Byte STOP

19.4 Multi-master Bus Systems, Arbitration and Synchronization

4250G-CAN-09/05

The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

A IIIEI% 205

206

AIMEL

» An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves,
i.e., the data being transferred on the bus must not be corrupted.

« Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the master with the shortest high period. The low period of the combined clock is equal to
the low period of the master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

Figure 19-7. SCL Synchronization between Multiple Masters

\ \
| |
P,
SCL from [)/ \
master A ‘ / |
SCL from T \ L N 7‘\\
master B I \ | I
1
|
|
|
|
|
\
\

I
[
[

SCL Bus |

Line \
T
\ \
| TBIow | TBhigh
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the master had output, it has
lost the arbitration. Note that a master can only lose arbitration when it outputs a high SDA value
while another master outputs a low value. The losing master should immediately go to slave
mode, checking if it is being addressed by the winning master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one master remains, and this may take many
bits. If several masters are trying to address the same slave, arbitration will continue into the
data packet.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Figure 19-8. Arbitration Between two Masters

START Master A loses

SDA from
Master A

\
SDA from | |
Master B \ \ / \ \ / \

A W A UV NV AN

Note that arbitration is not allowed between:
« A REPEATED START condition and a data bit

« A STOP condition and a data bit
A REPEATED START and a STOP condition

AT90CAN128

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same

number of data packets, otherwise the result of the arbitration is undefined.

19.5 Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 19-9. All registers

drawn in a thick line are accessible through the AVR data bus.

ATMEL

4250G-CAN-09/05

207

19.5.1

19.5.2

208

AIMEL

Figure 19-9. Overview of the TWI Module

SCL SDA
Slew-rate Spike Slew-rate Spike
Control Filter Control Filter

A

A

/

Bus Interface Unit

START / STOP
Control

Spike Suppression

Bit Rate Generator

Prescaler

L . Address/Data Shift Bit Rate Register
Arbitration detection Register (TWDR) Ack (TWBR)
A J A
/ A /
Address Match Unit Control Unit
Address Register P . Status Register Control Register
(TWAR) (TWSR) (TWCR)
Address Comparator State Machine and T -I
P Status control Unit

SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the
CPU clock frequency in the slave must be at least 16 times higher than the SCL frequency. Note
that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

CLKio
16+ 2(TWBR) - 4

SCL frequency =

TWPS

* TWBR = Value of the TWI Bit Rate Register
» TWPS = Value of the prescaler bits in the TWI Status Register

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than 10, the
master may produce an incorrect output on SDA and SCL for the reminder of the byte. The prob-
lem occurs when operating the TWI in Master mode, sending Start + SLA + R/W to a slave (a
slave does not need to be connected to the bus for the condition to happen).

AT90CAN128 mees———

4250G-CAN-09/05

19.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a master.

If the TWI has initiated a transmission as master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

19.5.4 Address Match Unit

19.5.5 Control Unit

4250G-CAN-09/05

The Address Match unit checks if received address bytes match the 7-bit address in the TWI
Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a master. If another interrupt (e.g., INTO)
occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts opera-
tion and return to it’s idle state. If this cause any problems, ensure that TWI Address Match is the
only enabled interrupt when entering Power-down.

The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT flag is set in the following situations:

+ After the TWI has transmitted a START/REPEATED START condition

» After the TWI has transmitted SLA+R/W

+ After the TWI has transmitted an address byte

+ After the TWI has lost arbitration

+ After the TWI has been addressed by own slave address or general call

* After the TWI has received a data byte

+ After a STOP or REPEATED START has been received while still addressed as a slave

A IIIEI% 209

AIMEL

* When a bus error has occurred due to an illegal START or STOP condition

19.6 TWI Register Description

19.6.1 TWI Bit Rate Register - TWBR

Bit 7 6 5 4 3 2 1 0

I TWBR7 | TWBR6 | TWBR5 | TWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBRO I TWBR
Read/Write R/W R/W R/IW R/W R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 — TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator
Unit” on page 208 for calculating bit rates.

19.6.2 TWI Control Register - TWCR

Bit 7 6 5 4 3 2 1 0
| TWINT | TWEA | TWSTA | TWSTO | TWWC | TWEN - TWIE | TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
master access by applying a START condition to the bus, to generate a receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

e Bit 7 — TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI interrupt vector. While the TWINT flag is set, the SCL low period is stretched. The TWINT
flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

* Bit 6 - TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the ACK pulse. If the TWEA bit is written to one, the
ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire
Serial Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

* Bit 5 - TWSTA: TWI START Condition Bit

210 ATI0C AN 12 S s —

The application writes the TWSTA bit to one when it desires to become a master on the Two-
wire Serial Bus. The TWI hardware checks if the bus is available, and generates a START con-
dition on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition
is detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

* Bit4 - TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

* Bit 3 - TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register —- TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

* Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the 1/O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

* Bit 1 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, this must be written to
zero when TWCR is written.

* Bit 0 — TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT flag is high.

19.6.3 TWI Status Register - TWSR

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0

| tws? | Twse TWS5 TWS4 TWS3 - TWPS1 | TWPSO | TWsR
Read/Write R R R R R R R/W R/W
Initial Value 1 1 1 1 1 0 0 0

* Bits 7..3 — TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different status
codes are described later in this section. Note that the value read from TWSR contains both the
5-bit status value and the 2-bit prescaler value. The application designer should mask the pres-
caler bits to zero when checking the Status bits. This makes status checking independent of
prescaler setting. This approach is used in this datasheet, unless otherwise noted.

* Bit 2 — Res: Reserved Bit
This bit is reserved and will always read as zero.

A IIIEI% 211

19.6.4

19.6.5

212

AIMEL

¢ Bits 1..0 — TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Table 19-2. TWI Bit Rate Prescaler

TWPS1 TWPSO0 Prescaler Value
0 0 1
0 1 4
1 0 16
1 1 64

To calculate bit rates, see “Bit Rate Generator Unit” on page 208. The value of TWPS1..0 is
used in the equation.

TWI Data Register - TWDR

Bit 7 6 5 4 3 2 1 0

I TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWDO I TWDR
Read/Write R/W R/IW R/IW R/W R/W R/W R/W R/IW
Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI interrupt flag (TWINT) is set by hardware. Note that the Data Register
cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains sta-
ble as long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted
in. TWDR always contains the last byte present on the bus, except after a wake up from a sleep
mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case of a lost
bus arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit is
controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

* Bits 7..0 - TWD: TWI Data Register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the TWI Serial Bus.

TWI (Slave) Address Register - TWAR

Bit 7 6 5 4 3 2 1 0
| Twae | Twas | Twa4 TWA3 TWA2 TWA1 TWAO | TWGCE | TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

e Bits 7..1 — TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit. The TWAR should be loaded with
the 7-bit slave address to which the TWI will respond when programmed as a slave transmitter
or receiver, and not needed in the master modes. In multimaster systems, TWAR must be set in
masters which can be addressed as slaves by other masters.

¢ Bit 0 - TWGCE: TWI General Call Recognition Enable Bit

AT 90 C /AN 123 500000

4250G-CAN-09/05

TWGCE is used to enable recognition of the general call address (0x00). There is an associated
address comparator that looks for the slave address (or general call address if enabled) in the
received serial address. If a match is found, an interrupt request is generated. If set, this bit

enables the recognition of a General Call given over the TWI Serial Bus.

19.7 Using the TWI

Figure 19-10. Interfacing the Application to the TWI in a Typical Transmission

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in

order to detect actions on the TWI bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in

the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 19-10 is a simple example of how the application can interface to the TWI hardware. In
this example, a master wishes to transmit a single data byte to a slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-

menting the desired behaviour is also presented.

Application
Action

1. Application

to initiate
transmission of

3. Check TWSR to see if

writes to TWCR || START was sent. Application
loads SLA+W into TWDR, and
loads appropriate control signals
START. into TWCR, making sure that
TWINT is written to one.

5. Check TWSR to see if SLA+W
was sent and ACK received.
Application loads data into TWDR,
and loads appropriate control signals
into TWCR, making sure that TWINT
is written to one.

7. Check TWSR to see if data
was sent and ACK received.
Application loads appropriate
control signals to send STOP
into TWCR, making sure that
TWINT is written to one.

TWI bus

TWI
Hardware
Action

ACK received

START - SLA+W A - A STOP
2. TWINT set. 4. TWINT set. 6. TWINT set.
Status code indicates Status code indicates Status code indicates
START condition sent SLA+W sendt, data sent,

ACK received

Indicates
TWINT set

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after

4250G-CAN-09/05

ATMEL

213

AIMEL

the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that
the START condition was successfully transmitted. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine.
Assuming that the status code is as expected, the application must load SLA+W into
TWDR. Remember that TWDR is used both for address and data. After TWDR has
been loaded with the desired SLA+W, a specific value must be written to TWCR,
instructing the TWI hardware to transmit the SLA+W present in TWDR. Which value to
write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as
long as the TWINT bit in TWCR is set. Immediately after the application has cleared
TWINT, the TWI will initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has success-
fully been sent. The status code will also reflect whether a slave acknowledged the
packet or not.

5. The application software should now examine the value of TWSR, to make sure that
the address packet was successfully transmitted, and that the value of the ACK bit was
as expected. If TWSR indicates otherwise, the application software might take some
special action, like calling an error routine. Assuming that the status code is as
expected, the application must load a data packet into TWDR. Subsequently, a specific
value must be written to TWCR, instructing the TWI hardware to transmit the data
packet present in TWDR. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission
of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the data packet has successfully
been sent. The status code will also reflect whether a slave acknowledged the packet
or not.

7. The application software should now examine the value of TWSR, to make sure that
the data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must write a specific value to TWCR, instructing the TWI hardware to
transmit a STOP condition. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission
of the STOP condition. Note that TWINT is NOT set after a STOP condition has been
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

* When the TWI has finished an operation and expects application response, the TWINT flag is
set. The SCL line is pulled low until TWINT is cleared.

214 AAT90C AN 12 S s —

* When the TWINT flag is set, the user must update all TWI Registers with the value relevant
for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be
transmitted in the next bus cycle.

+ After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made for example by using include-files.

Assembly Code Example C Example Comments
| di ri6, (1<<TwW NT; | TWCR = (1<<TW NT; ’
1 1SN 1SSV Send START condition
sts TWCR, r16
wai t 1:
| ds ri6, TWCR . Wait for TWINT flag set. This indicates that
1 I .
2 sbrs ri16, TW NT while (1(TWCR & (1<<TWNT))); the START condition has been transmitted
rjnmp waitl
| ds r16, TWER .
andi r16. OxF8 if ((TWBR & OxF8) != START) Check value of TWI Status Register. Mask
. 16’ START ERROR() ; prescaler bits. If status different from START
brne ERRCR go to ERROR
31 1di ri16, SLA W
sts TWR, 16 TWR = SLA W Load SLA_W into TWDR Register. Clear
| di ri16, (1<<TWNT)| TWCR = (1<<TWNT) | (1<<TVEN); TWINT bit in TWCR to start transmission of
2 1<<TVEEN) address
sts TWCR, r16
wai t 2: Wait for TWINT fl t. This indicates that
WCR ait for ag set. This indicates tha
4 ! SS ' 12’ $W NT while (I(TWR & (1<<TWNT))); the SLA+W has been transmitted, and
fj :T; \rmi o ACK/NACK has been received.
I ds ri16, TWER)
andi r16. OxFE8 if ((TWBR & OxF8)!= MI_SLA ACK) |Check value of TWI Status Register. Mask
. ' ERROR() ; prescaler bits. If status different from
Ef'ne Ir516* MI_SLA_ACK Q) MT_SLA_ACK go to ERROR
51 i r16, DATA] OATA
st s 116 TWCR ; (1<<1FW NT) | (1<<TVEN) ; Load DATA into TWDR Register. Clear TWINT
I di rie, 2 %:::R’AVEH)D | ' bit in TWCR to start transmission of data
sts TWCR, r16
wai t 3: while (I(TWCR & (1<<TWNT)));) L
| ds r16. TWCR Wait for TWINT flag set. This indicates that
6 b 16, TW NT the DATA has been transmitted, and
fj :T; \rNai ‘s ACK/NACK has been received.
| ds rie, TWER if ((TWBR & O0xF8)!=MI_DATA ACK) Check value of TWI Status Register. Mask
; i X | = valu u ister.
andl r 12’ S/I)T('F8DATA ACK éRROQ(); - - prescaler bits. If status different from
Ep' |r5 » MI_DATA MT_DATA_ACK go to ERROR
7 rne RROR
| di r16, (1<<TW NT) TWCR = (1<<TW NT)
%::¥%—'?—Do) %::¥%-|N)o) : Transmit STOP condition
sts TWCR, r16

4250G-CAN-09/05

ATMEL

215

AIMEL

19.8 Transmission Modes

19.8.1

216

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R Read bit (high level at SDA)

W: Write bit (low level at SDA)

A Acknowledge bit (low level at SDA)

A Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 19-12 to Figure 19-18, circles are used to indicate that the TWINT flag is set. The num-
bers in the circles show the status code held in TWSR, with the prescaler bits masked to zero. At
these points, actions must be taken by the application to continue or complete the TWI transfer.
The TWI transfer is suspended until the TWINT flag is cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 19-3 to Table 19-6. Note that the prescaler bits are masked to zero in
these tables.

Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a slave receiver (see
Figure 19-11). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted,
MR mode is entered. All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

AT 90 C /AN 123 500000

4250G-CAN-09/05

4250G-CAN-09/05

Figure 19-11. Data Transfer in Master Transmitter Mode

Device 1 Device 2
MASTER SLAVE Device3 | Device n
TRANSMITTER RECEIVER \Y
CcC
R1 R2
SDA = >
SCL <« B
A START condition is sent by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA | TWSTO TWWC TWEN = TWIE
value 1 X 1 0 X 1 0 X

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to
transmit a START condition and TWINT must be written to one to clear the TWINT flag. The TWI
will then test the Two-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT flag is set by hard-
ware, and the status code in TWSR will be 0x08 (See Table 19-3). In order to enter MT mode,
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgment bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 19-3.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

A IIIEI% 217

AIMEL

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START
enables the master to switch between slaves, Master Transmitter mode and Master Receiver
mode without losing control of the bus.

Table 19-3. Status Codes for Master Transmitter Mode
;S;\a/\\t/uSsRC):ode Status of the_ Two-wi_re Serial Bus Application Software Response -
. and Two-wire Serial Interface To TWCR Next Action Taken by TWI Hardware
Prescaler Bits Hardware To/from TWDR
are 0 STA STO | TWINT | TWEA
0x08 A START condition has been|Load SLA+W X 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition has |Load SLA+W or X 0 1 X SLA+W will be transmitted;
been transmitted ACK or NOT ACK will be received
Load SLA+R X 0 1 X SLA+R will be transmitted;
Logic will switch to master receiver mode
0x18 SLA+W has been transmitted,; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will be
ACK has been received received
No TWDR actionor |1 0 1 X Repeated START will be transmitted
No TWDR actionor |0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x20 SLA+W has been transmitted,; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will be
NOT ACK has been received received
No TWDR action or |1 0 1 X Repeated START will be transmitted
No TWDR actionor |0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x28 Data byte has been transmitted; |Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will be
ACK has been received received
No TWDR actionor |1 0 1 X Repeated START will be transmitted
No TWDR actionor |0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x30 Data byte has been transmitted; |Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will be
NOT ACK has been received received
No TWDR actionor |1 0 1 X Repeated START will be transmitted
No TWDR actionor |0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x38 Arbitration lost in SLA+W or data|No TWDR actionor |0 0 1 X Two-wire Serial Bus will be released and not addressed
bytes slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-
comes free

4250G-CAN-09/05

Figure 19-12. Formats and States in the Master Transmitter Mode

MT

AT90CAN128

Successfull
transmission S SLA

DATA

receiver

to a slave

Next transfer

started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

Other master
AorA continues
\ _
A Other master
continues

CHEER)

Rs SLA ' w

MR

A P
.
Aork Other master

continues

To corresponding
states in slave mode

From master to slave

From slave to master

4250G-CAN-09/05

ATMEL

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

219

19.8.2

220

AIMEL

Master Receiver Mode

In the Master Receiver Mode, a number of data bytes are received from a slave transmitter (see
Figure 19-13). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted,
MR mode is entered. All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

Figure 19-13. Data Transfer in Master Receiver Mode

Device 1 Device 2 .
MASTER SLAVE Device3 | ... Device n
RECEIVER TRANSMITTER v
CcC
R1 R2
SDA = >
SCL = B
A START condition is sent by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA | TWSTO TWWC TWEN - TWIE

value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT flag. The TWI will
then test the Two-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT flag is set by hardware, and the
status code in TWSR will be 0x08 (See Table 19-3). In order to enter MR mode, SLA+R must be
transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-
ing value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgment bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 19-12. Received data can be read from the TWDR Register when the TWINT
flag is set high by hardware. This scheme is repeated until the last byte has been received. After
the last byte has been received, the MR should inform the ST by sending a NACK after the last
received data byte. The transfer is ended by generating a STOP condition or a repeated START
condition. A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

AT 90 C /AN 123 500000

4250G-CAN-09/05

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START
enables the master to switch between slaves, Master Transmitter mode and Master Receiver
mode without losing control over the bus.

Figure 19-14. Formats and States in the Master Receiver Mode

MR
4 _—.— = -
Successfull .
reception S SLA | R A DATA A DATA A P
from a slave * -- -
receiver
049) 0= (02
Y
Next transfer .
started with a o Rs SLA 1 R
repeated start
condition
D |
'
Not acknowledge W
received after the A P
slave address A
,
-) > A > MT
Arbitration lost in slave AorA Other master A Other master
address or data byte or continues continues
'
Arbitration lost and A Other master
addressed as slave continues
To corresponding
@ states in slave mode
o Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

prescaler bits are zero or masked to zero

A IIIEI% 221

4250G-CAN-09/05

AIMEL

Table 19-4. Status Codes for Master Receiver Mode
(S_lf\z;\t/uSsR())ode Status of the Two-wire Serial Bus Application Software Response
) and Two-wire Serial Interface To TWCR Next Action Taken by TWI Hardware
Prescaler Bits Hard To/from TWDR
are 0 ardware STA STO | TWINT | TWEA
0x08 A START condition has been|Load SLA+R X 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition has |Load SLA+R or X 0 1 X SLA+R will be transmitted
been transmitted ACK or NOT ACK will be received
Load SLA+W X 0 1 X SLA+W will be transmitted
Logic will switch to master transmitter mode
0x38 Arbitration lost in SLA+R or NOT |No TWDR actionor |0 0 1 X Two-wire Serial Bus will be released and not addressed
ACK bit slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; No TWDR actionor |0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; No TWDR actionor |1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR actionor |0 1 1 X STOP condition will be transmitted and TWSTO flag will
be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
19.8.3 Slave Receiver Mode
In the Slave Receiver mode, a number of data bytes are received from a master transmitter (see
Figure 19-15). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.
Figure 19-15. Data Transfer in Slave Receiver Mode
Device 1 Device 2 .
SLAVE MASTER Device3 | ... Device n
RECEIVER TRANSMITTER v
CcC
R1 R2
SDA = >
SCL = >

4250G-CAN-09/05

4250G-CAN-09/05

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR TWAG | TWAS5 \ TWA4 \ TWA3 | TWA2 | TWA1 \ TWAO TWGCE
value Device’s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWwWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgment of the device’s own slave address or the general call address. TWSTA and
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 19-5.
The slave receiver mode may also be entered if arbitration is lost while the TWI is in the master
mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the Two-wire Serial Bus is still monitored and address recognition may
resume at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily
isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is cleared
(by writing it to one). Further data reception will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte
present on the bus when waking up from these sleep modes.

A IIIEI% 223

AIMEL

Table 19-5. Status Codes for Slave Receiver Mode
(S_lf\z;\t/uSsR())ode Status of the Two-wire Serial Bus Application Software Response
P . and Two-wire Serial Interface Hard- To TWCR Next Action Taken by TWI Hardware
rescaler Bits Tol/from TWDR
are 0 ware STA STO | TWINT | TWEA
0x60 Own SLA+W has been received,; No TWDR actionor | X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x68 Arbitration lost in SLA+R/W as mas-|No TWDR action or | X 0 1 0 Data byte will be received and NOT ACK will be
ter; own SLA+W has been returned
received; ACK has been returned |No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x70 General call address has been No TWDR actionor | X 0 1 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x78 Arbitration lost in SLA+R/W as mas-|No TWDR action or | X 0 1 0 Data byte will be received and NOT ACK will be
ter; General call address has been returned
received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
0x80 Previously addressed with own|Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x88 Previously addressed with own|Read data byte or 0 0 1 0 Switched to the not addressed slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0x90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x98 Previously addressed with Read data byte or 0 0 1 0 Switched to the not addressed slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0xAO0 A STOP condition or repeated|Read data byte or 0 0 1 0 Switched to the not addressed slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as|Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17%;
a START condition will be transmitted when the bus
becomes free

4250G-CAN-09/05

Figure 19-16. Formats and States in the Slave Receiver Mode

AT90CAN128

Reception of the . -
own slave address S SLA \ W A DATA A DATA A PorS
and one or more * - - -
data bytes. All are
acknowledged
@ @
Yy
Last data byte received
is not acknowledged A PorS
\
Arbitration lost as master
and addressed as slave A
Y o
Reception of the general call
address and one or more data General Call A DATA A DATA A PorS
bytes y - - - -
Y
Last data byte received is
not acknowledged A PorS
\
Arbitration lost as master and
addressed as slave by general call A
- Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

4250G-CAN-09/05

prescaler bits are zero or masked to zero

ATMEL

225

19.8.4

226

AIMEL

Slave Transmitter Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a master receiver (see
Figure 19-17). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.

Figure 19-17. Data Transfer in Slave Transmitter Mode

Device 1 Device 2 . .
SLAVE MASTER Device3 | Device n
TRANSMITTER RECEIVER

VCC

R1 R2

[
|

SDA

A

SCL =

\J

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 | TWAS5 ‘ TWA4 ‘ TWA3 | TWA2 | TWA1 ‘ TWAO TWGCE
value Device’s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TwWwcC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgment of the device’s own slave address or the general call address. TWSTA and
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 19-6.
The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the
Master mode (see state 0xBO).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State 0xCO or state OxC8 will be entered, depending on whether the master receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed slave
mode, and will ignore the master if it continues the transfer. Thus the master receiver receives
all “1” as serial data. State 0xC8 is entered if the master demands additional data bytes (by
transmitting ACK), even though the slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the master).

AT 90 C /AN 123 500000

4250G-CAN-09/05

Table 19-6.

While TWEA is zero, the TWI does not respond to its own slave address. However, the Two-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the Two-wire
Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock will low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data transmission will be carried out as normal, with the
AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the
SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte

present on the bus when waking up from these sleep modes.

Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface Hard-
ware

Application Software Response

To/from TWDR

To TWCR

STA

STO

TWINT

TWEA

Next Action Taken by TWI Hardware

0xA8

Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be received

0xB0

Arbitration lost in SLA+R/W as mas-
ter; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be received

0xB8

Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be received

0xCO

Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

O |X X |[X X|X X

o

Switched to the not addressed slave mode;

no recognition of own SLA or GCA

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

0xC8

Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK has
been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed slave mode;

no recognition of own SLA or GCA

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

4250G-CAN-09/05

ATMEL

227

AIMEL

Figure 19-18. Formats and States in the Slave Transmitter Mode

Reception of the

own slave address S SLA . R A DATA A DATA A PorS

and one or 7 -~

more data bytes
@
A

v

Arbitration lost as master
and addressed as slave

Last data byte transmitted.

Switched to not addressed A All1’'s | PorS
slave (TWEA ="0’) -— - -

@)

- Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

prescaler bits are zero or masked to zero

19.8.5 Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see Table 19-7.

Status 0xF8 indicates that no relevant information is available because the TWINT flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed slave mode and to clear the TWSTO flag (no other bits in TWCR
are affected). The SDA and SCL lines are released, and no STOP condition is transmitted.

Table 19-7. Miscellaneous States

(S_If\e;\t/uSsR()Jode Status of the Two-wire Serial Bus Application Software Response
. an wo-wire Serial Interface [ext Action Taken by ardware
d T ire Serial Interf To TWCR Next Action Taken by TWI Hard

Prescaler Bits Hard Tolfrom TWDR
are 0 arcware STA | STO | TWINT \ TWEA
0xF8 No relevant state information|No TWDR action No TWCR action Wait or proceed current transfer

available; TWINT = “0”
0x00 Bus error due to an illegal START | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condition

or STOP condition is sent on the bus. In all cases, the bus is released and

TWSTO is cleared.

4250G-CAN-09/05

19.8.6 Combining Several TWI Modes

4250G-CAN-09/05

In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

1. The transfer must be initiated

2. The EEPROM must be instructed what location should be read

3. The reading must be performed

4. The transfer must be finished
Note that data is transmitted both from master to slave and vice versa. The master must instruct
the slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multimaster sys-
tem, another master can alter the data pointer in the EEPROM between steps 2 and 3, and the
master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 19-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver
— —
S SLA+W A ADDRESS A | Rs SLA+R A DATA X P
S = START Rs = REPEATED START P =STOP
Transmitted from master to slave Transmitted from slave to master

A IIIEI% 229

AIMEL

19.9 Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simulta-
neously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a slave receiver.

Figure 19-20. An Arbitration Example

Device 1 Device 2 Device 3)
MASTER SLAVE SLAVE | ...l Device n
TRANSMITTER RECEIVER RECEIVER
V,
cC
R1 D R2
SDA = >

SCL =

\J

Several different scenarios may arise during arbitration, as described below:

» Two or more masters are performing identical communication with the same slave. In this
case, neither the slave nor any of the masters will know about the bus contention.

» Two or more masters are accessing the same slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters
trying to output a one on SDA while another master outputs a zero will lose the arbitration.
Losing masters will switch to not addressed slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action.

» Two or more masters are accessing different slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to slave mode to check if they are
being addressed by the winning master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.

230 ATO0C AN 12 S s —

4250G-CAN-09/05

AT90CAN128

This is summarized in Figure 19-21. Possible status values are given in circles.

Figure 19-21. Possible Status Codes Caused by Arbitration

START SLA

Data STOP

Arbitration lost in SLA Arbitration lost in Data

Own No
Address / General Call

received

| 0x38) TWI bus will be released and not addressed slave mode will be entered
7| A START condition will be transmitted when the bus becomes free

Yes

-, Write 0x68/0x78
Direction

o | Data byte will be received and NOT ACK will be returned
""| Data byte will be received and ACK will be returned

Read

Last data byte will be transmitted and NOT ACK should be received
/ >
[

0xB0 \'@a byte will be transmitted and ACK should be received

AIMEL 231
4250G-CAN-09/05 Y)

AIMEL

20. Controller Area Network - CAN

201

20.2 CAN Protocol

20.2.1

232

Features

Principles

The Controller Area Network (CAN) protocol is a real-time, serial, broadcast protocol with a very
high level of security. The ATO90CAN128 CAN controller is fully compatible with the CAN Specifi-
cation 2.0 Part A and Part B. It delivers the features required to implement the kernel of the CAN
bus protocol according to the ISO/OSI Reference Model:

* The Data Link Layer
- the Logical Link Control (LLC) sublayer
- the Medium Access Control (MAC) sublayer
* The Physical Layer
- the Physical Signalling (PLS) sublayer
- not supported - the Physical Medium Attach (PMA)
- not supported - the Medium Dependent Interface (MDI)
The CAN controller is able to handle all types of frames (Data, Remote, Error and Overload) and
achieves a bitrate of 1 Mbit/s.

* Full Can Controller

* Fully Compliant with CAN Standard rev 2.0 Aand rev 2.0 B

» 15 MOb (Message Object) with their own:
— 11 bits of Identifier Tag (rev 2.0 A), 29 bits of Identifier Tag (rev 2.0 B)
— 11 bits of Identifier Mask (rev 2.0 A), 29 bits of Identifier Mask (rev 2.0 B)
— 8 Bytes Data Buffer (Static Allocation)
— Tx, Rx, Frame Buffer or Automatic Reply Configuration
— Time Stamping

* 1 Mbit/s Maximum Transfer Rate at 8 MHz

* TTC Timer

» Listening Mode (for Spying or Autobaud)

The CAN protocol is an international standard defined in the ISO 11898 for high speed and ISO
11519-2 for low speed.

CAN is based on a broadcast communication mechanism. This broadcast communication is
achieved by using a message oriented transmission protocol. These messages are identified by
using a message identifier. Such a message identifier has to be unique within the whole network
and it defines not only the content but also the priority of the message.

The priority at which a message is transmitted compared to another less urgent message is
specified by the identifier of each message. The priorities are laid down during system design in
the form of corresponding binary values and cannot be changed dynamically. The identifier with
the lowest binary number has the highest priority.

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by each node
observing the bus level bit for bit. This happens in accordance with the "wired and" mechanism,

AT 90 C /AN 123 500000

4250G-CAN-09/05

by which the dominant state overwrites the recessive state. The competition for bus allocation is
lost by all nodes with recessive transmission and dominant observation. All the "losers" automat-
ically become receivers of the message with the highest priority and do not re-attempt
transmission until the bus is available again.

20.2.2 Message Formats

The CAN protocol supports two message frame formats, the only essential difference being in
the length of the identifier. The CAN standard frame, also known as CAN 2.0 A, supports a
length of 11 bits for the identifier, and the CAN extended frame, also known as CAN 2.0 B, sup-
ports a length of 29 bits for the identifier.

20.2.2.1 Can Standard Frame

Figure 20-1.

4250G-CAN-09/05

CAN Standard Frames

Data Frame
" Bus dle I 1-bitidentiier 4-it DLC ’ . CRCl IACK ntermission; Busldle
SOF ID10.0 RTR{IDE | 10 DLC4.0 0- 8 bytes 15-bit CRC del ACK del | 7 bits : 3 bits : (Indefinite)
_Interframe D q Arbitration e Control > Data e CRC e ACK > End of e Interframe o
Space Field Field Field Field Field Frame Space

Remote Frame

" Busldie “1-bit identifier
ISOF i RTR|ioE |

=}

451 DLC . CRe], . JACK —ntermisson, Buslde
DLC4.0 | 19DitCRC del,lACKIdeI.l Tois T sbits | (indefinte)

_ Interframe D 4 Arbmanon Y Cg‘rétlaol > EEI% Y é\% N de of Y Inten‘rame o

Space

ame pace

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)", this is fol-
lowed by the "Arbitration field" which consist of the identifier and the "Remote Transmission
Request (RTR)" bit used to distinguish between the data frame and the data request frame
called remote frame. The following "Control field" contains the "IDentifier Extension (IDE)" bit
and the "Data Length Code (DLC)" used to indicate the number of following data bytes in the
"Data field". In a remote frame, the DLC contains the number of requested data bytes. The "Data
field" that follows can hold up to 8 data bytes. The frame integrity is guaranteed by the following
"Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK
slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as
a dominant bit by the receivers which have at this time received the data correctly. Correct mes-
sages are acknowledged by the receivers regardless of the result of the acceptance test. The
end of the message is indicated by "End Of Frame (EOF)". The "Intermission Frame Space
(IFS)" is the minimum number of bits separating consecutive messages. If there is no following
bus access by any node, the bus remains idle.

A IIIEI% 233

AIMEL
20.2.2.2 CAN Extended Frame

Figure 20-2. CAN Extended Frames

Data Frame

‘Bus Idle 11-bit base identifier 18-bit identifier extension
ISOF IDT28.18 SRR| IDE D17.0 RTR| r1 |

=}

4-bit DLC . CRC ACK "Intermission, Bus Idle
DLC4.0 O-S(b(ytes 180t CRC | |ACK| | Thits 1T ! (indefinie)

Interframe Arbitration Control Data CRC ACK End of Interframe _
G — D> — D i > fy PR D e D
> Field Field Field Field Field Fr

Space ame Space

Remote Frame

‘Bus Idle 11-bit base identifier ' 18-bit identifier extension
ISOF IDT28.18 SRRY IDE D17.0 RTR| 11] v

>

4-it DLC . CRe], ~ JACK Intermlsswn Buslde
DLC4.0 | 'OICRC fge |AC Idell Tois " 3bis) (indefine)

Interframe Arbitration Control CRC ACK End of Interframe _
G —_—— —D— gy —P R D— - -
Space —» Field Field Field Field Frame Space

A message in the CAN extended frame format is likely the same as a message in CAN standard
frame format. The difference is the length of the identifier used. The identifier is made up of the
existing 11-bit identifier (base identifier) and an 18-bit extension (identifier extension). The dis-
tinction between CAN standard frame format and CAN extended frame format is made by using
the IDE bit which is transmitted as dominant in case of a frame in CAN standard frame format,
and transmitted as recessive in the other case.

20.2.2.3 Format Co-existence

As the two formats have to co-exist on one bus, it is laid down which message has higher priority
on the bus in the case of bus access collision with different formats and the same identifier /
base identifier: The message in CAN standard frame format always has priority over the mes-
sage in extended format.

There are three different types of CAN modules available:

— 2.0A - Considers 29 bit ID as an error
— 2.0B Passive - Ignores 29 bit ID messages
— 2.0B Active - Handles both 11 and 29 bit ID Messages

20.2.3 CAN Bit Timing

To ensure correct sampling up to the last bit, a CAN node needs to re-synchronize throughout
the entire frame. This is done at the beginning of each message with the falling edge SOF and
on each recessive to dominant edge.

20.2.3.1 Bit Construction

One CAN bit time is specified as four non-overlapping time segments. Each segment is con-
structed from an integer multiple of the Time Quantum. The Time Quantum or TQ is the smallest
discrete timing resolution used by a CAN node.

234 AAT'90C AN 12 S s —

Figure 20-3. CAN Bit Construction

Gomen L[L LIt ri--

TransmissionPoint @ & ® ® 9 6 € & 9 © 6 9 9 0 © 0 9 0 0 0 9 0 0 0 9 0 O 0 9 o

o / I\I

Nominal CAN Bit Time

Time Quantum
(producer)
Segments
(producer)

[svwe seq] PROP_SEG | PHASE_SEG 1 | PHASE_SEG 2 |

L, propagation ﬂ

delay

20.2.3.2 Synchronization Segment
The first segment is used to synchronize the various bus nodes.

On transmission, at the start of this segment, the current bit level is output. If there is a bit state
change between the previous bit and the current bit, then the bus state change is expected to
occur within this segment by the receiving nodes.

20.2.3.3 Propagation Time Segment
This segment is used to compensate for signal delays across the network.

This is necessary to compensate for signal propagation delays on the bus line and through the
transceivers of the bus nodes.

20.2.3.4 Phase Segment 1
Phase Segment 1 is used to compensate for edge phase errors.

This segment may be lengthened during re-synchronization.

20.2.3.5 Sample Point
The sample point is the point of time at which the bus level is read and interpreted as the value
of the respective bit. Its location is at the end of Phase Segment 1 (between the two Phase
Segments).

20.2.3.6 Phase Segment 2
This segment is also used to compensate for edge phase errors.

This segment may be shortened during re-synchronization, but the length has to be at least as
long as the Information Processing Time (IPT) and may not be more than the length of Phase
Segment 1.

20.2.3.7 Information Processing Time
It is the time required for the logic to determine the bit level of a sampled bit.

A IIIEI% 235

4250G-CAN-09/05

20.2.3.8

20.2.3.9

20.2.3.10

20.2.3.11

20.2.3.12

20.2.4

236

AIMEL

The IPT begins at the sample point, is measured in TQ and is fixed at 2TQ for the Atmel CAN.
Since Phase Segment 2 also begins at the sample point and is the last segment in the bit time,
PS2 minimum shall not be less than the IPT.

Bit Lengthening
As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Segment 2
may be shortened to compensate for oscillator tolerances. If, for example, the transmitter oscilla-
tor is slower than the receiver oscillator, the next falling edge used for resynchronization may be
delayed. So Phase Segment 1 is lengthened in order to adjust the sample point and the end of
the bit time.

Bit Shortening
If, on the other hand, the transmitter oscillator is faster than the receiver one, the next falling
edge used for resynchronization may be too early. So Phase Segment 2 in bit N is shortened in
order to adjust the sample point for bit N+1 and the end of the bit time

Synchronization Jump Width
The limit to the amount of lengthening or shortening of the Phase Segments is set by the Resyn-
chronization Jump Width.

This segment may not be longer than Phase Segment 2.

Programming the Sample Point
Programming of the sample point allows "tuning" of the characteristics to suit the bus.

Early sampling allows more Time Quanta in the Phase Segment 2 so the Synchronization Jump
Width can be programmed to its maximum. This maximum capacity to shorten or lengthen the
bit time decreases the sensitivity to node oscillator tolerances, so that lower cost oscillators such
as ceramic resonators may be used.

Late sampling allows more Time Quanta in the Propagation Time Segment which allows a
poorer bus topology and maximum bus length.

Synchronization
Hard synchronization occurs on the recessive-to-dominant transition of the start bit. The bit time
is restarted from that edge.

Re-synchronization occurs when a recessive-to-dominant edge doesn't occur within the Syn-
chronization Segment in a message.

Arbitration
The CAN protocol handles bus accesses according to the concept called “Carrier Sense Multiple
Access with Arbitration on Message Priority”.

During transmission, arbitration on the CAN bus can be lost to a competing device with a higher
priority CAN Identifier. This arbitration concept avoids collisions of messages whose transmis-
sion was started by more than one node simultaneously and makes sure the most important
message is sent first without time loss.

The bus access conflict is resolved during the arbitration field mostly over the identifier value. If a
data frame and a remote frame with the same identifier are initiated at the same time, the data
frame prevails over the remote frame (c.f. RTR bit).

AT 90 C /AN 123 500000

Figure 20-4. Bus Arbitration

Arbitration lost

node A Jvl
TXCAN | | | | Node A loses the bus

Node B wins the bus

o | | L L[]
CAN bus | | L] L]]

SOF ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 IDO RTR IDE ---------

20.2.5 Errors
The CAN protocol signals any errors immediately as they occur. Three error detection mecha-
nisms are implemented at the message level and two at the bit level:

20.2.5.1 Error at Message Level
* Cyclic Redundancy Check (CRC)
The CRC safeguards the information in the frame by adding redundant check bits at the
transmission end. At the receiver these bits are re-computed and tested against the received
bits. If they do not agree there has been a CRC error.

* Frame Check
This mechanism verifies the structure of the transmitted frame by checking the bit fields
against the fixed format and the frame size. Errors detected by frame checks are designated
"format errors".

* ACK Errors
As already mentioned frames received are acknowledged by all receivers through positive
acknowledgement. If no acknowledgement is received by the transmitter of the message an
ACK error is indicated.

20.2.5.2 Error at Bit Level

* Monitoring
The ability of the transmitter to detect errors is based on the monitoring of bus signals. Each
node which transmits also observes the bus level and thus detects differences between the
bit sent and the bit received. This permits reliable detection of global errors and errors local to
the transmitter.

+ Bit Stuffing
The coding of the individual bits is tested at bit level. The bit representation used by CAN is
"Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit coding. The
synchronization edges are generated by means of bit stuffing.

20.2.5.3 Error Signalling
If one or more errors are discovered by at least one node using the above mechanisms, the cur-
rent transmission is aborted by sending an "error flag". This prevents other nodes accepting the
message and thus ensures the consistency of data throughout the network. After transmission
of an erroneous message that has been aborted, the sender automatically re-attempts
transmission.

A IIIEI% 237

4250G-CAN-09/05

AIMEL

20.3 CAN Controller

The CAN controller implemented into AT90CAN128 offers V2.0B Active.

This full-CAN controller provides the whole hardware for convenient acceptance filtering and
message management. For each message to be transmitted or received this module contains
one so called message object in which all information regarding the message (e.g. identifier,
data bytes etc.) are stored.

During the initialization of the peripheral, the application defines which messages are to be sent
and which are to be received. Only if the CAN controller receives a message whose identifier
matches with one of the identifiers of the programmed (receive-) message objects the message
is stored and the application is informed by interrupt. Another advantage is that incoming remote
frames can be answered automatically by the full-CAN controller with the corresponding data
frame. In this way, the CPU load is strongly reduced compared to a basic-CAN solution.

Using full-CAN controller, high baudrates and high bus loads with many messages can be
handled.

Figure 20-5. CAN Controller Structure

238

Y

120 Bytes

Size=

le¢

<

Low priority

[Control
|- Status

Buffer MOb14 |Dtag+IDmask
[Time Stamp

Tt
L

MOb14
. MOb

o Scanning

L. Control ,
|- Status -1
Buffer MOb2 ~ IDtag+IDmask - - |_ Gen. Control _|
4 [Time Stamp 7] |— Gen. Status —
— Enable MOb — | [LCC

17
\ L
V.

» IxDcan

— Int t]
MOb2 2 nrerrup MAC

-] |__ BitTiming _| T RxDcan
I Control 4 | Line Error —| PLS

- Status sl — CAN Timer —
Buffer MOb1 - IDtag+IDmask [L

b . [Time Stamp 7] CAN Channel

17
\
V.

MOb1

| Control ,
|- Status -

Buffer MObO - IDtag+IDmask -
- Time Stamp]

17
\ L
V.

MObO
CAN Data Buffers Message Objets High priority

%/—/

Mailbox

AT90CAN128 mees———

4250G-CAN-09/05

20.4 CAN Channel

20.41 Configuration
The CAN channel can be in:

» Enabled mode
In this mode:
— the CAN channel (internal TXDCAN & RXDCAN) is enabled,
— the input clock is enabled.

 Standby mode
In standby mode:

— the transmitter constantly provides a recessive level (on internal TXDCAN) and the
receiver is disabled,

— input clock is enabled,
— the registers and pages remain accessible.
* Listening mode
This mode is transparent for the CAN channel:
— enables a hardware loop back, internal TXDCAN on internal RXDCAN
— provides a recessive level on TXDCAN pin
— does not disable RXDCAN
— freezes TEC and REC error counters

Figure 20-6. Listening Mode

internal
TXDcan M TXDcan

LISTEN »>—*

internal 1 . RXDcan
RXDcan 0 u

20.4.2 Bit Timing
FSM’s (Finite State Machine) of the CAN channel need to be synchronous to the time quantum.
So, the input clock for bit timing is the clock used into CAN channel FSM'’s.

Field and segment abbreviations:

» BRP: Baud Rate Prescaler.

* TQ: Time Quantum (output of Baud Rate Prescaler).

* SYNS: SYNchronization Segmentis 1 TQ long.

* PRS: PRopagation time Segment is programmable to be 1, 2, ..., 8 TQ long.
* PHS1: PHase Segment 1 is programmable to be 1, 2, ..., 8 TQ long.

* PHS2: PHase Segment 2 is programmable to be < PHS1 and > INFORMATION
PROCESSING TIME.

* INFORMATION PROCESSING TIME is 2 TQ.
» SJW: (Re) Synchronization Jump Width is programmable between 1 and min(4, PHS1).

A IIIEI% 239

4250G-CAN-09/05

AIMEL

The total number of TQ in a bit time has to be programmed at least from 8 to 25.

Figure 20-7. Sample and Transmission Point

Bit Timing

PRS (3-bit length) [

) Sample
PHS1 (3-bit length) > Point

Fcan (Tscl)
Time Quantum

CLK|o — Prescaler BRP

PHS2 (3-bit length) [—> Transmission
Point

SJW (2-bit length) >

Figure 20-8. General Structure of a Bit Period

ol
P /CLK|O

e, ST UL, L Ll
o Tt

on | LI Ly LWL LD

Data } one nominal bit A
1 ! ‘ 7 X
Tsyns(SI)J Tprs N Tphs1 (1) N Tphs2 (2)
Notes: 1. Phase error <0 | '3 o or '3 or
2. Phase error 2 0 3 ! | Tphs1+Tsjw (3) | |Tphs2+Tsjw (4)
3. Phase error >0 | ! ! P
4. Phase error <0 ! ! Thit i
5. Synchronization Segment: SYNS ! ! !
Tsyns=1xTscl (fixed) ' | /\
Sample Transmission
Point Point

20.4.3 Baud Rate
The baud rate selection is made by T, calculation:

Tbit") = Tsyns + Tprs + Tphs1 + Tphs2

Tsyns = 1 x Tscl = (BRP[5..0]+ 1)/clk,q (= 1TQ)
Tprs = (1 to 8) x Tscl = (PRS[2..0]+ 1) x Tscl
Tphs1 = (1 to 8) x Tscl = (PHS1[2..0]+ 1) x Tscl
Tphs2 = (1 to 8) x Tscl = (PHS2[2..0]?+ 1) x Tscl
5. Tsjw = (1to4)x Tscl = (SJW[1..0]+ 1) x Tscl
Notes: 1. The total number of Tscl (Time Quanta) in a bit time must be between 8 to 25.
2. PHS2[2..0] 2 is programmable to be < PHS1[2..0] and > 1.

PoON =

240 ATO90C AN 2S

20.4.4

20.4.5

Fault Confinement
(c.f. Section 20.7 "Error Management” on page 245).

Overload Frame
An overload frame is sent by setting an overload request (OVRQ). After the next reception, the
CAN channel sends an overload frame in accordance with the CAN specification. A status or
flag is set (OVRF) as long as the overload frame is sent.

Figure 20-9. Overload Frame

Instructions - ---------- Setting OVRQ bit - - - - - - Resetting OVRQ bit - - - - - - = = = - - -
OVRAQ bit | |
OVFG bit
RXCDAN I I Ident "A" I Cmd I Message Data "A" I CRC IAI Interframe I Over\oadIFrame I | Ident "B" |
TXCDAN | Overload I Frame

20.5 Message Objects

20.5.1

4250G-CAN-09/05

The MOb is a CAN frame descriptor. It contains all information to handle a CAN frame. This
means that a MOb has been outlined to allow to describe a CAN message like an object. The set
of MObs is the front end part of the “mailbox” where the messages to send and/or to receive are
pre-defined as well as possible to decrease the work load of the software.

The MObs are numbered from 0 up to 14 (no MOb [15]). They are independent but priority is
given to the lower one in case of multi matching. The operating modes are:

— Disabled mode

— Transmit mode

— Receive mode

— Automatic reply

— Frame buffer receive mode

Operating Modes
Every MOb has its own fields to control the operating mode. There is no default mode after
RESET. Before enabling the CAN peripheral, each MOb must be configured (ex: disabled mode

- CONMOB=00).
Table 20-1. MOb Configuration
MOb Configuration Reply Valid RTR Tag | Operating Mode
0 0 X X Disabled
X 0 Tx Data Frame
0 1 X 1 Tx Remote Frame
X 0 Rx Data Frame
1 0 0 Rx Remote Frame
1 1 Rx Remote Frame then, Tx Data Frame (reply)
1 1 X X Frame Buffer Receive Mode

A IIIEI% 241

AIMEL

20.5.1.1 Disabled
In this mode, the MOb is “free”.

20.5.1.2 Tx Data & Remote Frame
1. Several fields must be initialized before sending:
— ldentifier tag (IDT)
— ldentifier extension (IDE)
— Remote transmission request (RTRTAG)
— Data length code (DLC)
— Reserved bit(s) tag (RBNTAG)
— Data bytes of message (MSG)

2. The MOb is ready to send a data or a remote frame when the MOb configuration is set
(CONMOB).

3. Then, the CAN channel scans all the MObs in Tx configuration, finds the MOb having the
highest priority and tries to send it.

4. When the transmission is completed the TXOK flag is set (interrupt).
5. All the parameters and data are available in the MOb until a new initialization.

20.5.1.3 Rx Data & Remote Frame

1. Several fields must be initialized before receiving:
— Identifier tag (IDT)
— Identifier mask (IDMSK)
— ldentifier extension (IDE)
— ldentifier extension mask (IDEMSK)
— Remote transmission request (RTRTAG)
— Remote transmission request mask (RTRMSK)
— Data length code (DLC)
— Reserved bit(s) tag (RBNTAG)

2. The MOb is ready to receive a data or a remote frame when the MOb configuration is set
(CONMOB).

3. When a frame identifier is received on CAN network, the CAN channel scans all the MObs
in receive mode, tries to find the MOb having the highest priority which is matching.

4. On ahit, the IDT, the IDE and the DLC of the matched MOb are updated from the incoming
(frame) values.

5. Once the reception is completed, the data bytes of the received message are stored (not
for remote frame) in the data buffer of the matched MOb and the RXOK flag is set
(interrupt).

6. All the parameters and data are available in the MOb until a new initialization.

20.5.1.4 Automatic Reply
A reply (data frame) to a remote frame can be automatically sent after reception of the expected
remote frame.
1. Several fields must be initialized before receiving the remote frame:
— (c.f. Section 20.5.1.3 "Rx Data & Remote Frame” on page 242)

242 AT 0C AN 12 S s —

3.
4.

When a remote frame matches, automatically the RTRTAG and the reply valid bit (RPLV)
are reset. No flag (or interrupt) is set at this time. Since the CAN data buffer has not been
used by the incoming remote frame, the MOb is then ready to be in transmit mode without
any more setting. The IDT, the IDE, the other tags and the DLC of the received remote
frame are used for the reply.

When the transmission of the reply is completed the TXOK flag is set (interrupt).
All the parameters and data are available in the MOb until a new initialization.

20.5.1.5 Frame Buffer Receive Mode

This mode is useful to receive multi frames. The priority between MObs offers a management for
these incoming frames. One set MObs (including non-consecutive MObs) is created when the
MObs are set in this mode. Due to the mode setting, only one set is possible. A frame buffer
completed flag (or interrupt) - BXOK - will rise only when all the MObs of the set will have
received their dedicated CAN frame.

20.5.2 Acceptance Filter

4250G-CAN-09/05

1.
2.

7.

MObs in frame buffer receive mode need to be initialized as MObs in standard receive mode.

The MObs are ready to receive data (or a remote) frames when their respective configura-
tions are set (CONMOB).

When a frame identifier is received on CAN network, the CAN channel scans all the MObs
in receive mode, tries to find the MOb having the highest priority which is matching.

On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the incoming
(frame) values.

Once the reception is completed, the data bytes of the received message are stored (not for
remote frame) in the data buffer of the matched MOb and the RXOK flag is set (interrupt).

When the reception in the last MOb of the set is completed, the frame buffer completed
BXOK flag is set (interrupt). BXOK flag can be cleared only if all CONMOB fields of the set
have been re-written before.

All the parameters and data are available in the MObs until a new initialization.

Upon a reception hit (i.e., a good comparison between the ID + RTR + RBn + IDE received and an
IDT+ RTRTAG + RBnTAG + IDE specified while taking the comparison mask into account) the IDT
+ RTRTAG + RBnTAG + IDE received are updated in the MOb (written over the registers).

Figure 20-10. Acceptance Filter Block Diagram

internal RxDcan »—| Rx Shift Register (internal)

ID &RB ‘ RTR ‘ IDE

13(32)
a2 i‘,xD—{l—b Hit MObIi]
Vv
Write
Enable 1
13(32) 13(32) 13(32)
ID &RB ‘ RTRTAG ‘ IDE‘ IDMSK ‘ RTRMSK‘ IDEMSK‘

CANIDT Registers & CANCDMOB (MObi]) CANIDM Registers (MObi])

A IIIEI% 243

20.5.3 MOb Page

AIMEL

Note: Examples:
To accept only ID = 0x317 in part A. To accept ID from 0x310 up to 0x317 in part A.
- ID MSK = 111 1111 1111 - ID MSK = 111 1111 1000 4
- ID TAG = 011 0001 0111 - ID TAG = 011 0001 Oxxx 4

Every MOb is mapped into a page to save place. The page number is the MOb number. This
page number is set in CANPAGE register. The number 15 is reserved for factory tests.

CANHPMORB register gives the MOb having the highest priority in CANSIT registers. It is format-
ted to provide a direct entry for CANPAGE register. Because CANHPMOB codes CANSIT
registers, it will be only updated if the corresponding enable bits (ENRX, ENTX, ENERR) are
enabled (c.f. Figure 20-14).

20.5.4 CAN Data Buffers

20.6 CAN Timer

242 AT90CAN128

To preserve register allocation, the CAN data buffer is seen such as a FIFO (with address
pointer accessible) into a MOb selection.This also allows to reduce the risks of un-controlled
accesses.

There is one FIFO per MOb. This FIFO is accessed into a MOb page thanks to the CAN mes-
sage register.

The data index (INDX) is the address pointer to the required data byte. The data byte can be
read or write. The data index is automatically incremented after every access if the AINC* bit is
reset. A roll-over is implemented, after data index=7 it is data index=0.

The first byte of a CAN frame is stored at the data index=0, the second one at the data index=1,

A programmable 16-bit timer is used for message stamping and time trigger communication
(TTC).

Figure 20-11. CAN Timer Block Diagram

clk 5 —+b 28 |—{> CANTCON — [ENFG

TTC SYNCTTC

OVRTIM 0] CANTIM
I~

TXOK[i] — e

— EOF
RXOK[i] — =" "SOF*

CANSTMIi] CANTTC

4250G-CAN-09/05

20.6.1 Prescaler
An 8-bit prescaler is initialized by CANTCON register. It receives the clk,; frequency divided by
8. It provides clkcantiv frequency to the CAN Timer if the CAN controller is enabled.

Telkeanma = T clkio X 8 X (CANTCON [7:0] + 1)

20.6.2 16-bit Timer

This timer starts counting from 0x0000 when the CAN controller is enabled (ENFG bit). When
the timer rolls over from OxFFFF to 0x0000, an interrupt is generated (OVRTIM).

20.6.3 Time Triggering
Two synchronization modes are implemented for TTC (TTC bit):

— synchronization on Start of Frame (SYNCTTC=0),
— synchronization on End of Frame (SYNCTTC=1).
In TTC mode, a frame is sent once, even if an error occurs.

20.6.4 Stamping Message
The capture of the timer value is done in the MOb which receives or sends the frame. All man-
aged MOb are stamped, the stamping of a received (sent) frame occurs on RxOk (TXOK).

20.7 Error Management

20.71 Fault Confinement
The CAN channel may be in one of the three following states:

* Error active (default):
The CAN channel takes part in bus communication and can send an active error frame when
the CAN macro detects an error.

* Error passive:
The CAN channel cannot send an active error frame. It takes part in bus communication, but
when an error is detected, a passive error frame is sent. Also, after a transmission, an error
passive unit will wait before initiating further transmission.

* Bus off:
The CAN channel is not allowed to have any influence on the bus.
For fault confinement, a transmit error counter (TEC) and a receive error counter (REC) are

implemented. BOFF and ERRP bits give the information of the state of the CAN channel. Setting
BOFF to one may generate an interrupt.

A IIIEI% 245

4250G-CAN-09/05

AIMEL

Figure 20-12. Line Error Mode

ERRP = 0
BOFF =0

TEC > 127 or
REC > 127

TEC <127 and
ERRP = 1 REC < 127

BOFF =0

Error
Passive

TEC > 255
BOFFIT interrupt

Note: More than one REC/TEC change may apply during a given message transfer.

20.7.2 Error Types
« BERR: Bit error. The bit value which is monitored is different from the bit value sent.

Note: Exceptions:
- Recessive bit sent monitored as dominant bit during the arbitration field and the acknowl-

edge slot.
- Detecting a dominant bit during the sending of an error frame.

» SERR: Stuff error. Detection of more than five consecutive bit with the same polarity.

» CERR: CRC error (Rx only). The receiver performs a CRC check on every destuffed received
message from the start of frame up to the data field. If this checking does not match with the
destuffed CRC field, an CRC error is set.

* FERR: Form error. The form error results from one (or more) violations of the fixed form of
the following bit fields:

— CRC delimiter

— acknowledgement delimiter
— end-of-frame

— error delimiter

— overload delimiter

* AERR: Acknowledgment error (Tx only). No detection of the dominant bit in the acknowledge
slot.

246 AT'O0C AN 12 S s —

4250G-CAN-09/05

Figure 20-13. Error Detection Procedures in a Data Frame

Bit error I
Stuff error
Form error I [—
Tx ACK error -~
¢— |SOF| Identifier |RTR| Command | Message Data | CRC Cdgc |ACK|%§|K EOF inter.
Rx Bit error -~
Stuff error
Form error Il [—
CRC error

20.7.3 Error Setting
The CAN channel can detect some errors on the CAN network.

* |n transmission:
The error is set at MOb level.

* In reception:
- The identified has matched:
The error is set at MOb level.
- The identified has not or not yet matched:
The error is set at general level.

After detecting an error, the CAN channel sends an error frame on network. If the CAN channel
detects an error frame on network, it sends its own error frame.

20.8 Interrupts

20.8.1 Interrupt organization
The different interrupts are:
* Interrupt on receive completed OK,
* Interrupt on transmit completed OK,
* Interrupt on error (bit error, stuff error, crc error, form error, acknowledge error),
* Interrupt on frame buffer full,
* Interrupt on “Bus Off” setting,
* Interrupt on overrun of CAN timer.

The general interrupt enable is provided by ENIT bit and the specific interrupt enable for CAN
timer overrun is provided by ENORVT bit.

A IIIEI% 247

4250G-CAN-09/05

AIMEL

Figure 20-14. CAN Controller Interrupt Structure

CANGIE.4 CANGIE.5 CANGIE.3

m
z
3
x

| | ENRX | | ENERR |

CANSTMOB.6 | TXOKI[i]

CANIE 1/2

CANSTMOB.5 | RXOKIi]

CANSTMOB.4 BERR]i]

CANSTMOB.3

i

CANSTMOB.2

CERRII] |—

CANSTMOB.1
CANGIE.2 CANGIE.1 CANGIE.6 CANGIE7

| ENBX | | ENERG | | ENBOFF | ENIT

CANSTMOB.O

Lk

CANGIT4 BXOK > > CAN IT
CANGIT.3
CANGIT.2| CERG |— N
4,_/ -
CANGIT1
CANGIT.0

CANGIE.O

CANGIT.6 BOFFI l'\/

00

CANGIT.5 OVRTIM OVRIT

20.8.2 Interrupt Behavior
When an interrupt occurs, the corresponding bit is set in the CANSITn or CANGIT registers.

To acknowledge a MOb interrupt, the corresponding bits of CANSTMOB register (RXOK,
TXOK,...) must be cleared by the software application. This operation needs a read-modify-write
software routine.

To acknowledge a general interrupt, the corresponding bits of CANGIT register (BXOK, BOF-
FIT,...) must be cleared by the software application. This operation is made writing a logical one
in these interrupt flags (writing a logical zero doesn’t change the interrupt flag value).

OVRTIM interrupt flag is reset as the other interrupt sources of CANGIT register and is also
reset entering in its dedicated interrupt handler.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error will also
be raised. Consequently, two consecutive interrupts can occur, both due to the same error.

When a MOb error occurs and is set in its own CANSTMOB register, no general error is set in
CANGIT register.

248 AAT'O0C AN 12 S s —

20.9 CAN Register Description

Figure 20-15. Registers Organization

4250G-CAN-09/05

AVR Registers
t— >

General Control
General Status
General Interrupt

Bit Timing 1
Bit Timing 2
Bit Timing 3

Enable MOb 2
Enable MOb 1

Enable Interrupt
Enable Interrupt MOb 2
Enable Interrupt MOb 1
Status Interrupt MOb 2
Status Interrupt MOb 1

CAN Timer Control
CAN Timer Low
CAN Timer High

CAN TTC Low
CAN TTC High

TEC Counter
REC Counter

Hightest Priority MOb

Page MOb
MOb Number | | Data Index
| —

-- Page MOb -ccmcm -

MOb Status <t
MOb Control & DLC | <t

ID Tag 4
ID Tag 3
ID Tag 2
ID Tag 1

ID Mask 4

ID Mask 2
ID Mask 1

Message Data <<

<t
ID Mask 3 <t
-
<<

Time Stamp Low |<t&
Time Stamp High <u

Registers in Pages

sectS
& O0I®

>| MObO - MOb Status — _
| MOb0 - MObCIH&DLC | — ——

MObO - ID Tag 4 — N B
MObO - ID Tag 3 — N B
MODbO - ID Tag 2 — _
MObO - ID Tag 1 —]

> MObO - ID Mask 4 — -]
> MObO - ID Mask 3 — _
> MObO - ID Mask 2 — _
> MODbO - ID Mask 1 —]

>| MObO - Time Stamp Low | — _
>| MObO - Time Stamp High

=
=

ATMEL

MOb14 - MOb Status

MOb14 - MOb Ctrl & DLC

MOb14 - ID Tag 4

MOb14 - ID Tag 3

MOb14 - ID Tag 2

MOb14 - ID Tag 1

MOb14 - ID Mask 4

MODb14 - ID Mask 3

MOb14 - ID Mask 2

MOb14 - ID Mask 1

MOb14 - Time Stamp Low

MOb14 - Time Stamp High

MOb14 - Mess. Dafa—byteon'mm

—
J—
—

| o
I) —
%] |
})>>|IMOb0 - Mess. Data - byte 0 %@%

249

AIMEL

20.10 General CAN Registers

20.10.1 CAN General Control Register - CANGCON

Bit 7 6 5 4 3 2 1 0
| ABra | ovra | T1Tc [syntrc| Listen | TEST |ENASTB| swres |canecon

ReadWrite RW _ RW __ RW __RW __RW __RW __RW _ RW

Inital Value 0 0 0 0 0 0 0 0

» Bit 7 — ABRQ: Abort Request
This is not an auto resettable bit.
— 0 - no request.

— 1 - abort request: a reset of CANEN1 and CANENZ2 registers is done. The pending
communications are immediately disabled and the on-going one will be normally
terminated, setting the appropriate status flags.

Note that CONCDMOB register remain unchanged.

* Bit 6 - OVRQ: Overload Frame Request
This is not an auto resettable bit.
— 0 - no request.
— 1 - overload frame request: send an overload frame after the next received frame.

The overload frame can be traced observing OVFG in CANGSTA register (c.f. Figure 20-9 on
page 241).

e Bit5- TTC: Time Trigger Communication
—-0-noTTC.
— 1-TTC mode.

* Bit4 - SYNTTC: Synchronization of TTC
This bit is only used in TTC mode.
— 0 -the TTC timer is caught on SOF.
— 1 -the TTC timer is caught on the last bit of the EOF.

e Bit 3 - LISTEN: Listening Mode
— 0 - no listening mode.
— 1 - listening mode.

* Bit2 - TEST: Test Mode

— 0 - no test mode

— 1 - test mode: intend for factory testing and not for customer use.
Note: CAN may malfunction if this bit is set.

e Bit 1 — ENA/STB: Enable / Standby Mode
Because this bit is a command and is not immediately effective, the ENFG bit in CANGSTA reg-
ister gives the true state of the chosen mode.

250 AT'O0/C AN 12 S s —

— 0 - standby mode: the on-going communication is normally terminated and the CAN
channel is frozen (the CONMOB bits of every MOb do not change). The transmitter
constantly provides a recessive level. In this mode, the receiver is not enabled but all the
registers and mailbox remain accessible from CPU.

— 1 - enable mode: the CAN channel enters in enable mode once 11 recessive bits has
been read.

* Bit 0 - SWRES: Software Reset Request
This auto resettable bit only resets the CAN controller.

— 0 -no reset
— 1 - reset: this reset is “ORed” with the hardware reset.

20.10.2 CAN General Status Register - CANGSTA

Bit 7 6 5 4 3 2 1 0

| - | OVFG | - TXBSY | RXBSY | ENFG BOFF ERRP | CANGSTA
Read/Write - R - R R R R R
Initial Value - 0 - 0 0 0 0 0

¢ Bit 7 — Reserved Bit
This bit is reserved for future use.

* Bit 6 - OVFG: Overload Frame Flag
This flag does not generate an interrupt.
— 0 - no overload frame.
— 1 - overload frame: set by hardware as long as the produced overload frame is sent.

¢ Bit 5 — Reserved Bit
This bit is reserved for future use.

* Bit 4 - TXBSY: Transmitter Busy
This flag does not generate an interrupt.
— 0 - transmitter not busy.

— 1 - transmitter busy: set by hardware as long as a frame (data, remote, overload or
error frame) or an ACK field is sent. Also set when an inter frame space is sent.

* Bit 3 - RXBSY: Receiver Busy
This flag does not generate an interrupt.
— 0 - receiver not busy
— 1 - receiver busy: set by hardware as long as a frame is received or monitored.

« Bit 2 - ENFG: Enable Flag
This flag does not generate an interrupt.

— 0 - CAN controller disable: because an enable/disable command is not immediately
effective, this status gives the true state of the chosen mode.

— 1 - CAN controller enable.

A IIIEI% 251

4250G-CAN-09/05

AIMEL

* Bit 1 - BOFF: Bus Off Mode
BOFF gives the information of the state of the CAN channel. Only entering in bus off mode gen-
erates the BOFFIT interrupt.

— 0 - no bus off mode.

— 1 - bus off mode.

* Bit 0 — ERRP: Error Passive Mode
ERRP gives the information of the state of the CAN channel. This flag does not generate an
interrupt.

— 0 - no error passive mode.

— 1 - error passive mode.

20.10.3 CAN General Interrupt Register - CANGIT

252

Bit 7 6 5 4 3 2 1 0

| cAnIT | BOFFIT | OVRTIM | BXOK SERG CERG FERG AERG | CANGIT
Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — CANIT: General Interrupt Flag
This is a read only bit.
— 0 - no interrupt.

— 1 - CAN interrupt: image of all the CAN controller interrupts except for OVRTIM
interrupt. This bit can be used for polling method.

» Bit 6 — BOFFIT: Bus Off Interrupt Flag
Writing a logical one resets this interrupt flag. BOFFIT flag is only set when the CAN enters in
bus off mode (coming from error passive mode).

— 0 - nointerrupt.

— 1 - bus off interrupt when the CAN enters in bus off mode.

¢ Bit 5 - OVRTIM: Overrun CAN Timer
Writing a logical one resets this interrupt flag. Entering in CAN timer overrun interrupt handler
also reset this interrupt flag

— 0 - no interrupt.

— 1 - CAN timer overrun interrupt: set when the CAN timer switches from OxFFFF to 0.

e Bit 4 - BXOK: Frame Buffer Receive Interrupt
Writing a logical one resets this interrupt flag. BXOK flag can be cleared only if all CONMOB
fields of the MOb’s of the buffer have been re-written before.

— 0 - nointerrupt.
— 1 - burst receive interrupt: set when the frame buffer receive is completed.

* Bit 3 — SERG: Stuff Error General
Writing a logical one resets this interrupt flag.

— 0 - no interrupt.

AT 90 C /AN 123 500000

— 1 - stuff error interrupt: detection of more than 5 consecutive bits with the same
polarity.

* Bit 2 - CERG: CRC Error General
Writing a logical one resets this interrupt flag.
— 0 - nointerrupt.

— 1 - CRC error interrupt: the CRC check on destuffed message does not fit with the
CRC field.

* Bit 1 — FERG: Form Error General
Writing a logical one resets this interrupt flag.
— 0 - no interrupt.

— 1 - form error interrupt: one or more violations of the fixed form in the CRC delimiter,
acknowledgment delimiter or EOF.

* Bit 0 - AERG: Acknowledgment Error General
Writing a logical one resets this interrupt flag.

— 0 - nointerrupt.

— 1 - acknowledgment error interrupt: no detection of the dominant bit in acknowledge
slot.

20.10.4 CAN General Interrupt Enable Register - CANGIE

Bit 7 6 5 4 3 2 1 0

| ENIT | ENBOFF | ENRX | ENTX | ENERR | ENBX | ENERG | ENOVRT| CANGIE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 — ENIT: Enable all Interrupts (Except for CAN Timer Overrun Interrupt)
— 0 - interrupt disabled.

— 1- CANIT interrupt enabled.

Bit 6 — ENBOFF: Enable Bus Off Interrupt
— 0 - interrupt disabled.
— 1- bus off interrupt enabled.

Bit 5 — ENRX: Enable Receive Interrupt
— 0 - interrupt disabled.
— 1- receive interrupt enabled.

Bit 4 — ENTX: Enable Transmit Interrupt
— 0 - interrupt disabled.
— 1- transmit interrupt enabled.

Bit 3 — ENERR: Enable MOb Errors Interrupt
— 0 - interrupt disabled.
— 1- MOb errors interrupt enabled.

A IIIEI% 253

4250G-CAN-09/05

AIMEL

¢ Bit 2 - ENBX: Enable Frame Buffer Interrupt
— 0 - interrupt disabled.
— 1- frame buffer interrupt enabled.

e Bit 1 - ENERG: Enable General Errors Interrupt
— 0 - interrupt disabled.
— 1- general errors interrupt enabled.

e Bit 0 - ENOVRT: Enable CAN Timer Overrun Interrupt
— 0 - interrupt disabled.
— 1- CAN timer interrupt overrun enabled.

20.10.5 CAN Enable MOb Registers -
CANEN2 and CANEN1
Bit 7 6 5 4 3 2 1 0
ENMOB7 | ENMOB6 | ENMOB5 | ENMOB4 | ENMOB3 | ENMOB2 | ENMOB1 | ENMOBO | CANEN2
ENMOB14 | ENMOB13 [ENMOB12 | ENMOB11 |ENMOB10| ENMOB9 | ENMOB8 | CANEN1

Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0
Read/Write R R R R R R R
Initial Value 0 0 0 0 0 0 0

* Bits 14:0 - ENMOB14:0: Enable MOb

This bit provides the availability of the MODb.

It is set to one when the MOb is enabled (i.e. CONMOB1:0 of CANCDMOB register).

Once TXOK or RXOK is set to one (TXOK for automatic reply), the corresponding ENMOB is
reset. ENMOB is also set to zero configuring the MOb in disabled mode, applying abortion or
standby mode.

— 0 - message object disabled: MOb available for a new transmission or reception.
— 1 - message object enabled: MOb in use.

* Bit 15 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANIE1 is written.

20.10.6 CAN Enable Interrupt MOb Registers -
CANIE2 and CANIE1
Bit 7 6 5 4 3 2 1 0
IEMOB7 | IEMOB6 | IEMOB5 | IEMOB4 | IEMOB3 | IEMOB2 | IEMOB1 | IEMOBO CANIE2
IEMOB14 | IEMOB13 | IEMOB12 | IEMOB11 | IEMOB10 | IEMOB9 | IEMOB8 CANIE1

Bit 15 14 13 12 1 10 9 8
Read/Write R/W R/IW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Read/Write - R/W R/W R/W R/W R/W R/W R/W
Initial Value - 0 0 0 0 0 0 0

254 AAT'90/C AN 12 S s —

4250G-CAN-09/05

20.10.7

20.10.8

4250G-CAN-09/05

* Bits 14:0 - IEMOB14:0: Interrupt Enable by MOb
— 0 - interrupt disabled.
— 1 - MOb interrupt enabled
Note: Example: CANIE2 = 0000 1100, : enable of interrupts on MOb 2 & 3.

* Bit 15 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANIE1 is written.

CAN Status Interrupt MOb Registers - CANSIT2 and CANSIT1

Bit 7 6 5 4 3 2 1 0
SIT7 SITé SITS SIT4 SIT3 SIT2 SIT1 SITo CANSIT2
SIT14 SIT13 SIT12 SIT11 SIT10 SIT9 SIT8 CANSIT1
Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0
Read/Write R R R R R R R
Initial Value 0 0 0 0 0 0 0

* Bits 14:0 - SIT14:0: Status of Interrupt by MOb
— 0 - nointerrupt.
— 1- MOb interrupt.
Note: Example: CANSIT2 = 0010 0001, : MOb 0 & 5 interrupts.

¢ Bit 15 — Reserved Bit
This bit is reserved for future use.

CAN Bit Timing Register 1 - CANBT1

Bit 7 6 5 4 3 2 1 0
| - | BRP5 | BRP4 BRP3 BRP2 BRP1 BRPO -] cAnNBT1
Read/Write - R/W R/W RIW R/W R/W R/W
Initial Value - 0 0 0 0 0 0

* Bit 7- Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANBT1 is written.

* Bit 6:1 — BRP5:0: Baud Rate Prescaler
The period of the CAN controller system clock Tscl is programmable and determines the individ-
ual bit timing.

BRP[5:0] + 1

Tscl= ———————
clk,o frequency

* Bit 0 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANBT1 is written.

A mEl% 255

AIMEL

20.10.9 CAN Bit Timing Register 2 - CANBT2

Bit 7 6 5 4 3 2 1 0

| - | ssw1 | suwo - PRS2 | PRS1 | PRS0 -] caner2
Read/Write - RIW RIW - RIW RIW RIW
Initial Value - 0 0 - 0 0 0

* Bit 7- Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANBT2 is written.

* Bit 6:5 - SJW1:0: Re-Synchronization Jump Width

To compensate for phase shifts between clock oscillators of different bus controllers, the control-
ler must re-synchronize on any relevant signal edge of the current transmission.

The synchronization jump width defines the maximum number of clock cycles. A bit period may
be shortened or lengthened by a re-synchronization.

Tsjw = Tscl x (SJW [1:0] +1)

* Bit 4 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANBT2 is written.

* Bit 3:1 — PRS2:0: Propagation Time Segment

This part of the bit time is used to compensate for the physical delay times within the network. It
is twice the sum of the signal propagation time on the bus line, the input comparator delay and
the output driver delay.

Tprs = Tscl x (PRS [2:0] + 1)

* Bit 0 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANBT2 is written.

20.10.10 CAN Bit Timing Register 3 - CANBT3

Bit 7 6 5 4 3 2 1 0

| - | PHS22 | PHS21 | PHS20 | PHS12 | PHS11 | PHS10 SMP | CANBT3
Read/Write - R/W R/W R/W RIW R/W R/W R/W
Initial Value - 0 0 0 0 0 0 0

* Bit 7- Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANBTS3 is written.

» Bit 6:4 — PHS22:0: Phase Segment 2

This phase is used to compensate for phase edge errors. This segment may be shortened by
the re-synchronization jump width. PHS2[2..0] shall be >1 and <PHS1[2..0] (c.f. Section 20.2.3
"CAN Bit Timing” on page 234 and Section 20.4.3 "Baud Rate” on page 240).

Tphs2 = Tscl x (PHS2 [2:0] + 1)

256 AT'O0/C AN 12 S s —

e Bit 3:1 — PHS12:0: Phase Segment 1
This phase is used to compensate for phase edge errors. This segment may be lengthened by
the re-synchronization jump width.

Tphs1 = Tscl x (PHS1 [2:0] + 1)

e Bit 0 — SMP: Sample Point(s)
— 0 - once, at the sample point.

— 1 - three times, the threefold sampling of the bus is the sample point and twice over
a distance of a 1/2 period of the Tscl. The result corresponds to the majority decision
of the three values.

20.10.11 CAN Timer Control Register - CANTCON

Bit 7 6 5 4 3 2 1 0
| TPRSC7 | TPRSC6 | TPRSC5 | TPRSC4 | TPRSC3 | TPRSC2 | TRPSC1 | TPRSCO | CANTCON
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:0 - TPRSC7:0: CAN Timer Prescaler
Prescaler for the CAN timer upper counter range 0 to 255. It provides the clock to the CAN timer
if the CAN controller is enabled.

Telkeanma = T clkio X 8 X (CANTCON [7:0] + 1)

20.10.12 CAN Timer Registers - CANTIML and CANTIMH

Bit 7 6 5 4 3 2 1 0
CANTIM? | CANTIM6 | CANTIM5 | CANTIM4 | CANTIM3 | CANTIM2 | CANTIM1 | CANTIMO | CANTIML
CANTIM15|CANTIM14| CANTIM13 | CANTIM12| CANTIM11 | CANTIM10 | CANTIM9 | CANTIMS8 | CANTIMH

Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

* Bits 15:0 - CANTIM15:0: CAN Timer Count
CAN timer counter range 0 to 65,535.

20.10.13 CAN TTC Timer Registers - CANTTCL and CANTTCH

Bit 7 6 5 4 3 2 1 0
TIMTTC?7 | TIMTTC6 | TIMTTC5 | TIMTTC4 | TIMTTC3 | TIMTTC2 | TIMTTC1 | TIMTTCOJ CANTTCL
TIMTTC15 | TIMTTC14 | TIMTTC13 | TIMTTC12 | TIMTTC11 | TIMTTC10 | TIMTTC9 | TIMTTC8 CANTTCH

Bit 15 14 13 12 1 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

e Bits 15:0 - TIMTTC15:0: TTC Timer Count
CAN TTC timer counter range 0 to 65,535.

A mEl% 257

4250G-CAN-09/05

AIMEL

20.10.14 CAN Transmit Error Counter Register - CANTEC

Bit 7 6 5 4 3 2 1 0

| 7ec7 | TEC6 | TEC5 | TEC4 TEC3 TEC2 TEC1 TECO | cANTEC
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:0 — TEC7:0: Transmit Error Count
CAN transmit error counter range 0 to 255.

20.10.15 CAN Receive Error Counter Register - CANREC

Bit 7 6 5 4 3 2 1 0

| REC7 | REC6 | REC5 | REC4 REC3 REC2 REC1 RECO | CANREC
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:0 — REC7:0: Receive Error Count
CAN receive error counter range 0 to 255.

20.10.16 CAN Highest Priority MOb Register - CANHPMOB

Bit 7 6 5 4 3 2 1 0

| HPMOB3 | HPMOB2 | HPMOB1 | HPMOBO | CGP3 | CGP2 | CGP1 CGP0 | CANHPMOB
Read/Write R R R R R/W R/W R/W R/W
Initial Value 1 1 1 1 0 0 0 0

* Bit 7:4 - HPMOB3:0: Highest Priority MOb Number
MOb having the highest priority in CANSIT registers.
If CANSIT = 0 (no MOb), the return value is OxF.

e Bit 3:0 — CGP3:0: CAN General Purpose Bits
These bits can be pre-programmed to match with the wanted configuration of the CANPAGE
register (i.e., AINC and INDX2:0 setting).

20.10.17 CAN Page MOb Register - CANPAGE

Bit 7 6 5 4 3 2 1 0
IMOBNB3 | MOBNB2 | MOBNB1 | MOBNBO | AINC | INDX2 | INDX1 | INDXO0 I CANPAGE
Read/Write R/W R/IW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:4 — MOBNB3:0: MOb Number
Selection of the MOb number, the available numbers are from 0 to 14.

* Bit 3 — AINC: Auto Increment of the FIFO CAN Data Buffer Index (Active Low)
— 0 - auto increment of the index (default value).
— 1- no auto increment of the index.

* Bit 2:0 — INDX2:0: FIFO CAN Data Buffer Index
Byte location of the CAN data byte into the FIFO for the defined MOb.

258 AT'O0/C AN 12 S s —

20.11 MOb Registers
The MOb registers has no initial (default) value after RESET.

20.11.1 CAN MOb Status Register - CANSTMOB

Bit 7 6 5 4 3 2 1 0
| bcw | TxOK | RXOK | BERR | SERR CERR FERR | AERR | CANSTMOB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value

e Bit 7 - DLCW: Data Length Code Warning
The incoming message does not have the DLC expected. Whatever the frame type, the DLC
field of the CANCDMOB register is updated by the received DLC.

* Bit 6 - TXOK: Transmit OK
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine
on the whole CANSTMOB register.

The communication enabled by transmission is completed. TxOK rises at the end of EOF field.
When the controller is ready to send a frame, if two or more message objects are enabled as
producers, the lower MOb index (0 to 14) is supplied first.

* Bit 5 - RXOK: Receive OK
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine
on the whole CANSTMOB register.

The communication enabled by reception is completed. RxOK rises at the end of the 6™ bit of
EOF field. In case of two or more message object reception hits, the lower MOb index (0 to 14)
is updated first.

* Bit 4 - BERR: Bit Error (Only in Transmission)
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine
on the whole CANSTMOB register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the
acknowledge slot detecting a dominant bit during the sending of an error frame.

¢ Bit 3 — SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine
on the whole CANSTMOB register.

Detection of more than five consecutive bits with the same polarity. This flag can generate an
interrupt.

* Bit 2 - CERR: CRC Error
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine
on the whole CANSTMOB register.

The receiver performs a CRC check on every de-stuffed received message from the start of
frame up to the data field. If this checking does not match with the de-stuffed CRC field, a CRC
error is set.

A IIIEI% 259

4250G-CAN-09/05

AIMEL

* Bit1-FERR: Form Error
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine
on the whole CANSTMOB register.

The form error results from one or more violations of the fixed form in the following bit fields:

* CRC delimiter.
» Acknowledgment delimiter.
* EOF

* Bit 0 - AERR: Acknowledgment Error
This flag can generate an interrupt. It must be cleared using a read-modify-write software routine
on the whole CANSTMOB register.

No detection of the dominant bit in the acknowledge slot.

20.11.2 CAN MOb Control and DLC Register - CANCDMOB

Bit 7 6 5 4 3 2 1 0
JcoNmOB1 | CONMOBO | RPLV | IDE DLC3 | DLC2 | DLC1 | DLCO |CANCDMOB

Read/Write RIW RIW RIW R/W RIW RIW RIW R/W

Initial Value

* Bit 7:6 —- CONMOB1:0: Configuration of Message Object
These bits set the communication to be performed (no initial value after RESET).
— 00 - disable.
— 01 - enable transmission.
— 10 - enable reception.
— 11 - enable frame buffer reception
These bits are not cleared once the communication is performed. The user must re-write the
configuration to enable a new communication.
* This operation is necessary to be able to reset the BXOK flag.
* This operation also set the corresponding bit in the CANEN registers.

* Bit 5 - RPLV: Reply Valid

Used in the automatic reply mode after receiving a remote frame.
— 0 - reply not ready.
— 1 - reply ready and valid.

* Bit 4 - IDE: Identifier Extension

IDE bit of the remote or data frame to send.

This bit is updated with the corresponding value of the remote or data frame received.
— 0 - CAN standard rev 2.0 A (identifiers length = 11 bits).
— 1 - CAN standard rev 2.0 B (identifiers length = 29 bits).

* Bit 3:0 — DLC3:0: Data Length Code
Number of Bytes in the data field of the message.

260 ATO0C AN 12 S s —

20.11.3

DLC field of the remote or data frame to send. The range of DLC is from 0 up to 8. If DLC field >8
then effective DLC=8.

This field is updated with the corresponding value of the remote or data frame received. If the
expected DLC differs from the incoming DLC, a DLC warning appears in the CANSTMOB
register.

CAN Identifier Tag Registers -
CANIDT1, CANIDT2, CANIDT3, and CANIDT4

V2.0 part A

4250G-CAN-09/05

V2.0 part A
Bit 1517 14/6 13/5 12/4 11/3 10/2 9 8/0
RTRTAG - RBOTAG | CANIDT4
- - - CANIDT3
IDT2 IDT1 IDTO - - - - - CANIDT2
IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 IDT4 IDT3 CANIDT1
Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16
Read/Write R/W R/IW R/IW R/W R/W R/W R/W R/IW
Initial Value
V2.0 part B
Bit 15/7 14/6 13/5 12/4 11/3 10/2 9 8/0
IDT4 IDT3 IDT2 IDT1 IDTO RTRTAG | RB1TAG | RBOTAG | CANIDT4
IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 CANIDT3
IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 CANIDT2
IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 CANIDT1
Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16
Read/Write R/W R/IW R/W R/W R/W R/W R/W R/W
Initial Value

* Bit 31:21 - IDT10:0: Identifier Tag
Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.
* Bit 20:3 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, they must be written
to zero when CANIDTn are written.

When a remote or data frame is received, these bits do not operate in the comparison but they
are updated with un-predicted values.

* Bit 2 - RTRTAG: Remote Transmission Request Tag

RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received. In case

of Automatic Reply mode, this bit is automatically reset before sending the response.

* Bit 1 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANIDTn are written.

A IIIEI% 261

AIMEL

When a remote or data frame is received, this bit does not operate in the comparison but it is
updated with un-predicted values.

* Bit 0 - RBOTAG: Reserved Bit 0 Tag

RBO bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.
V2.0 part B

» Bit 31:3 — IDT28:0: Identifier Tag

Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.

* Bit 2 - RTRTAG: Remote Transmission Request Tag

RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received. In case

of Automatic Reply mode, this bit is automatically reset before sending the response.

* Bit 1 - RB1TAG: Reserved Bit 1 Tag

RB1 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

* Bit 0 - RBOTAG: Reserved Bit 0 Tag

RBO bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

20.11.4 CAN Identifier Mask Registers -
CANIDM1, CANIDM2, CANIDM3, and CANIDM4

V2.0 part A
Bit 1517 14/6 13/5 12/4 11/3 10/2 9N 8/0
RTRMSK - IDEMSK | CANIDM4
- - - CANIDM3
IDMSK2 IDMSK1 IDMSKO - - - - - CANIDM2
IDMSK10 | IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 IDMSK4 IDMSK3 | CANIDM1
Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value
V2.0 part B
Bit 15/7 14/6 13/5 12/4 11/3 10/2 9N 8/0
IDMSK4 IDMSK3 IDMSK2 IDMSK1 IDMSKO | RTRMSK - IDEMSK | CANIDM4

IDMSK12 | IDMSK11 | IDMSK10 | IDMSK9 | IDMSK8 | IDMSK7 | IDMSK6 | IDMSK5 | CANIDM3
IDMSK20 | IDMSK19 | IDMSK18 | IDMSK17 | IDMSK16 | IDMSK15 | IDMSK14 | IDMSK13 | CANIDM2
IDMSK28 | IDMSK27 | IDMSK26 | IDMSK25 | IDMSK24 | IDMSK23 | IDMSK22 | IDMSK21 | CANIDM1

Bit 31/23 30/22 29/21 28/20 27119 26/18 25117 24/16
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value

262 AT 0 C AN 12 S s —

V2.0 part A

e Bit 31:21 — IDMSK10:0: Identifier Mask
— 0 - comparison true forced
— 1 - bit comparison enabled.

* Bit 20:3 — Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written
to zero when CANIDMn are written.

¢ Bit 2 - RTRMSK: Remote Transmission Request Mask
— 0 - comparison true forced
— 1 - bit comparison enabled.

* Bit 1 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when CANIDTn are written.

» Bit 0 — IDEMSK: Identifier Extension Mask
— 0 - comparison true forced
— 1 - bit comparison enabled.
V2.0 part B

» Bit 31:3 — IDMSK28:0: Identifier Mask
— 0 - comparison true forced
— 1 - bit comparison enabled.

¢ Bit 2 - RTRMSK: Remote Transmission Request Mask
— 0 - comparison true forced
— 1 - bit comparison enabled.

* Bit 1 — Reserved Bit
Writing zero in this bit is recommended.

* Bit 0 - IDEMSK: Identifier Extension Mask
— 0 - comparison true forced
— 1 - bit comparison enabled.

20.11.5 CAN Time Stamp Registers - CANSTML and CANSTMH

Bit 7 6 5 4 3 2 1 0
TIMSTM7 | TIMSTM6 | TIMSTM5 | TIMSTM4 | TIMSTM3 | TIMSTM2 | TIMSTM1 | TIMSTMO | CANSTML
TIMSTM15|TIMSTM14|TIMSTM13|TIMSTM12| TIMSTM11|TIMSTM10| TIMSTM9 | TIMSTM8 | CANSTMH

Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R R R R
Initial Value

¢ Bits 15:0 - TIMSTM15:0: Time Stamp Count
CAN time stamp counter range 0 to 65,535.

A IIIEI% 263

4250G-CAN-09/05

AIMEL

20.11.6 CAN Data Message Register - CANMSG

Bit 7 6 5 4 3 2 1 0

| wsc7 | MsGe | MSG5 | MSG4 | MSG3 | MSG2 | MSG1 | MSGO | CANMSG
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value

e Bit 7:0 — MSG7:0: Message Data
This register contains the CAN data byte pointed at the page MOb register.

After writing in the page MOD register, this byte is equal to the specified message location of the
pre-defined identifier + index. If auto-incrementation is used, at the end of the data register writ-
ing or reading cycle, the index is auto-incremented.

The range of the counting is 8 with no end of loop (0, 1,..., 7, 0,...).

20.12 Examples of CAN Baud Rate Setting

The CAN bus requires very accurate timing especially for high baud rates. It is recommended to
use only an external crystal for CAN operations.

(Refer to “Bit Timing” on page 239 for timing description and page 255 to page 256 for “CAN Bit
Timing Registers”).

Table 20-2. Examples of CAN Baud Rate Settings for Commonly Frequencies

CAN Description Segments Registers
Baud
feik,, Rate Sampling TQ Thit Tprs Tph1 Tph2 Tsjw
(MHz) | (Kbps) Point (us) (TQ) (TQ) (TQ) (TQ) (TQ) | CANBT1 | CANBT2 | CANBT3
0.0625 16 7 4 4 1 0x00 0x0C 0x37
1000 75 %
0.125 8 3 2 2 1 0x02 0x04 0x13
0.125 16 7 4 4 1 0x02 0x0C 0x37
500 75 %
0.250 8 3 2 2 1 0x06 0x04 0x13
0.250 16 7 4 4 1 0x06 0x0C 0x37
250 75 %
0.500 8 3 2 2 1 0x0E 0x04 0x13
16.000 0.3125 16 7 4 4 1 0x08 0x0C 0x37
200 75 %
0.625 8 3 2 2 1 0x12 0x04 0x13
0.500 16 7 4 4 1 0x0E 0x0C 0x37
125 75 %
1.000 8 3 2 2 1 Ox1E 0x04 0x13
0.625 16 7 4 4 1 0x12 0x0C 0x37
100 75 %
1.250 8 3 2 2 1 0x26 0x04 0x13

264 AT 0 C AN 12 S s —

Table 20-2. Examples of CAN Baud Rate Settings for Commonly Frequencies (Continued)
CAN Description Segments Registers
Baud
fclkio Rate Sampling TQ Thit Tprs Tph1 Tph2 Tsjw
(MHz) | (Kbps) Point (us) (TQ) | (TQ) (TQ) (TQ) (TQ) | CANBT1 | CANBT2 | CANBT3
0.083333 12 5 3 3 1 0x00 0x08 0x25
1000 75 %
X ---no data- - -
0.166666 12 5 3 3 1 0x02 0x08 0x25
500 75 %
0.250 8 3 2 2 1 0x04 0x04 0x13
0.250 16 7 4 4 1 0x04 0x0C 0x37
250 75 %
0.500 8 3 2 2 1 Ox0A 0x04 0x13
12.000 0.250 20 8 6 5 1 0x04 OxOE 0x4B
200 75 %
0.416666 12 5 3 3 1 0x08 0x08 0x25
0.500 16 7 4 4 1 Ox0A 0x0C 0x37
125 75 %
1.000 8 3 2 2 1 0x16 0x04 0x13
0.500 20 8 6 5 1 Ox0A Ox0E 0x4B
100 75 %
0.833333 12 5 3 3 1 0x12 0x08 0x25
X ---no data- - -
1000 75 %
0.125 8 3 2 2 1 0x00 0x04 0x13
0.125 16 7 4 4 1 0x00 0x0C 0x37
500 75 %
0.250 8 3 2 2 1 0x02 0x04 0x13
0.250 16 7 4 4 1 0x02 0x0C 0x37
250 75 %
0.500 8 3 2 2 1 0x06 0x04 0x13
8.000
0.250 20 8 6 5 1 0x02 0x0E 0x4B
200 75 %
0.625 8 3 2 2 1 0x08 0x04 0x13
0.500 16 7 4 4 1 0x06 0x0C 0x37
125 75 %
1.000 8 3 2 2 1 Ox0E 0x04 0x13
0.625 16 7 4 4 1 0x08 0x0C 0x37
100 75 %
1.250 8 3 2 2 1 0x12 0x04 0x13
265

4250G-CAN-09/05

ATMEL

AIMEL

Table 20-2. Examples of CAN Baud Rate Settings for Commonly Frequencies (Continued)

CAN Description Segments Registers
Baud
felk,, Rate Sampling TQ Thit Tprs Tph1 Tph2 Tsjw
(MHz) (Kbps) Point (us) (TQ) (TQ) (TQ) (TQ) (TQ) | CANBT1 | CANBT2 | CANBT3
1000 ---not applicable- - -
0.166666 | 12 5 | 3 | 3 | 1 | o0 | o008 | oxes
500 75 %
X ---no data- - -
0.333333 12 5 3 3 1 0x02 0x08 0x25
250 75 %
0.500 8 3 2 2 1 0x04 0x04 0x13
6.000 0.333333 15 7 4 3 1 0x02 0x0C 0x35
200 80 %
0.500 10 4 3 2 1 0x04 0x06 0x23
0.500 16 7 4 4 1 0x04 0x0C 0x37
125 75 %
1.000 8 3 2 2 1 0x0A 0x04 0x13
0.500 20 8 6 5 1 0x04 0xO0E 0x4B
100 75 %
0.833333 12 5 3 3 1 0x08 0x08 0x25
1000 ---not applicable- - -
X ---no data- - -
500 75 %
0.250 8 3 2 2 1 0x00 0x04 0x13
0.250 16 7 4 4 1 0x00 0x0C 0x37
250 75 %
0.500 8 3 2 2 1 0x02 0x04 0x13
4.000 0.250 20 8 6 5 1 0x00 0xOE 0x4B
200 75 %
X ---no data- - -
0.500 16 7 4 4 1 0x02 0x0C 0x37
125 75 %
1.000 8 3 2 2 1 0x06 0x04 0x13
0.500 20 8 6 5 1 0x02 0xO0E 0x4B
100 75 %
1.250 8 3 2 2 1 0x08 0x04 0x13

266 AT 0 C AN 12 S s —

21. Analog Comparator
The Analog Comparator compares the input values on the positive pin AINO and negative pin
AIN1.

211 Overview
When the voltage on the positive pin AINO is higher than the voltage on the negative pin AIN1,
the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger the
Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate inter-
rupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on comparator
output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is shown

in Figure 21-1.

Figure 21-1. Analog Comparator Block Diagram(®

BANDGAP
REFERENCE vce
ACBG l
ACD —>»
ACIE
AINO 3
A ANALOG
INTERRUPT COMPARATOR
/ SELECT INTERRUPT
| T T ACI
ACIS1 ACISO ACIC
T/C1 INPUT CAPTURE
ACO -
ADC o

MULTIPLEXER
OUTPUT

Notes: 1. ADC multiplexer output: see Table 21-2 on page 269.
2. Refer to Figure 2-2 on page 4 and Table 10-15 on page 82 for Analog Comparator pin
placement.

21.2 Analog Comparator Register Description

21.21 ADC Control and Status Register B— ADCSRB

Bit 7 6 5 4 3 2 1 0
| - | AcME | - | = ADTS2 | ADTS1 | ADTS0 | ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

» Bit 6 - ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “Analog Comparator Multiplexed Input” on page 269.

A IIIEI% 267

4250G-CAN-09/05

21.2.2

268

AIMEL

Analog Comparator Control and Status Register - ACSR

Bit 7 6 5 4 3 2 1 0

| Acp | AcBc | Aco | Acl | AcE ACIC ACIS1 ACISO | ACSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 N/A 0 0 0 0 0

e Bit 7 — ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

* Bit 6 - ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AINO is applied to the positive input of the Analog Compar-
ator. See “Internal Voltage Reference” on page 55.

¢ Bit 5 - ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

» Bit 4 — ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACISO0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACl is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACl is cleared by writing a logic one to the flag.

» Bit 3 — ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

* Bit 2 - ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
input capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

AT 90 C /AN 123 500000

4250G-CAN-09/05

* Bits 1, 0 — ACIS1, ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 21-1.

Table 21-1. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle.
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge.
1 1 Comparator Interrupt on Rising Output Edge.

When changing the ACIS1/ACISO0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

21.3 Analog Comparator Multiplexed Input

4250G-CAN-09/05

It is possible to select any of the ADCY7..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
21-2. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog
Comparator.

Table 21-2. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input
0 X XXX AIN1
1 1 XXX AIN1
1 0 000 ADCO
1 0 001 ADC1
1 0 010 ADC2
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7

A IIIEI% 269

21.31 Digital Input Disable Register 1 — DIDR1

Bit 7 6 5 4 3 2 1 0
| | - AIN1D | AINOD | DIDR1

Read/Write R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit1, 0 — AIN1D, AINOD: AIN1, AINO Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-

sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-

ten logic one to reduce power consumption in the digital input buffer.

270 AT 0 C AN 12 S s —

22. Analog to Digital Converter - ADC

221 Features
* 10-bit Resolution
* 0.5 LSB Integral Non-linearity
* +2 LSB Absolute Accuracy
* 65 - 260 ps Conversion Time
* Up to 15 kSPS at Maximum Resolution
* Eight Multiplexed Single Ended Input Channels
» Seven Differential input channels
* Optional Left Adjustment for ADC Result Readout
* 0 - Ve ADC Input Voltage Range
* Selectable 2.56 V ADC Reference Voltage
* Free Running or Single Conversion Mode
» ADC Start Conversion by Auto Triggering on Interrupt Sources
* Interrupt on ADC Conversion Complete
* Sleep Mode Noise Canceler

The AT90CAN128 features a 10-bit successive approximation ADC. The ADC is connected to
an 8-channel Analog Multiplexer which allows eight single-ended voltage inputs constructed
from the pins of Port F. The single-ended voltage inputs refer to OV (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs
(ADC1, ADCO and ADC3, ADC2) are equipped with a programmable gain stage, providing
amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the differential input voltage
before the A/D conversion. Seven differential analog input channels share a common negative
terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1x
or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can be
expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 22-1.

The ADC has a separate analog supply voltage pin, AVsc. AV must not differ more than +
0.3V from V.. See the paragraph “ADC Noise Canceler” on page 278 on how to connect this

pin.

Internal reference voltages of nominally 2.56V or AV are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

A IIIEI% 271

4250G-CAN-09/05

AIMEL

Figure 22-1. Analog to Digital Converter Block Schematic

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS
ADTS[2:0]
_o 8-BIT DATA BUS >
- A A A
wiw
\ 4 \ KK 15 0
ADC MULTIPLEXER ADC CTRL. & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)
Bl gl g === 3= SRR g
»| TRIGGER g
»| SELECT <
A
MUX DECODER Y YVY
Z PRESCALER |«
5 P START
=]
i 5 Y v v
o u
2] w
— 2
g % CONVERSION LOGIC
AVCCD— g 8
o
INTERNAL
REFERENCE \ 4 SAMPLE & HOLD

\ COMPARATOR
AREFl I 10-BIT DAC -

- .
S

Y

BANDGAP |
REFERENCE
‘\ SINGLE ENDED / DIFFERENTIAL SELECTION
ADC6
POS. ADC MULTIPLEXER
ADC5 INPUT ® » OUTPUT
MUX

ADC4

DIFFERENTIAL
AMPLIFIER

>

ADC3

ADC2

ADC1

ADCO

i

NEG.
INPUT

22.2 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on

22 AT90CAN128

4250G-CAN-09/05

the AREF pin minus 1 LSB. Optionally, AV or an internal 2.56V reference voltage may be con-
nected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can
be selected as single ended inputs to the ADC. A selection of ADC input pins can be selected as
positive and negative inputs to the differential amplifier.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. The ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

22.3 Starting a Conversion

4250G-CAN-09/05

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal is still set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an interrupt flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the interrupt flag must be cleared in order to
trigger a new conversion at the next interrupt event.

A IIIEI% 273

AIMEL

Figure 22-2. ADC Auto Trigger Logic

ADTS[2:0]

»| PRESCALER

START CLK, o,
ADIF ADATE
SOURCE 1 L
IS } CONVERSION
LOGIC
- EDGE
SOURCE DETECTOR
ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

22.4 Prescaling and Conversion Timing

Figure 22-3. ADC Prescaler

ADEN
START Reset
7-BIT ADC PRESCALER

CK —]

CK/2
CK/4
CKI/8
CK/16
CK/32
CK/64
CK/128

<

A

<

A

<
<
<
<

<
<

ADPSO
ADPS1
ADPS2

ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

274 AAT'90/C AN 12 S s —

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. See “Differential Channels” on page
276 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 22-1.

Figure 22-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Next

First Conversion Conversion

1 | ‘ 1 1 1
!

Cycle Number | 1] 2 ‘12\13\44\15\16\17\18\19\20\21\22\23\24\25! 12 |3
| | |
ADC Clock § L‘ U U U U U U U U U U U U U u u U U L
| ‘ ‘ | | |
ADEN I ‘ ‘ I I I
I I I I
ADSC Y/ ‘ [! V7777
I ‘ ‘ I I |
ADIF I | ‘ I I
| | I |
ADCH / / A [Y/ ><‘ Sign and MSB of Result
oo I 1777 77777 <, LB ofResun
' ‘ ! ' ' ' MUX
4_\ MUX and REFS 4_\ Conversion /’ \ and REFS
Update Sample & Hold Complete Update
Figure 22-5. ADC Timing Diagram, Single Conversion
One Conversion Next Conversion
<
1 1 1 1
Cycle Number |] 2] 3| 4| 5| 6| 7| 8] of 10 1| 12| 13 | 1] 2] 3
ADC Clock $ t $ {
I I I I
ADIF | | |

wocn Z777TITTTTITITTTTTTTIIT, 1T T TT7TTTTT7 70X Sian st o Res
wooL 77777 T T T T T 7T TTTTTITTT 7K st ironan

Sample & Hold Conversion /-) \ MUX and REFS

MUX and REFS Complete Update
Update

A IIIEI% 275

4250G-CAN-09/05

2241

276

AIMEL

Figure 22-6. ADC Timing Diagram, Auto Triggered Conversion

One Conversion

Next Conversion

I I I
Cycle Number b3 4] s e 7] o8| 9 1o 1| 12| 13

ADC Clock

<
<
1
1

Trigger
Source 4/

I
ADATE !
I

ADIF

ADCH /

TT77 77777777

|
/ >< Sign and MSB of Result
1 T

ADCL 777/, i/ 'y

77X L8B of Result

Prescaler Hold
Reset

> ‘4\ —_ Sample &

MUX and REFS
Update

Figure 22-7. ADC Timing Diagram, Free Running Conversion

One Conversion Next Conversion
<

| |
Cycle Number 11| 12| 13' 1| |2| 3| 4|

ADC Clock $ 1

ADSC ! !
I I

ADIF |

1
ADCH ><| Sign gnd MSB of Result

ADCL X LSB of Result
I I
Conversion /-) \ \ Sample & Hold
Complete MUX and REFS
Update

Table 22-1. ADC Conversion Time

1 \(\
Conversion Prescaler

Complete

Reset

First Normal Auto
Condition Conversion Conversion, Triggered
Single Ended Conversion
Sample & Hold (Cycles from Start of 145 15 2
Convention)
Conversion Time (Cycles) 25 13 13.5

Differential Channels

When using differential channels, certain aspects of the conversion need to be taken into

consideration.

Differential conversions are synchronized to the internal clock CK,pc, equal to half the ADC
clock frequency. This synchronization is done automatically by the ADC interface in such a way
that the sample-and-hold occurs at a specific phase of CK,p,. A conversion initiated by the
user (i.e., all single conversions, and the first free running conversion) when CK,p, is low will
take the same amount of time as a single ended conversion (13 ADC clock cycles from the next
prescaled clock cycle). A conversion initiated by the user when CK,p, is high will take 14 ADC
clock cycles due to the synchronization mechanism. In Free Running mode, a new conversion is

AT 90 C /AN 123 500000

4250G-CAN-09/05

initiated immediately after the previous conversion completes, and since CK,p, is high at this
time, all automatically started (i.e., all but the first) Free Running conversions will take 14 ADC
clock cycles.

If differential channels are used and conversions are started by Auto Triggering, the ADC must
be switched off between conversions. When Auto Triggering is used, the ADC prescaler is reset
before the conversion is started. Since the stage is dependent of a stable ADC clock prior to the
conversion, this conversion will not be valid. By disabling and then re-enabling the ADC between
each conversion (writing ADEN in ADCSRA to “0” then to “1”), only extended conversions are
performed. The result from the extended conversions will be valid. See “Prescaling and Conver-
sion Timing” on page 274 for timing details.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequencies may
be subjected to non-linear amplification. An external low-pass filter should be used if the input
signal contains higher frequency components than the gain stage bandwidth. Note that the ADC
clock frequency is independent of the gain stage bandwidth limitation. E.g. the ADC clock period
may be 6 ps, allowing a channel to be sampled at 12 kSPS, regardless of the bandwidth of this
channel.

22.5 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Special care should be taken when changing differential channels. Once a differential channel
has been selected, the stage may take as much as 125 ps to stabilize to the new value. Thus
conversions should not be started within the first 125 ps after selecting a new differential chan-
nel. Alternatively, conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing
ADC reference (by changing the REFS1:0 bits in ADMUX).

A IIIEI% 277

4250G-CAN-09/05

22.51

22.5.2

AIMEL

ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

* In Single Conversion mode, always select the channel before starting the conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the conversion to complete before changing the channel
selection.

* In Free Running mode, always select the channel before starting the first conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the first conversion to complete, and then change the
channel selection. Since the next conversion has already started automatically, the next
result will reflect the previous channel selection. Subsequent conversions will reflect the new
channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accu-
racy due to the required settling time for the automatic offset cancellation circuitry. The user
should preferably disregard the first conversion result.

ADC Voltage Reference

The reference voltage for the ADC (Vrgg) indicates the conversion range for the ADC. Single
ended channels that exceed Vzgr Will result in codes close to 0x3FF. Vg can be selected as
either AV, internal 2.56V reference, or external AREF pin.

AV is connected to the ADC through a passive switch. The internal 2.56V reference is gener-
ated from the internal bandgap reference (Vgg) through an internal amplifier. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. Vggr can
also be measured at the AREF pin with a high impedant voltmeter. Note that Vg is a high
impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AV and 2.56V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AV than indi-
cated in Table 27-5 on page 369.

22.6 ADC Noise Canceler

278

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once
the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If

AT 90 C /AN 123 500000

4250G-CAN-09/05

another interrupt wakes up the CPU before the ADC conversion is complete, that inter-
rupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.
Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.

If the ADC is enabled in such sleep modes and the user wants to perform differential conver-
sions, the user is advised to switch the ADC off and on after waking up from sleep to prompt an
extended conversion to get a valid result.

22.6.1 Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 22-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kQ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (f5pc/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 22-8. Analog Input Circuitry

liH

ADCn D AN

1..100 kN

Cg= 14 pF

Veo/2

22.6.2 Analog Noise Canceling Techniques

4250G-CAN-09/05

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

A IIIEI% 279

AIMEL

1. Keep analog signal paths as short as possible. Make sure analog tracks run over the
analog ground plane, and keep them well away from high-speed switching digital
tracks.

2. The AV pin on the device should be connected to the digital V¢ supply voltage via
an LC network as shown in Figure 22-9.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not switch
while a conversion is in progress.

Figure 22-9. ADC Power Connections

(ADO) PAO [51]
VCC (]

(ADC7) PF7 [54]
(ADC6) PF6 [55)
(ADC5) PF5 [56|
(ADC4) PF4 [57|
(ADC3) PF3 [58|
(ADC2) PF2 [59|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
l (ADC1) PF1 [60)]
|
|
|
|
|
|
|
|
|
|
|
|
|

(ADCO) PFO E

10pH AREF E
GND [

AVCC -

JE—Te)

I‘lOOnF ///

22.6.3 Offset Compensation Schemes
The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential mea-
surements as much as possible. The remaining offset in the analog path can be measured
directly by selecting the same channel for both differential inputs. This offset residue can be then
subtracted in software from the measurement results. Using this kind of software based offset
correction, offset on any channel can be reduced below one LSB.

22.6.4 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and Vgge in 2" steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:

 Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition
(at 0.5 LSB). Ideal value: 0 LSB.

280 AT'O0C AN 12 S s —

4250G-CAN-09/05

Figure 22-10. Offset Error

Output Codeh

————— Ideal ADC
Actual ADC

Offset
<* Error”

[

Vgrer Input Voltage

» Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last
transition (Ox3FE to Ox3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB

Figure 22-11. Gain Error

Output Code A Gain
Error

————— Ideal ADC
Actual ADC

Vrer Input Voltage

* Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0
LSB.

A IIIEI% 281

4250G-CAN-09/05

AIMEL

Figure 22-12. Integral Non-linearity (INL)
Output Code A

NI

----- Ideal ADC
Actual ADC

Vrer Input Voltage

+ Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 22-13. Differential Non-linearity (DNL)

Output Code A
0x3FF
| I
_yisele

- |

i “on™
0x000

0 Vrer |Input Voltage

» Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
a range of input voltages (1 LSB wide) will code to the same value. Always + 0.5 LSB.

» Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
an ideal transition for any code. This is the compound effect of offset, gain error, differential
error, non-linearity, and quantization error. Ideal value: £ 0.5 LSB.

22.7 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).

282 AAT'90C AN 12 S o —

4250G-CAN-09/05

For single ended conversion, the result is:

V- 1023
ADC = N7
VrEF

where V is the voltage on the selected input pin and Vg the selected voltage reference (see
Table 22-3 on page 285 and Table 22-4 on page 286). 0x000 represents analog ground, and
0x3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is:

Vops—V - GAIN - 512
ADC = (Vpos—Veg)

VREF

where Vpqq is the voltage on the positive input pin, V\gg the voltage on the negative input pin,
GAIN the selected gain factor and Vggr the selected voltage reference. The result is presented
in two’s complement form, from 0x200 (-512d) through Ox1FF (+511d). Note that if the user
wants to perform a quick polarity check of the result, it is sufficient to read the MSB of the result
(ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is posi-
tive. Figure 22-14 shows the decoding of the differential input range.

Table 82 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is
selected with a reference voltage of Vgge.

Figure 22-14. Differential Measurement Range
A

Output Codej

Ox1FF

)
]

N
N—
- _I
0x000
[[[[() <) [[IX [[[[()() [[[>
-V 0 Differential Input
REF Ox3FF _ Vier Voltage (Volts)

~=

0x200

A IIIEI% 283

AIMEL

Table 22-2. Correlation Between Input Voltage and Output Codes

Vabpcn Read code Corresponding decimal value
Vaocm + Vrer /GAIN Ox1FF 511
Vapcm + 0.999 Ve /GAIN Ox1FF 511
Vapcm + 0.998 Ve /GAIN Ox1FE 510
Vapem + 0.001 Vger /GAIN 0x001 1
Vapcm 0x000 0
Vaocm - 0.001 Ve /GAIN Ox3FF -1
Vapcm - 0.999 Vger /GAIN 0x201 -511
Vapcem - Vrer /GAIN 0x200 -512
Example 1:

— ADMUX = OxED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)
— Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.
— ADCR =512 *10 * (300 - 500) / 2560 = -400 = 0x270

— ADCL will thus read 0x00, and ADCH will read 0x9C.
Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02.

Example 2:

— ADMUX = 0xFB (ADC3 - ADC2, 1x gain, 2.56V reference, left adjusted result)
— Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.
— ADCR =512 *1 * (300 - 500) / 2560 = -41 = 0x029.
— ADCL will thus read 0x40, and ADCH will read Ox0A.
Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29.

284 AAT'90C AN 12 S s —

22.8 ADC Register Description

22.81 ADC Multiplexer Selection Register - ADMUX

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0
| REFs1 | REFs0 | ADLAR | Mux4 MUX3 MUX2 MUXA1 MUX0 | ADMUX

Read/Write R/W R/W R/W R/W RIW RIW RIW R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 22-3. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

Table 22-3. Voltage Reference Selections for ADC

REFS1 REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AV with external capacitor on AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor on AREF pin

* Bit5- ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see “The ADC Data Register — ADCL and ADCH” on
page 288.

* Bits 4:0 — MUX4:0: Analog Channel Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC.
These bits also select the gain for the differential channels. See Table 22-4 for details. If these
bits are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set).

A IIIEI% 285

286

AIMEL

Table 22-4. Input Channel and Gain Selections
MUX4..0 ISrll:g:e Ended ::::;)sui:ive Differential Ir:::)gua:tive Differential Gain
00000 ADCO
00001 ADCA1
00010 ADC2
00011 ADC3

N/A
00100 ADC4
00101 ADC5
00110 ADC6
00111 ADC7
01000 (ADCO/ADCO/ 10x)
01001 ADCA1 ‘ ADCO ‘ 10x
01010 (ADCO/ADCO / 200x)
01011 ADC1 | ADCO 200x
01100 (ADC2/ADC2/ 10x)
01101 ADC3 ‘ ADC2 ‘ 10x
01110 (ADC2/ADC2 / 200x)
01111 ADC3 ADC2 200x
10000 ADCO ADCA1 1x
10001 (ADC1/ADC1/ 1x)
10010 ADC2 ADC1 1x
N/A

10011 ADC3 ADC1 1x
10100 ADC4 ADC1 1x
10101 ADC5 ADCA1 1x
10110 ADC6 ADCA1 1x
10111 ADC7 ADCA1 1x
11000 ADCO ADC2 1x
11001 ADCA1 ADC2 1x
11010 (ADC2/ADC2/ 1x)
11011 ADC3 ADC2 1x
11100 ADC4 ADC2 1x
11101 ADC5 ADC2 1x
11110 1.1V (Vaang Gap) NIA
11111 0V (GND)

AT 90 C /AN 123 500000

4250G-CAN-09/05

22.8.2 ADC Control and Status Register A — ADCSRA

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0

| AbEN | ADsc | ADATE | ADIF ADIE | ADPS2 | ADPS1 | ADPSO | ADCSRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

e Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

* Bit 5—- ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

* Bit 4 — ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-
Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI
instructions are used.

¢ Bit 3 - ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

A IIIEI% 287

AIMEL

* Bits 2:0 —- ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the

ADC.
Table 22-5. ADC Prescaler Selections
ADPS2 ADPS1 ADPSO0 Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
22.8.3 The ADC Data Register — ADCL and ADCH
ADLAR =0
Bit 15 14 13 12 11 10 9 8
- Z — - - - ADC9 | ADC8 ADCH
ADC7 | ADC6 | ADC5 | ADC4 | ADC3 | ADC2 | ADC1 | ADCO ADCL
Bit 7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
ADLAR =1
Bit 15 14 13 12 11 10 9 8
ADC9 | ADC8 | ADC7 | ADC6 | ADC5 | ADC4 | ADC3 | ADC2 ADCH
ADC1 | ADCO - - - - - - ADCL
Bit 7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

When an ADC conversion is complete, the result is found in these two registers. If differential

channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision (7 bit + sign bit for differential input
channels) is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then

ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

288 ATO0C AN 12 S s —

4250G-CAN-09/05

« ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on
page 282.

22.8.4 ADC Control and Status Register B— ADCSRB

4250G-CAN-09/05

Bit 7 6 5 4 3 2 1 0
| - | AcME | - | - - ADTS2 | ADTS1 | ADTS0 | ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7- Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero
when ADCSRB is written.

* Bit 5:3— Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written
to zero when ADCSRB is written.

e Bit 2:0 — ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion
will be triggered by the rising edge of the selected interrupt flag. Note that switching from a trig-
ger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

Table 22-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTSO0 Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter1 Compare Match B
1 1 0 Timer/Counter1 Overflow
1 1 1 Timer/Counter1 Capture Event

A IIIEI% 289

AIMEL

22.8.5 Digital Input Disable Register 0 — DIDRO
4 3 2 1 0

Bit 7 6 5
| ADC7D | ADC6D | ADC5D | ADC4D | ADC3D | ADC2D | ADC1D | ADCOD | DIDRO

Read/Write R/W R/W R/W RIW RIW R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7:0 — ADC7D..ADCOD: ADC7:0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-

abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC7..0 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer.

290 AT 0C AN 12 S s —

23. JTAG Interface and On-chip Debug System

23.1 Features
* JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:
— All Internal Peripheral Units
— Internal and External RAM
— The Internal Register File
— Program Counter
— EEPROM and Flash Memories
* Extensive On-chip Debug Support for Break Conditions, Including
— AVR Break Instruction
— Break on Change of Program Memory Flow
— Single Step Break
— Program Memory Break Points on Single Address or Address Range
— Data Memory Break Points on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* On-chip Debugging Supported by AVR Studio®

23.2 Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:

» Testing PCBs by using the JTAG Boundary-scan capability

» Programming the non-volatile memories, Fuses and Lock bits

» On-chip debugging
A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections “JTAG
Programming Overview” on page 349 and “Boundary-scan IEEE 1149.1 (JTAG)” on page 298,

respectively. The On-chip Debug support is considered being private JTAG instructions, and dis-
tributed within ATMEL and to selected third party vendors only.

Figure 23-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI — input and TDO - output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.

The ID-Register (IDentifier Register), Bypass Register, and the Boundary-scan Chain are the
Data Registers used for board-level testing. The JTAG Programming Interface (actually consist-
ing of several physical and virtual Data Registers) is used for serial programming via the JTAG
interface. The Internal Scan Chain and Break Point Scan Chain are used for On-chip debugging
only.

23.3 Test Access Port — TAP

The JTAG interface is accessed through four of the AVR'’s pins. In JTAG terminology, these pins
constitute the Test Access Port — TAP. These pins are:

* TMS: Test mode select. This pin is used for navigating through the TAP-controller state
machine.

A IIIEI% 291

4250G-CAN-09/05

292

AIMEL

* TCK: Test Clock. JTAG operation is synchronous to TCK.

» TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register
(Scan Chains).

» TDO: Test Data Out. Serial output data from Instruction Register or Data Register (Scan
Chains).

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT — which is not
provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the
TAP controller is in reset. When programmed and the JTD bit in MCUCR is cleared, the TAP
input signals are internally pulled high and the JTAG is enabled for Boundary-scan and program-
ming. In this case, the TAP output pin (TDO) is left floating in states where the JTAG TAP
controller is not shifting data, and must therefore be connected to a pull-up resistor or other
hardware having pull-ups (for instance the TDI-input of the next device in the scan chain). The
device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect external reset sources. The debugger can also pull
the RESET pin low to reset the whole system, assuming only open collectors on the reset line
are used in the application.

AT 90 C /AN 123 500000

4250G-CAN-09/05

s ATO0CAN128

Figure 23-1. Block Diagram

1/0 PORT 0 N o .
A
DEVICE BOUNDARY Y
r; BOUNDARY SCAN CHAIN
TDI S
DO < - »| JTAG PROGRAMMING
= 1 TAP INTERFACE
TCK » | CONTROLLER Y
™S —» |
y
1
INTERNAL
FLASH Address [« SCAN < PC
INSTRUCTION | MEMORY Data > CHAIN Instruction
REGISTER
l AVR CPU
ID |
REGISTER BREAKPOINT < >
UNIT
M [FLOW CONTROL [”
Ly BYPASS Y UNIT 5
REGISTER { [« a
X DIGITAL ANALOG 2
< A »
< PR AL ™[] PERIPHERIAL < g
< < UNITS <
BREAKPOINT <
SCAN CHAIN
\4_ A v JTAG / AVR CORE
ADDRESS A 4 COMMUNICATION g
DECODER > OCD STATUS < | INTERFACE %
5| AND CONTROL S
(@]
o3
< < O
€
o)
¢ O
|
A
Y
L] L] L]

I/0 PORT n

A mEl% 293

4250G-CAN-09/05

AIMEL

Figure 23-2. TAP Controller State Diagram

1 C; Test-Logic-Reset

0

0 C; Run-Test/Idle L Select-DR Scan L p{ Select-IR Scan L
0 0
1 1
— Capture-DR — Capture-IR
0 0
» shiftDR D 0 p Shift-IR 3 0
1 1
A4
. Exit1-DR L . Exit1-IR L
0 0
y
Pause-DR D 0 Pause-IR D 0
1 1
A v
0 Exit2-DR 0 Exit2-IR
1 1
A A
Update-DR Update-IR |

J 1 0 1 0

23.4 TAP Controller

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in Figure 23-2 depend on the signal present on TMS (shown adjacent to each state
transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-
Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.
Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

+ At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register — Shift-IR state. While in this state, shift the four bits of the JTAG
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR
state. The MSB of the instruction is shifted in when this state is left by setting TMS high.
While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on
the TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI
and TDO and controls the circuitry surrounding the selected Data Register.

204 ATO0C AN 2S

* Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR,
Pause-IR, and Exit2-IR states are only used for navigating the state machine.

+ At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift
Data Register — Shift-DR state. While in this state, upload the selected data register (selected
by the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the
rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low
during input of all bits except the MSB. The MSB of the data is shifted in when this state is left
by setting TMS high. While the data register is shifted in from the TDI pin, the parallel inputs
to the data register captured in the Capture-DR state is shifted out on the TDO pin.

» Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected data
register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using data registers, and some JTAG instructions may select certain func-
tions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography”
on page 297.

23.5 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section “Boundary-
scan IEEE 1149.1 (JTAG)” on page 298.

23.6 Using the On-chip Debug System

As shown in Figure 23-1, the hardware support for On-chip Debugging consists mainly of
+ A scan chain on the interface between the internal AVR CPU and the internal peripheral
units.
* Break Point unit.
» Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an 1/0
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

* 4 single Program Memory Break Points.

* 3 single Program Memory Break Points + 1 single Data Memory Break Point.

* 2 single Program Memory Break Points + 2 single Data Memory Break Points.

A IIIEI% 295

4250G-CAN-09/05

AIMEL

+ 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”).

* 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range
Break Point”).

A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG
Instructions” on page 296.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio® supports source level execution of Assembly programs assembled with Atmel Cor-
poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000/NT/XP.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

23.7 On-chip Debug Specific JTAG Instructions

23.71

23.7.2

23.7.3

23.74

296

The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

PRIVATEO (0x8)
Private JTAG instruction for accessing On-chip debug system.

PRIVATE1 (0x9)
Private JTAG instruction for accessing On-chip debug system.

PRIVATE2 (0xA)
Private JTAG instruction for accessing On-chip debug system.

PRIVATE3 (0xB)
Private JTAG instruction for accessing On-chip debug system.

AT 90 C /AN 123 500000

23.8 On-chip Debug Related Register in /0 Memory

23.8.1 On-chip Debug Register —- OCDR

Bit 7 6 5 4 3 2 1 0
| 1oRD/OCDR? | OCDRE | OCDR5 | OCDR4 | OCDR3 | OCDR2 | OCDR1 | OCDRO | OCDR

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an internal flag; I/O Debug Register Dirty — IDRD - is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard 1/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard 1/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

23.9 Using the JTAG Programming Capabilities

23.10 Bibliography

4250G-CAN-09/05

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the
JTAG Test Access Port.

The JTAG programming capability supports:
* Flash programming and verifying.
+ EEPROM programming and verifying.
» Fuse programming and verifying.
* Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.

The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section “JTAG Programming Overview” on page 349.

For more information about general Boundary-scan, the following literature can be consulted:

 IEEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993.

+ Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley,
1992.

A IIIEI% 297

AIMEL

24. Boundary-scan IEEE 1149.1 (JTAG)

241

Features

» JTAG (IEEE std. 1149.1 compliant) Interface

* Boundary-scan Capabilities According to the JTAG Standard

* Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
* Supports the Optional IDCODE Instruction

* Additional Public AVR_RESET Instruction to Reset the AVR

24.2 System Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be
used for testing the Printed Circuit Board. Initial scanning of the data register path will show the
ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to
have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-
mined by the scan operations, and the internal software may be in an undetermined state when
exiting the test mode. Entering reset, the outputs of any port pin will instantly enter the high
impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction
can be issued to make the shortest possible scan chain through the device. The device can be
set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the 1/0O Register MCUCR must be
cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher
than the internal chip frequency is possible. The chip clock is not required to run.

24.3 Data Registers

298

The data registers relevant for Boundary-scan operations are:

» Bypass Register

* Device Identification Register
* Reset Register

* Boundary-scan Chain

AT 90 C /AN 123 500000

4250G-CAN-09/05

2431 Bypass Register
The Bypass Register consists of a single Shift Register stage. When the Bypass Register is
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR
controller state. The Bypass Register may be used to shorten the scan chain on a system when
the other devices are to be tested.

24.3.2 Device Identification Register
Figure 24-1 shows the structure of the Device Identification Register.

Figure 24-1. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 11 1 0
Device ID I Version Part Number Manufacturer ID | 1 I
4 bits 16 bits 11 bits 1-bit

24.3.2.1 Version
Version is a 4-bit number identifying the revision of the component. The relevant version number
is shown in Table 24-1.
Table 24-1. JTAG Version Numbers

Version JTAG Version Number (Hex)

AT90CAN128 revision A 0x0

24.3.2.2 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for
AT90CAN128 is listed in Table 24-2.

Table 24-2. AVR JTAG Part Number
Part Number JTAG Part Number (Hex)
AT90CAN128 0x9781

24.3.2.3 Manufacturer ID
The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID
for ATMEL is listed in Table 24-3.
Table 24-3. Manufacturer ID

Manufacturer JTAG Manufacturer ID (Hex)

ATMEL 0x01F

24.3.2.4 Device ID
The full Device ID is listed in Table 24-4 following the AT90CAN128 version.
Table 24-4. Device ID
Version JTAG Device ID (Hex)
AT90CAN128 revision A 0x0978103F

A IIIEI% 299

4250G-CAN-09/05

2433

2434

Reset Register

AIMEL

The Reset Register is a test data register used to reset the part. Since the AVR tri-states Port
Pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the fuse set-
tings for the clock options, the part will remain reset for a reset time-out period (refer to “System
Clock” on page 36) after releasing the Reset Register. The output from this data register is not
latched, so the reset will take place immediately, as shown in Figure 24-2.

Figure 24-2. Reset Register

From Other Internal and
External Reset Sources Internal reset

From TDI »——D Q To TDO

-

ClockDR « AVR_RESET

Boundary-scan Chain

The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital 1/0 pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections.

See “Boundary-scan Chain” on page 302 for a complete description.

24.4 Boundary-scan Specific JTAG Instructions

2441

300

EXTEST (0x0)

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG
instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction is not
implemented, but all outputs with tri-state capability can be set in high-impedant state by using
the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which data register is selected as path between TDI and TDO for each instruction.

Mandatory JTAG instruction for selecting the Boundary-scan Chain as data register for testing
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output
Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
Register is loaded with the EXTEST instruction.

The active states are:

» Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
+ Shift-DR: The Internal Scan Chain is shifted by the TCK input.

AT 90 C /AN 123 500000

4250G-CAN-09/05

* Update-DR: Data from the scan chain is applied to output pins.

24.4.2 IDCODE (0x1)
Optional JTAG instruction selecting the 32 bit ID-Register as data register. The ID-Register con-
sists of a version number, a device number and the manufacturer code chosen by JEDEC. This
is the default instruction after power-up.

The active states are:

» Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain.
* Shift-DR: The IDCODE scan chain is shifted by the TCK input.

2443 SAMPLE_PRELOAD (0x2)
Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the
input/output pins without affecting the system operation. However, the output latches are not
connected to the pins. The Boundary-scan Chain is selected as data register.

The active states are:

» Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
+ Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

» Update-DR: Data from the Boundary-scan chain is applied to the output latches. However,
the output latches are not connected to the pins.

2444 AVR_RESET (0xC)
The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or
releasing the JTAG reset source. The TAP controller is not reset by this instruction. The one bit
Reset Register is selected as data register.

Note that the reset will be active as long as there is a logic “one” in the Reset Chain.
The output from this chain is not latched.
The active states are:
+ Shift-DR: The Reset Register is shifted by the TCK input.
2445 BYPASS (0xF)
Mandatory JTAG instruction selecting the Bypass Register for data register.
The active states are:

» Capture-DR: Loads a logic “0” into the Bypass Register.
+ Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

24.5 Boundary-scan Related Register in I/O Memory

24.51 MCU Control Register —- MCUCR
The MCU Control Register contains control bits for general MCU functions.

Bit 7 6 5 4 3 2 1 0

|) | — | - | PuD | - | - | IVSEL | IVCE | MCUCR
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

A IIIEI% 301

4250G-CAN-09/05

AIMEL

* Bits 7 — JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of
the JTAG interface, a timed sequence must be followed when changing this bit: The application
software must write this bit to the desired value twice within four cycles to change its value. Note
that this bit must not be altered when using the On-chip Debug system.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to
one. The reason for this is to avoid static current at the TDO pin in the JTAG interface.

24.5.2 MCU Status Register - MCUSR
The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0
|l - | - | - | JIRF | WDRF | BORF | EXTRF | PORF | MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

* Bit4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

24.6 Boundary-scan Chain
The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connection.

24,61 Scanning the Digital Port Pins
Figure 24-3 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The
cell consists of a standard Boundary-scan cell for the Pull-up Enable — PUExn — function, and a
bi-directional pin cell that combines the three signals Output Control — OCxn, Output Data —
ODxn, and Input Data — IDxn, into only a two-stage Shift Register. The port and pin indexes are
not used in the following description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 24-4 shows a
simple digital port pin as described in the section “I/O-Ports” on page 65. The Boundary-scan
details from Figure 24-3 replaces the dashed box in Figure 24-4.

When no alternate port function is present, the Input Data — ID — corresponds to the PINxn Reg-
ister value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output
Control corresponds to the Data Direction — DD Register, and the Pull-up Enable — PUExn — cor-
responds to logic expression PUD - DDxn - PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 24-4 to make the
scan chain read the actual pin value. For Analog function, there is a direct connection from the
external pin to the analog circuit, and a scan chain is inserted on the interface between the digi-
tal logic and the analog circuitry.

302 AT90C AN 1 2 S —

AT90CAN128

Figure 24-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.

ShiftDR To Next Cell EXTEST Vee

Pullup Enable (PUE) 0
FF2 LD2 1 E E
0
D Q D Q
1
— —1G
Output Control (OC)
FF1 LD1 0
0
D Q D Q 1
1
> | G

Output Data (OD)

'n
T
o
-
|w]
S
Port Pin (PXn)

Input Data (ID)

From Last Cell ClockDR UpdateDR

A mEl% 303

4250G-CAN-09/05

AIMEL

Figure 24-4. General Port Pin Schematic Diagram

See Boundary-scan
Description for Details!

T T I
|) PUExn Yam" PUD
| <II I \ —
| | —
| | T,
| RESET o
| | OCxn
< -
| b3 | RDx
| [ﬁ g [%)
I | 2
N1
Pxn Q D
| | opxn <
e U po—) arm <
IDxn WPx o
RESET
y——— SLEEP : RRx
SYNCHRONIZER
| —————— RPx
I
1 J |
|_ _____ f ClKyo
PUD: PULLUP DISABLE WDx: WRITE DDRx v
PUExn: PULLUP ENABLE for pin Pxn RDx: READ DDRx
OCxn: OUTPUT CONTROL for pin Pxn WPx: WRITE PORTx
ODxn: OUTPUT DATA to pin Pxn RRx: READ PORTx REGISTER
IDxn: INPUT DATA from pin Pxn RPx: READ PORTx PIN
SLEEP: SLEEP CONTROL CLK;po: 1/0CLOCK

24.6.2 Boundary-scan and the Two-wire Interface
The two Two-wire Interface pins SCL and SDA have one additional control signal in the scan-
chain; Two-wire Interface Enable — TWIEN. As shown in Figure 24-5, the TWIEN signal enables
a tri-state buffer with slew-rate control in parallel with the ordinary digital port pins. A general
scan cell as shown in Figure 24-9 is attached to the TWIEN signal.

Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordinary scan
support for digital port pins suffice for connectivity tests. The only reason for having TWIEN in
the scan path, is to be able to disconnect the slew-rate control buffer when doing boundary-
scan.

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will lead to
drive contention.

304 AT90C AN 2 S —

AT90CAN128

Figure 24-5. Additional Scan Signal for the Two-wire Interface

PUExn

A

J/‘— oCXn
ODxn

~
Pxn l/‘i TWIEN
~
Slew-rate limited
IDxn

24.6.3 Scanning the RESET Pin

The RESET pin accepts 3V or 5V active low logic for standard reset operation, and 12V active
high logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 24-6
is inserted both for the 3V or 5V reset signal - RSTT, and the 12V reset signal - RSTHV.

Figure 24-6. Observe-only Cell for RESET pin

Next
ShiftDR Cell

From System Pin * I I To System Logic

-
. |

From ClockDR
Previous
Cell

24.6.4 Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscilla-
tor, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal Oscillator, and
Ceramic Resonator.

Figure 24-7 shows how each oscillator with external connection is supported in the scan chain.
The Enable signal is supported with a general Boundary-scan cell, while the Oscillator/clock out-
put is attached to an observe-only cell. In addition to the main clock, the Timer2 Oscillator is
scanned in the same way. The output from the internal RC Oscillator is not scanned, as this
oscillator does not have external connections.

A IIIEI% 305

4250G-CAN-09/05

AIMEL

Figure 24-7. Boundary-scan Cells for Oscillators and Clock Options

XTAL1/TOSC1 XTAL2 / TOSC2

To

Next H To

ShiftDR Cell EXTEST OSC'”atOr Next

ShiftDR Cell

From Digital Logic o X I
ENABLE OUTPUT ¢

To System Logic
1
FF1
D QfF+D Q J
s D Q

From ClockDR UpdateDR
Previous From ClockDR
Cell Previous
Cell

Table 24-5 summaries the scan registers for the external clock pin XTAL1, oscillators with
XTAL1/XTAL2 connections as well as external Timer2 clock pin TOSC1 and 32kHz Timer2
Oscillator.

Table 24-5. Scan Signals for the Oscillators!"(2®)

Scanned Clock Line

Enable Signal Scanned Clock Line | Clock Option when not Used

EXTCLKEN EXTCLK (XTAL1) External Main Clock 0
External Crystal

OSCON OSCCK External Ceramic Resonator 1

OSC32EN 0SC32CK Low Freq. External Crystal 1

TOSKON TOSCK 32 kHz Timer2 Oscillator 1

Notes: 1. Do not enable more than one clock source as clock at a time.

2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between
the internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is
preferred.

3. The main clock configuration is programmed by fuses. As a fuse is not changed run-time, the
main clock configuration is considered fixed for a given application. The user is advised to
scan the same clock option as to be used in the final system. The enable signals are sup-
ported in the scan chain because the system logic can disable clock options in sleep modes,
thereby disconnecting the Oscillator pins from the scan path if not provided.

24.6.5 Scanning the Analog Comparator
The relevant Comparator signals regarding Boundary-scan are shown in Figure 24-8. The
Boundary-scan cell from Figure 24-9 is attached to each of these signals. The signals are
described in Table 24-6.

The Comparator need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

306 AT90C AN 2 S e —

Figure 24-8. Analog Comparator

ACME

ADCEN —Q
ADC MULTIPLEXER

BANDGAP
REFERENCE

ACBG

AINO

OUTPUT

VCC

ACD —>»

AC_IDLE

AT90CAN128

ACO

Figure 24-9. General Boundary-scan cell Used for Signals for Comparator and ADC

From Digital Logic/
From Analog Ciruitry

To Analog Circuitry/
To Digital Logic

To
Next
ShiftDR Cell EXTEST
0
1
D Qe Q
(—G
From ClockDR UpdateDR

Previous
Cell

Table 24-6. Boundary-scan Signals for the Analog Comparator
Sianal Direction as Recommended Output Values when
N g Seen from the Description Input when Not Recommended Inputs
ame .
Comparator in Use are Used
Turns off Analog
AC _IDLE input Comparator when 1 Depends upon LC code
being executed
true
Will become input
ACO output Analog Comparator to uC code being | 0
Output
executed
Uses output signal
ACME input from ADC mux when | O Depends upon uC code
being executed
true
ACBG input Bandgap Reference 0 Depends upon uC code
enable being executed

4250G-CAN-09/05

ATMEL

307

AIMEL

24.6.6 Scanning the ADC
Figure 24-10 shows a block diagram of the ADC with all relevant control and observe signals.
The Boundary-scan cell from Figure 24-9 is attached to each of these signals. The ADC need
not be used for pure connectivity testing, since all analog inputs are shared with a digital port pin
as well.

Figure 24-10. Analog to Digital Converter

VCCREN)

AREF

IREFEN

—> To Comparator

MUXEN_7 PASSEN
ADC_7 J j
MUXEN_6
Aoc e, V4
MUXEN_5
aoc s,
MUXEN_4 ADCBGEN
ADG 41 V) SCTEST ﬁ/
EXTCH b PRECH —
MUXEN_3 >
aoca, Y
MUXEN_2 |DACOUT,,
ADC_2 :) DAC_9..0)
MUXEN_1 »—————{ 10-bit DAC ™. g
aoc_1r P ans
MUXEN_O ADCEN -
i
ADC_0 : j A L
HOLD =

The signals are described briefly in Table 24-7.

308 AT90C AN 1 2 S —

Table 24-7. Boundary-scan Signals for the ADC")

Direction Output Values when
. Recommended
Signal as Seen . Recommended Inputs
Description Input .
Name from the When not in Use are Used, and CPU is
ADC not Using the ADC
COMP Output Comparator Output 0 0
Clock signal to gain
ACLK Input stages implemented as 0 0
Switch-cap filters
ACTEN Input Enable path from gain 0 0
stages to the comparator
Enable Band-gap
ADCBGEN Input reference as negative 0 0
input to comparator
Power-on signal to the
ADCEN Input ADC 0 0
AMPEN Input Poyver-on signal to the 0 0
gain stages
Bit 9 of digital value to
DAC 9 Input DAC 1 1
Bit 8 of digital value to
DAC_8 Input DAC 0 0
Bit 7 of digital value to
DAC_7 Input DAC 0 0
Bit 6 of digital value to
DAC 6 Input DAC 0 0
Bit 5 of digital value to
DAC 5 Input DAC 0 0
Bit 4 of digital value to
DAC_4 Input DAC 0 0
Bit 3 of digital value to
DAC 3 Input DAC 0 0
Bit 2 of digital value to
DAC_2 Input DAC 0 0
Bit 1 of digital value to
DAC_1 Input DAC 0 0
Bit 0 of digital value to
DAC 0 Input DAC 0 0
Connect ADC channels 0
EXTCH Input - 3 to by-pass path around 1 1
gain stages
G10 Input Enable 10x gain 0 0
G20 Input Enable 20x gain 0 0
GNDEN Input Ground the negative input 0 0
to comparator when true

A mEl% 309

4250G-CAN-09/05

AIMEL

Table 24-7. Boundary-scan Signals for the ADC" (Continued)

Direction Output Values when
. Recommended
Signal as Seen Description Inout Recommended Inputs
Name from the P p are Used, and CPU is

ADC When notinUse | | \sing the ADC

Sample & Hold signal.
Sample analog signal
when low. Hold signal
HOLD Input when high. If gain stages 1 1
are used, this signal must
go active when ACLK is

high.
Enables Band-gap
IREFEN Input reference as AREF signal 0 0
to DAC
MUXEN_7 Input Input Mux bit 7 0 0
MUXEN_6 Input Input Mux bit 6 0 0
MUXEN_5 Input Input Mux bit 5 0 0
MUXEN_4 Input Input Mux bit 4 0 0
MUXEN_3 Input Input Mux bit 3 0 0
MUXEN_2 Input Input Mux bit 2 0 0
MUXEN_1 Input Input Mux bit 1 0 0
MUXEN_0 Input Input Mux bit 0 1 1
Input Mux for negative
NEGSEL_2 | Input input for differential 0 0
signal, bit 2
Input Mux for negative
NEGSEL_1 | Input input for differential 0 0
signal, bit 1
Input Mux for negative
NEGSEL_O | Input input for differential 0 0
signal, bit 0
PASSEN Input Enable pass-gate of gain 1 1
stages.
PRECH Input Precharge outpu.t latch of 1 1
comparator. (Active low)
Switch-cap TEST enable.
Output from x10 gain
SCTEST Input stage send out to Port Pin 0 0
having ADC_4
Output of gain stages will
settle faster if this signal
ST Input is high first two ACLK 0 0
periods after AMPEN
goes high.
VCCREN Input Selects Vcc as the ACC 0 0

reference voltage.

310 ATOI0C AN 2 S

Note: 1. Incorrect setting of the switches in Figure 24-10 will make signal contention and may damage
the part. There are several input choices to the S&H circuitry on the negative input of the out-
put comparator in Figure 24-10. Make sure only one path is selected from either one ADC pin,
Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 24-7 should

be used. The user is recommended not to use the Differential Gain stages during scan. Switch-

Cap based gain stages require fast operation and accurate timing which is difficult to obtain

when used in a scan chain. Details concerning operations of the differential gain stage is there-

fore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 24-10 with a successive approx-
imation algorithm implemented in the digital logic. When used in Boundary-scan, the problem is
usually to ensure that an applied analog voltage is measured within some limits. This can easily
be done without running a successive approximation algorithm: apply the lower limit on the digi-
tal DAC[9:0] lines, make sure the output from the comparator is low, then apply the upper limit
on the digital DAC[9:0] lines, and verify the output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with
a digital port pin as well.

When using the ADC, remember the following
» The port pin for the ADC channel in use must be configured to be an input with pull-up
disabled to avoid signal contention.

* In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when
enabling the ADC. The user is advised to wait at least 200ns after enabling the ADC before
controlling/observing any ADC signal, or perform a dummy conversion before using the first
result.

» The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal
low (Sample mode).

As an example, consider the task of verifying a 1.5V + 5% input signal at ADC channel 3 when
the power supply is 5.0V and AREF is externally connected to V¢

0x123
0x143

The lower limitis: [1024 * 1.5V *0.95/5V] = 291
The upper limitis: [1024 * 1.5V *1.05/5V] = 323

The recommended values from Table 24-7 are used unless other values are given in the algo-
rithm in Table 24-8. Only the DAC and port pin values of the Scan Chain are shown. The column
“Actions” describes what JTAG instruction to be used before filling the Boundary-scan Register
with the succeeding columns. The verification should be done on the data scanned out when
scanning in the data on the same row in the table.

Table 24-8. Algorithm for Using the ADC

PA3.
Step Actions ADCEN DAC MUXEN HOLD PRECH PA3. PA3. Pull-up_
Data Control
Enable
SAMPLE_
1 PRELOAD 1 0x200 0x08 1 1 0 0 0
2 EXTEST 1 0x200 0x08 0 1 0 0 0
3 1 0x200 0x08 1 1 0 0 0
4 1 0x123 0x08 1 1 0 0 0
— AINEL 311
4250G-CAN-09/05 I)

AIMEL

Table 24-8. Algorithm for Using the ADC

PA3.
Step Actions ADCEN DAC MUXEN HOLD PRECH PA3. PA3. Pull-up_
Data Control
Enable
5 1 0x123 0x08 1 0 0 0 0
Verify the
6 COMP bit 1 0x200 | 0x08 1 1 0 0 0
scanned out
tobe 0
7 1 0x200 0x08 0 1 0 0 0
8 1 0x200 0x08 1 1 0 0 0
9 1 0x143 0x08 1 1 0 0 0
10 1 0x143 0x08 1 0 0 0 0
Verify the
1 | coMPbl 1| 0x200 | 0x08 1 1 0 0 0
scanned out
to be 1

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock fre-
quency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at
least five times the number of scan bits divided by the maximum hold time, ;54 max

24.7 AT90CAN128 Boundary-scan Order

Table 24-9 shows the Scan order between TDI and TDO when the Boundary-scan chain is
selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The
scan order follows the pin-out order as far as possible. Therefore, the bits of Port A is scanned in
the opposite bit order of the other ports. Exceptions from the rules are the Scan chains for the
analog circuits, which constitute the most significant bits of the scan chain regardless of which
physical pin they are connected to. In Figure 24-3, PXn. Data corresponds to FFO, PXn. Control
corresponds to FF1, and PXn. Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is
not in the scan chain, since these pins constitute the TAP pins when the JTAG is enabled.

Table 24-9. AT90CAN128 Boundary-scan Order

Bit Number Signal Name Comment Module
200 AC_IDLE
199 ACO
Comparator
198 ACME
197 AINBG
196 COMP ADC
195 ACLK
194 ACTEN
193 PRIVATE_SIGNAL("
192 ADCBGEN
191 ADCEN
190 AMPEN
189 DAC_9

312 AT90C AN 1 2 S e —

Table 24-9. AT90CAN128 Boundary-scan Order (Continued)

Bit Number Signal Name Comment Module
188 DAC_8

187 DAC_7

186 DAC_6

185 DAC_5

184 DAC_4

183 DAC_3

182 DAC_2

181 DAC_1

180 DAC_0

179 EXTCH

178 G10

177 G20

176 GNDEN

175 HOLD

174 IREFEN

173 MUXEN_7

172 MUXEN_6

171 MUXEN_5

170 MUXEN_4

169 MUXEN_3

168 MUXEN_2

167 MUXEN_1

166 MUXEN_O

165 NEGSEL_2

164 NEGSEL_1 ADC
163 NEGSEL_0

162 PASSEN

161 PRECH

160 SCTEST

159 ST

158 VCCREN

157 PEO.Data Port E
156 PEO.Control

155 PEO.Pullup_Enable
154 PE1.Data

153 PE1.Control

152 PE1.Pullup_Enable
151 PE2.Data

A mEl% 313

4250G-CAN-09/05

AIMEL

Table 24-9. AT90CAN128 Boundary-scan Order (Continued)

Bit Number Signal Name Comment Module
150 PE2.Control

149 PE2.Pullup_Enable
148 PE3.Data

147 PE3.Control

146 PE3.Pullup_Enable
145 PE4.Data

144 PE4.Control

143 PE4.Pullup_Enable
142 PE5.Data

141 PES5.Control

140 PE5.Pullup_Enable
139 PE6.Data

138 PE6.Control

137 PEG6.Pullup_Enable
136 PE7.Data

135 PE7.Control

134 PE7.Pullup_Enable
133 PB0.Data Port B
132 PBO0.Control

131 PBO.Pullup_Enable
130 PB1.Data

129 PB1.Control

128 PB1.Pullup_Enable
127 PB2.Data

126 PB2.Control Port B
125 PB2.Pullup_Enable
124 PB3.Data

123 PB3.Control

122 PB3.Pullup_Enable
121 PB4 .Data

120 PB4.Control

119 PB4.Pullup_Enable
118 PB5.Data

117 PB5.Control

116 PB5.Pullup_Enable
115 PB6.Data

114 PB6.Control

113 PB6.Pullup_Enable

314 AT90C AN 1 2 S e —

Table 24-9. AT90CAN128 Boundary-scan Order (Continued)

Bit Number Signal Name Comment Module
112 PB7.Data

M PB7.Control

110 PB7.Pullup_Enable

109 PG3.Data Port G
108 PG3.Control

107 PG3.Pullup_Enable

106 PG4.Data

105 PG4.Control

104 PG4.Pullup_Enable

103 PRIVATE_SIGNAL™" -

102 RSTT (Observe Only) RESET Logic
101 RSTHV

100 EXTCLKEN Oscillators
99 OSCON

98 OSC32EN

97 TOSKON

96 EXTCLK (XTAL1)

95 OSCCK

94 0OSC32CK

93 TOSK

92 PDO0.Data Port D
91 PDO.Control

90 PDO.Pullup_Enable

89 PD1.Data

88 PD1.Control Port D
87 PD1.Pullup_Enable

86 PD2.Data

85 PD2.Control

84 PD2.Pullup_Enable

83 PD3.Data

82 PD3.Control

81 PD3.Pullup_Enable

80 PD4.Data

79 PD4.Control

78 PD4.Pullup_Enable

77 PD5.Data

76 PD5.Control

75 PD5.Pullup_Enable

A mEl% 315

4250G-CAN-09/05

AIMEL

Table 24-9. AT90CAN128 Boundary-scan Order (Continued)

Bit Number Signal Name Comment Module
74 PD6.Data

73 PD6.Control

72 PD6.Pullup_Enable

71 PD7.Data

70 PD7.Control

69 PD7.Pullup_Enable

68 PGO0.Data Port G
67 PGO.Control

66 PGO.Pullup_Enable

65 PG1.Data

64 PG1.Control

63 PG1.Pullup_Enable

62 PCO0.Data Port C
61 PCO0.Control

60 PCO0.Pullup_Enable

59 PC1.Data

58 PC1.Control

57 PC1.Pullup_Enable

56 PC2.Data

55 PC2.Control

54 PC2.Pullup_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pullup_Enable

50 PC4.Data Port C
49 PC4.Control

48 PC4.Pullup_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pullup_Enable

44 PC6.Data

43 PC6.Control

42 PC6.Pullup_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pullup_Enable

38 PG2.Data Port G
37 PG2.Control

316 AT90C AN 1 2 S —

Table 24-9. AT90CAN128 Boundary-scan Order (Continued)

Bit Number Signal Name Comment Module
36 PG2.Pullup_Enable

35 PA7.Data Port A
34 PA7.Control

33 PA7.Pullup_Enable

32 PA6.Data

31 PA6.Control

30 PA6.Pullup_Enable

29 PA5.Data

28 PA5.Control

27 PA5.Pullup_Enable

26 PA4.Data

25 PA4.Control

24 PA4 .Pullup_Enable

23 PA3.Data

22 PA3.Control

21 PA3.Pullup_Enable

20 PA2.Data

19 PA2.Control

18 PA2.Pullup_Enable

17 PA1.Data

16 PA1.Control

15 PA1.Pullup_Enable

14 PAO.Data

13 PAO.Control

12 PAO.Pullup_Enable Port A
1 PF3.Data Port F
10 PF3.Control

9 PF3.Pullup_Enable

8 PF2.Data

7 PF2.Control

6 PF2.Pullup_Enable

5 PF1.Data

4 PF1.Control

3 PF1.Pullup_Enable

2 PFO0.Data

1 PF0.Control

0 PFO.Pullup_Enable

Notes: 1. PRIVATE_SIGNAL should always be scanned-in as zero.

A mEl% 317

4250G-CAN-09/05

AIMEL

24.8 Boundary-scan Description Language Files
Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in

a standard format used by automated test-generation software. The order and function of bits in
the Boundary-scan Data Register are included in this description. A BSDL file for AT90CAN128

is available.

318 AT90C AN 1 2 S —

4250G-CAN-09/05

25. Boot Loader Support — Read-While-Write Self-Programming

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The
Boot Loader program can use any available data interface and associated protocol to read code
and write (program) that code into the Flash memory, or read the code from the program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it
can also erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection.

25.1 Features
* Read-While-Write Self-Programming
* Flexible Boot Memory Size
* High Security (Separate Boot Lock Bits for a Flexible Protection)
» Separate Fuse to Select Reset Vector
 Optimized Page(! Size
* Code Efficient Algorithm
 Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 26-11 on page 338)
used during programming. The page organization does not affect normal operation.

25.2 Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 25-2). The size of the different sections is configured by the
BOOTSZ Fuses as shown in Table 25-6 on page 332 and Figure 25-2. These two sections can
have different level of protection since they have different sets of Lock bits.

25.2.1 AS - Application Section
The Application section is the section of the Flash that is used for storing the application code.
The protection level for the Application section can be selected by the application Boot Lock bits
(BLBO2 and BLBO1 bits), see Table 25-2 on page 323. The Application section can never store
any Boot Loader code since the SPM instruction is disabled when executed from the Application
section.

25.2.2 BLS - Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Lock bits (BLB12 and BLB11 bits), see Table 25-3 on page 323.

25.3 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two

A IIIEI% 319

4250G-CAN-09/05

25.3.1

25.3.2

320

AIMEL

sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 25-
7 on page 332 and Figure 25-2 on page 322. The main difference between the two sections is:

* When erasing or writing a page located inside the RWW section, the NRWW section can be
read during the operation.

* When erasing or writing a page located inside the NRWW section, the CPU is halted during
the entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

RWW - Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (i.e., by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read
as logical one as long as the RWW section is blocked for reading. After a programming is com-
pleted, the RWWSB must be cleared by software before reading code located in the RWW
section. See “Store Program Memory Control and Status Register - SPMCSR” on page 324. for
details on how to clear RWWSB.

NRWW — No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 25-1. Read-While-Write Features

Which Section does the Z-pointer stgei?gz'r‘i:a“ s the CPU | Read-While-Write
Address During the Programming? iring Halted? Supported?
Programming?
RWW Section NRWW Section No Yes
NRWW Section None Yes No

AT 90 C /AN 123 500000

4250G-CAN-09/05

Figure 25-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

- - - - - - - - Z-pointer
Addresses NRWW
Z-pointer Section
Addresses RWW No Read-While-Write
Section (NRWW) Section
CPU is Halted
f During the Operation
Code Located in
NRWW Section

Can be Read During
the Operation

A mEl% 321

4250G-CAN-09/05

Figure 25-2. Memory Sections

Read-While-Write

No Read-While-Write

Read-While-Write

No Read-While-Write

Section

Section

Section

Section

Program Memory
BOOTSZ =11

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ =01’

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Note:

25.4 Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

322

AIMEL

0x0000

End RWW _
Start NRWW

End Application
Start Boot Loader
Flashend

0x0000

End RWW _
Start NRWW

End Application
Start Boot Loader

Flash end

The user can select:

Read-While-Write

No Read-While-Write

Read-While-Write

No Read-While-Write

Section

Section

Section

Section

Program Memory
BOOTSZ =10’

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ =00’

Application Flash Section

Boot Loader Flash Section

* To protect the entire Flash from a software update by the MCU.

0x0000

End RWW _
Start NRWW

End Application
Start Boot Loader

Flashend

0x0000

End RWW, End Application
Start NRWW, Start Boot Loader

Flash end

The parameters in the figure above are given in Table 25-6 on page 332.

* To protect only the Boot Loader Flash section from a software update by the MCU.

* To protect only the Application Flash section from a software update by the MCU.

AT90CAN128 mees———

4250G-CAN-09/05

* Allow software update in the entire Flash.

See Table 25-2 and Table 25-3 for further details. The Boot Lock bits can be set in software and
in Serial or Parallel Programming mode, but they can be cleared by a Chip Erase command
only. The general Write Lock (Lock Bit mode 2) does not control the programming of the Flash
memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 1) does not
control reading nor writing by LPM/SPM (Load Program Memory / Store Program Memory)
instructions, if it is attempted.

Table 25-2.
Lock Bit

Boot Lock Bit0 Protection Modes (Application Section)")

Mode

BLB02

BLBO1

Protection

1

1

1

No restrictions for SPM or LPM accessing the Application section.

2

1

0

SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in the
Boot Loader section, interrupts are disabled while executing from
the Application section.

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while executing
from the Application section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 25-3.

Lock Bit
Mode

Boot Lock Bit1 Protection Modes (Boot Loader Section)(")

BLB12 BLB11 Protection

No restrictions for SPM or LPM accessing the Boot Loader

1 1 1 .
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read from
the Boot Loader section. If Interrupt Vectors are placed in the
Application section, interrupts are disabled while executing from
the Boot Loader section.

LPM executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in the
Application section, interrupts are disabled while executing from
the Boot Loader section.

Note: 1. “1” means unprogrammed, “0” means programmed

25.5 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-

tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-

ATMEL

323
4250G-CAN-09/05

AIMEL

grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.
Table 25-4. Boot Reset Fuse(")
BOOTRST Reset Address
1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 25-6 on page 332)

Note: 1. “1” means unprogrammed, “0” means programmed

25.5.1 Store Program Memory Control and Status Register - SPMCSR
The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Boot Loader operations.

Bit 7 6 5 4 3 2 1 0
| sPmiE | RWWSB | - | RWWSRE | BLBSET | PGWRT | PGERS | SPMEN | SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCSR Register is cleared.

* Bit 6 - RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section
cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.

* Bit 5 - Res: Reserved Bit
This bit is a reserved bit in the AT90CAN128 and always read as zero.

* Bit 4 - RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost.

* Bit 3 - BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock bits, according to the data in RO. The data in R1 and the address in the Z-
pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the Lock
bit set, or if no SPM instruction is executed within four clock cycles.

324 AT90C AN 1 2 S e —

4250G-CAN-09/05

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR Reg-
ister, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the Fuse and Lock Bits from Software” on page 328 for
details.

e Bit 2 - PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and RO are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.

* Bit 1 - PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and RO are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.

* Bit 0 —- SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,
the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.

25.6 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-registers
ZL and ZH in the register file, and RAMPZ in the 1/0 space. The number of bits actually used is
implementation dependent. Note that the RAMPZ register is only implemented when the pro-
gram space is larger than 64K bytes.

Bit 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8
RAMPZ - - - - - - - RAMPZ0
ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8
ZL (R30) z7 Z6 z5 Z4 Z3 z2 Z1 Z0

7 6 5 4 3 2 1 0

Since the Flash is organized in pages (see Table 26-11 on page 338), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 25-3. Note that the page erase and page write operations are addressed
independently. Therefore it is of major importance that the Boot Loader software addresses the

A IIIEI% 325

4250G-CAN-09/05

AIMEL

same page in both the page erase and page write operation. Once a programming operation is
initiated, the address is latched and the Z-pointer can be used for other operations.

The (E)LPM instruction use the Z-pointer to store the address. Since this instruction addresses
the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.

Figure 25-3. Addressing the Flash During SPM(")

BIT 23 ZPCMSB ZPAGEMSB 1 0
| [0 | z-PoinTER
PCMSB PAGEMSB

PROGRAM COUNTER PCPAGE PCWORD
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE

PROGRAM MEMORY PAGE PCWORD[PAGEMSB:0]:
PAGE INSTRUCTION WORD 00

\ 01

\ 02

!

|
|
|
|
\
|
|
|
|
|
|

\ PAGEEND

— -

Note: 1. The different variables used in Figure 25-3 are listed in Table 25-8 on page 332.

25.7 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page
buffer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1: fill the buffer before a Page Erase

* Fill temporary page buffer
» Perform a Page Erase
» Perform a Page Write
Alternative 2: fill the buffer after Page Erase

» Perform a Page Erase
* Fill temporary page buffer
» Perform a Page Write

AT90CAN128 mees———

4250G-CAN-09/05

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the
same page. See “Simple Assembly Code Example for a Boot Loader” on page 330 for an
assembly code example.

25.71 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and RO is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

» Page Erase to the RWW section: The NRWW section can be read during the Page Erase.
» Page Erase to the NRWW section: The CPU is halted during the operation.

25.7.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

25.7.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and RO is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer will be ignored during
this operation.

» Page Write to the RWW section: The NRWW section can be read during the Page Write.
» Page Write to the NRWW section: The CPU is halted during the operation.

25.7.4 Using the SPM Interrupt
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in “Interrupts” on page 59.

25.7.5 Consideration While Updating BLS
Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to

A IIIEI% 327

4250G-CAN-09/05

25.7.6

25.7.7

25.7.8

25.7.9

328

AIMEL

change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS
as described in “Interrupts” on page 59, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on
page 330 for an example.

Setting the Boot Loader Lock Bits by SPM

To set the Boot Loader Lock bits, write the desired data to RO, write “X0001001” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The only accessible Lock bits
are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-
ware update by the MCU.

Bit 7 6 5 4 3 2 1 0
RO | 1 | 1 | BLB12 | BLB11 | BLB02 | BLBO1 | 1 | 1 |

See Table 25-2 and Table 25-3 for how the different settings of the Boot Loader bits affect the
Flash access.

If bits 5..2 in RO are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with 0x0001 (same as used for reading the Lock bits). For future compatibility
it is also recommended to set bits 7, 6, 1, and 0 in RO to “1” when writing the Lock bits. When
programming the Lock bits the entire Flash can be read during the operation.

EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR,
the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0
Rd (z=0x0001) | - | - | BLB12 | BLB11 | BLB02 | BLBo1 | LB2 | LB1 |

AT 90 C /AN 123 500000

4250G-CAN-09/05

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be
loaded in the destination register as shown below. Refer to Table 26-5 on page 335 for a
detailed description and mapping of the Fuse Low byte.

Bit 7 6 5 4 3 2 1 0
Rd (Z=0x0000) | FLB7 | FLB6 | FLB5 | FLB4 | FLB3 | FLB2 | FLB1 | FLBO |

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Fuse High byte (FHB) will be loaded in the destination register as shown below.
Refer to Table 26-4 on page 334 for detailed description and mapping of the Fuse High byte.

Bit 7 6 5 4 3 2 1 0
Rd (Z=0x0003) | FHB7 | FHB6 | FHB5 | FHB4 | FHB3 | FHB2 | FHB1 | FHBO |

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction
is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the
value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown below.
Refer to Table 26-3 on page 334 for detailed description and mapping of the Extended Fuse

byte.
Bit 7 6 5 4 3 2 1 0
Rd(z=0x0002) | - | - | - | - | EFB3 | EFB2 | EFB1 | EFB0 |

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

25.7.10 Preventing Flash Corruption

During periods of low V., the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low.

* First, a regular write sequence to the Flash requires a minimum voltage to operate correctly.

» Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage for
executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader
Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating
voltage matches the detection level. If not, an external low V. reset protection circuit
can be used. If a reset occurs while a write operation is in progress, the write operation
will be completed provided that the power supply voltage is sufficient.

A IIIEI% 329

4250G-CAN-09/05

AIMEL

3. Keep the AVR core in Power-down sleep mode during periods of low V. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

25.711 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 25-5 shows the typical pro-
gramming time for Flash accesses from the CPU.

Table 25-5. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and

write Lock bits by SPM) 3.7 ms 4.5ms

25.7.12 Simple Assembly Code Example for a Boot Loader
;- the routine wites one page of data from RAMto Fl ash
; the first data location in RAMis pointed to by the Y-pointer
; the first data location in Flash is pointed to by the Z-pointer
;- error handling is not included
;- the routine nust be placed inside the Boot space
; (at least the Do_spmsub routine). Only code inside NRMVsection can
; be read during Self-Programi ng (Page Erase and Page Wite).
;- registers used: r0, rl1, tenpl (r16), temp2 (rl17), |ooplo (r24),
; loophi (r25), spntsrval (r20)
storing and restoring of registers is not included in the routine
; register usage can be optinized at the expense of code size
;- it is assunmed that either the interrupt table is noved to the Boot
; loader section or that the interrupts are disabl ed.

. equ PACESI ZEB = PAGESI ZE*2 ; PAGESI ZEB i s page size in BYTES, not words
.org SMALLBOOTSTART

Wite_page:
; Page Erase
Idi spntsrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWVsection
Idi spnesrval, (1<<RWABRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAMto Fl ash page buffer
Idi 1ooplo, |ow PAGESI ZEB) ;init loop variable
Idi |oophi, high(PACGESIZEB) ;not required for PACGESI ZEB<=256

W | oop:
I d ro, Y+
I d rl, Y+

Idi spntsrval, (1<<SPMEN)

call Do_spm

adiw ZH: ZL, 2

sbi w | oophi : | oopl o, 2 ;use subi for PAGESI ZEB<=256
brne WI oop

; execute Page Wite
subi ZL, | ow PAGESI ZEB) ;restore pointer

330 AT90C AN 1 2 S —

sbci ZH, hi gh(PAGESI ZEB) ;not required for PAGESI ZEB<=256
Idi spntsrval, (1<<PGART) | (1<<SPMEN)
call Do_spm

; re-enable the RWV section
Idi spntsrval, (1<<RWABRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional

Idi 1ooplo, |ow PAGESI ZEB) ;init loop variable
I di |oophi, high(PAGESIZEB) ;not required for PAGESI ZEB<=256
subi YL, | ow PAGESI ZEB) ;restore pointer

sbci YH, hi gh(PAGESI ZEB)

Rdl oop:
Il pm r0, Z+
Id ri, Y+
cpse r0, r1
jmp Error
sbi w | oophi :looplo, 1 ;use subi for PAGESI ZEB<=256
brne Rdl oop

;return to RWVsection
; verify that RWNVsection is safe to read

Ret ur n:
in templ, SPMCSR
sbrs tenpl, RWA\SB ; If RWABB is set, the RWNVsection is not ready yet
ret

; re-enable the RWVsection
Idi spntsrval, (1<<RWABRE) | (1<<SPMEN)
call Do_spm

rinp Return
Do_spm

; check for previous SPM conpl ete
WAi t _spm

in templ, SPMCSR

sbrc tenpl, SPMEN

rinp Wait_spm

; input: spncsrval determnes SPM action

; disable interrupts if enabled, store status

in tenp2, SREG

cli

; check that no EEPROM write access is present
Wai t _ee:

shi ¢ EECR, EEVE

rinmp Wait_ee

; SPM tined sequence

out SPMCSR, spntsrval

spm

; restore SREG (to enable interrupts if originally enabl ed)

out SREG tenp2

ret

A IIIEI% 331

4250G-CAN-09/05

AIMEL

25.7.13 Boot Loader Parameters

In Table 25-6 through Table 25-8, the parameters used in the description of the Self-Program-

ming are given.

Table 25-6. Boot Size Configuration (Word Addresses)")
[—
N | N N o = 0] s S B 8B
(] (7] o T @ o0 o ® 2 o5 m @
= | = - o o n a0 S22 % ot ?
(@] (o] o © = = - e w = g Mmoo S B
o (@) [e] o o) o) Q [77] [+] w he]
m| o m <°' © O ®© <°' o =g
T8 o &’ 2
1 |1 | 512 words 4 0x0000 - OxFDFF OxFEOO - OXFFFF OxFDFF OxFEO0
1 | 0 | 1024 words 8 0x0000 - OxFBFF 0xFCO00 - OxFFFF OxFBFF 0xFCO00
0 | 1 | 2048 words 16 | 0x0000 - OxF7FF 0xF800 - OXFFFF OxF7FF 0xF800
0 | 0 | 4096 words 32 | 0x0000 - OXEFFF 0xFO000 - OXFFFF OXEFFF 0xF000
Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 25-2
Table 25-7. Read-While-Write Limit (Word Addresses)(")
Section Pages Address
Read-While-Write section (RWW) 480 0x0000 - OXEFFF
No Read-While-Write section (NRWW) 32 0xFO000 - OxFFFF

Note: 1. For details about these two section, see “NRWW — No Read-While-Write Section” on page
320 and “RWW — Read-While-Write Section” on page 320.
Table 25-8. Explanation of Different Variables Used in Figure 25-3 on page 326 and the Map-
ping to the Z-Pointer("
Variable Variable | Corresponding Description®
Name Value Z-value
Most significant bit in the program counter. (The program counter
PCMSB 15 is 16 bits PC[15:0])
Most significant bit which is used to address the words within one
PAGEMSB 6 page (128 words in a page requires 7 bits PC [6:0]).
Bit in Z-register that is mapped to PCMSB. Because Z0 is not
(3)
ZPCMSB 216 used, the ZPCMSB equals PCMSB + 1.
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not
ZPAGEMSB 27 used, the ZPAGEMSB equals PAGEMSB + 1.
PCPAGE PC[15:7] 216@)-77 Program.counter page address: Page select, for Page Erase and
Page Write.
. . Program counter word address: Word select, for filling temporary
PCWORD PCI6:0] 2121 buffer (must be zero during PAGE WRITE operation).
Notes: 1. See “Addressing the Flash During Self-Programming” on page 325 for details about the use of

Z-pointer during self-programming.
2. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.
3. The Z-register is only 16 bits wide. Bit 16 is located in RAMPZ register in I/O map.

AT 90 C /AN 123 500000

4250G-CAN-09/05

26. Memory Programming

26.1 Program and Data Memory Lock Bits
The AT90CAN128 provides six Lock bits which can be left unprogrammed (“1”) or can be pro-
grammed (“0”) to obtain the additional features listed in Table 26-2. The Lock bits can only be
erased to “1” with the Chip Erase command.

Table 26-1.

Lock Bit Byte("

Lock Bit Byte

Bit No

Description

Default Value

1 (unprogrammed)

1 (unprogrammed)

BLB12

Boot Lock bit

1 (unprogrammed)

BLB11

Boot Lock bit

1 (unprogrammed)

BLB02

Boot Lock bit

1 (unprogrammed)

BLBO1

N (W | > | N

Boot Lock bit

1 (unprogrammed)

LB2

Lock bit

1 (unprogrammed)

LB1

Lock bit

1 (unprogrammed)

Note: 1.

Table 26-2.

“1” means unprogrammed, “0” means programmed.

Lock Bit Protection Modes!"®

4250G-CAN-09/05

Memory Lock Bits

Protection Type

LB Mode

LB2

LB1

1

1

1

No memory lock features enabled.

Further programming of the Flash and EEPROM is disabled in Parallel and
Serial Programming mode. The Fuse bits are locked in both Serial and
Parallel Programming mode.")

Further programming and verification of the Flash and EEPROM is disabled
in Parallel and Serial Programming mode. The Boot Lock bits and Fuse bits
are locked in both Serial and Parallel Programming mode."

BLBO Mode

BLB02

BLB01

No restrictions for SPM (Store Program Memory) or LPM (Load Program
Memory) accessing the Application section.

SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM executing
from the Boot Loader section is not allowed to read from the Application
section. If Interrupt Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

LPM executing from the Boot Loader section is not allowed to read from the
Application section. If Interrupt Vectors are placed in the Boot Loader
section, interrupts are disabled while executing from the Application section.

BLB1 Mode

BLB12

BLB11

1

No restrictions for SPM or LPM accessing the Boot Loader section.

A IIIEI% 333

AIMEL

Table 26-2. Lock Bit Protection Modes!"® (Continued)

Memory Lock Bits Protection Type

2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and LPM executing
from the Application section is not allowed to read from the Boot Loader

3 0 0 section. If Interrupt Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.
LPM executing from the Application section is not allowed to read from the
4 0 1 Boot Loader section. If Interrupt Vectors are placed in the Application

section, interrupts are disabled while executing from the Boot Loader
section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed

26.2 Fuse Bits

The AT90CAN128 has three Fuse bytes. Table 26-3, Table 26-4 and Table 26-5 describe briefly
the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that the
fuses are read as logical zero, “0”, if they are programmed.

Table 26-3. Extended Fuse Byte

Fuse Extended Byte Bit No | Description Default Value

- 7 - 1

- 6 - 1

- 5 - 1

- 4 - 1

BODLEVEL2™ 3 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVEL1™" 2 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVELO™ 1 Brown-out Detector trigger level 1 (unprogrammed)
TAOSEL 0 (Reserved for factory tests) 1 (unprogrammed)

Note: 1. See Table 8-2 on page 53 for BODLEVEL Fuse decoding.

Table 26-4. Fuse High Byte

Fuse High Byte Bit No | Description Default Value
OCDEN® 7 Enable OCD 1 (unprogrammed, OCD disabled)
JTAGEN® 6 Enable JTAG 0 (programmed, JTAG enabled)

Enable Serial Program and

(1)
SPIEN 5 Data Downloading 0 (programmed, SPI prog. enabled)
WDTON® 4 Watchdog Timer always on 1 (unprogrammed)
EESAVE 3 EEPROM memory is preserved 1 (unprogrammed, EEPROM not preserved)

through the Chip Erase

334 AT90C AN 1 2 S e —

Table 26-4. Fuse High Byte (Continued)
Fuse High Byte Bit No | Description Default Value

Select Boot Size
(2)
BOOTSZ1 2 (see Table 25-6 for details) 0 (programmed)

Select Boot Size
@
BOOTSZ0 ! (see Table 25-6 for details) 0 (programmed)

Select Reset Vector
BOOTRST 0 (see Table 25-6 for details) 1 (unprogrammed)

Notes: 1. The SPIEN Fuse is not accessible in serial programming mode.
2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 25-6 on page 332
for details.
3. See “Watchdog Timer Control Register - WDTCR” on page 56 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits

and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to
be running in all sleep modes. This may increase the power consumption.

5. Ifthe JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This
to avoid static current at the TDO pin in the JTAG interface.

Table 26-5. Fuse Low Byte

Fuse Low Byte Bit No | Description Default Value
CKDIV8®) 7 Divide clock by 8 0 (programmed)
CKOUT® 6 Clock output 1 (unprogrammed)
SUT1 5 Select start-up time 1 (unprogrammed)"
SUTO 4 Select start-up time 0 (programmed)")
CKSEL3 3 Select Clock source 0 (programmed)®
CKSEL2 2 Select Clock source 0 (programmed)®
CKSEL1 1 Select Clock source 1 (unprogrammed)®
CKSELO 0 Select Clock source 0 (programmed)®

Notes: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See Table 6-8 on page 41 for details.

2. The default setting of CKSELS3..0 results in internal RC Oscillator @ 8 MHz. See Table 6-1 on
page 37 for details.

3. The CKOUT Fuse allow the system clock to be output on Port PC7. See “Clock Output Buffer”
on page 42 for details.

4. See “System Clock Prescaler” on page 43 for details.
The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

26.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

A IIIEI% 335

4250G-CAN-09/05

AIMEL

26.3 Signature Bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space.

Table 26-6. Signature Bytes

Address Value Signature Byte Description
0 Ox1E Indicates manufactured by Atmel
1 0x97 Indicates 128 KB Flash memory
2 0x81 Indicates AT90CAN128 device when address 1 contains 0x97

26.4 Calibration Byte
The AT90CAN128 has a byte calibration value for the internal RC Oscillator. This byte resides in
the high byte of address 0x000 in the signature address space. During reset, this byte is auto-
matically written into the OSCCAL Register to ensure correct frequency of the calibrated RC
Oscillator.

26.5 Parallel Programming Overview
This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the AT90CAN128. Pulses are assumed to be
at least 250 ns unless otherwise noted.

26.5.1 Signal Names
In this section, some pins of the AT90CAN128 are referenced by signal names describing their
functionality during parallel programming, see Figure 26-1 and Table 26-7. Pins not described in
the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 26-9.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 26-10.

Figure 26-1. Parallel Programming

+2.7 - +5.5V
RDY/BSY «— | PD1
VCC
OE — > PD2 +2.7 - +5.5V
WR —>»{ PD3 AVCC

BS1 —»{ PD4
XA0 ———>| PD5
XAT >| D6 PB7 - PBO |«——> DATA
PAGEL —»| PD7

+12V ——»| RESET
BS2 ——»| PAO

— > XTAL1

1B

33 AT90CAN128

4250G-CAN-09/05

26.5.2 Pin Mapping
Table 26-7. Pin Name Mapping
Prc?;?'::r:;rgel\nigde Pin Name | I/O | Function
RDY/BSY PD1 o 0: Dev?ce ?s busy programming,
1: Device is ready for new command.

OE PD2 | | Output Enable (Active low).

WR PD3 I | Write Pulse (Active low).

BS1 PD4 | Byte Select 1 (“0” selects low byte, “1” selects high byte).

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 | Program Memory and EEPROM data Page Load.
BS2 PAO | Byte Select 2 (“0” selects low byte, “1” selects 2'nd high byte).
DATA PB7-0 I/0 | Bi-directional Data bus (Output when OE is low).
26.5.3 Commands
Table 26-8. Pin Values Used to Enter Programming Mode
Pin Symbol Value
PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0
XAO0 Prog_enable[1] 0
BS1 Prog_enable[0] 0

4250G-CAN-09/05

Table 26-9. XA1 and XAO0 Coding
XA1 XA0 Action when XTAL1 is Pulsed
0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1).
0 1 Load Data (High or Low data byte for Flash determined by BS1).
1 0 Load Command
1 1 No Action, Idle

Table 26-10. Command Byte Bit Coding

Command Byte

Command Executed

1000 0000 Chip Erase
0100 0000 Write Fuse bits
0010 0000 Write Lock bits
0001 0000 Write Flash

ATMEL

337

AIMEL

Table 26-10. Command Byte Bit Coding (Continued)

Command Byte Command Executed
0001 0001 Write EEPROM
0000 1000 Read Signature bytes and Calibration byte
0000 0100 Read Fuse and Lock bits
0000 0010 Read Flash
0000 0011 Read EEPROM

26.5.4 Parameters

Table 26-11. No. of Words in a Page and No. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

64K words 128 words PCI[6:0] 512 PC[15:7] 15

Table 26-12. No. of Words in a Page and No. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

4K bytes 8 bytes EEA[2:0] 512 EEA[11:3] 11

26.6 Parallel Programming

26.6.1 Enter Programming Mode
The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between V. and GND.
2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 26-8 on page 337 to “0000” and wait at least
100 ns.

4. Apply 11.5-12.5V to RESET. Any activity on Prog_enable pins within 100 ns after
+12V has been applied to RESET, will cause the device to fail entering programming
mode.

5. Wait at least 50 s before sending a new command.

26.6.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

» The command needs only be loaded once when writing or reading multiple memory
locations.

« Skip writing the data value OxFF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase.

» Address high byte needs only be loaded before programming or reading a new 256 word
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes
reading.

338 AT90C AN 1 2 S —

4250G-CAN-09/05

26.6.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM(") memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not

changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Load Command “Chip Erase”

Set XA1, XAO0 to “10”. This enables command loading.
Set BS1 to “0”.
Set DATA to “1000 0000”. This is the command for Chip Erase.
Give XTAL1 a positive pulse. This loads the command.
Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
6. Wait until RDY/BSY goes high before loading a new command.
Note: 1. The EEPROM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

ok wbnh -

26.6.4 Programming the Flash

The Flash is organized in pages, see Table 26-11 on page 338. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-

grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XAO0 to “10”. This enables command loading.
2. SetBS1to “0".
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.
B. Load Address Low byte

1. Set XA1, XAO0 to “00”. This enables address loading.

2. SetBS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.
C. Load Data Low Byte

1. Set XA1, XAO0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - OxFF).

3. Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XAO0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the data byte.
E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 26-3 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

A IIIEI% 339

4250G-CAN-09/05

340

AIMEL

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 26-2 on page 340. Note that
if less than eight bits are required to address words in the page (pagesize < 256), the most
significant bit(s) in the address low byte are used to address the page when performing a
Page Write.

G. Load Address High byte

1. Set XA1, XAO0 to “00”. This enables address loading.
2. SetBS1 to “1”. This selects high address.
3. Set DATA = Address high byte (0x00 - OxFF).
4. Give XTAL1 a positive pulse. This loads the address high byte.
H. Program Page
1. Give W__Ra negative pulse. This starts programming of the entire page of data.
RDY/BSY goes low.
2. Wait until RDY/BSY goes high (See Figure 26-3 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XAO to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals
are reset.

Figure 26-2. Addressing the Flash Which is Organized in Pages'"

PCMSB PAGEMSB
PROGRAM COUNTER | PCPAGE | pcworp |
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE PCWORD[PAGEMSB:0]:
PAGE INSTRUCTION WORD 00

\ 01

\ 02

v

|
|
|
|
|
\
|
|
|
|
|

PAGEEND

—] b

Note: 1. PCPAGE and PCWORD are listed in Table 26-11 on page 338.

AT90CAN128 mees———

4250G-CAN-09/05

Figure 26-3. Programming the Flash Waveforms(")

F

' —~ Y
A B C D E B C D E G H
DATA :X 0x10 XADDR. LOWX DATALOW X DATA HIGH X XX XADDR. LOWX DATA LOW XDATA HIGH X XX XADDR HIGHX XX
XA1 _/—\
XAO / __/ \
BS1 S/ \
xav /N / /S \ /\
WR _/
RDY/BSY -/
RESET +12V
OE
PAGEL /_\ /_\

BS2

Note: 1. “XX”is don’t care. The letters refer to the programming description above.

26.6.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 26-12 on page 338. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to “Programming the Flash” on page 339 for details on Command, Address and
Data loading):

A: Load Command “0001 0001”.

G: Load Address High Byte (0x00 - OxFF).

B: Load Address Low Byte (0x00 - OxFF).

C: Load Data (0x00 - OxFF).

E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. SetBS1to “0".

2. Give WRa negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

SRS SIS

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 26-4
for signal waveforms).

A IIIEI% 341

4250G-CAN-09/05

AIMEL

Figure 26-4. Programming the EEPROM Waveforms

K

/_/H
A G B (o3 E B (o3 E L
DATA :X ox11__ XADDR. HIGH X ADDR. LowX " DATA X" xx X ADDR. LowX DATA ¥ XX
XA1 __/ \
XA0 / / \
BS1 / \
xan /N / / / ___/ _/\
WR __/
RDY/BSY /S
RESET +12V
OE
PAGEL /\ /\

BS2

26.6.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on
page 339 for details on Command and Address loading):
1. A: Load Command “0000 0010”.
2. G:Load Address High Byte (0x00 - OxFF).
3. B: Load Address Low Byte (0x00 - OxFF).
4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.
5. SetBS1 to “1”. The Flash word high byte can now be read at DATA.
6. Set OE to “1”.

26.6.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”
on page 339 for details on Command and Address loading):

A: Load Command “0000 0011”.

G: Load Address High Byte (0x00 - OxFF).

B: Load Address Low Byte (0x00 - OxFF).

Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.
Set OE to “1”.

ok wbd-=

26.6.8 Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”
on page 339 for details on Command and Data loading):
1. A:Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.

26.6.9 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming the
Flash” on page 339 for details on Command and Data loading):

342 AT90C AN 1 2 S e —

4250G-CAN-09/05

1. A: Load Command “0100 0000".

2. C:Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. SetBS1 to “0”. This selects low data byte.

26.6.10 Programming the Extended Fuse Bits
The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming the
Flash” on page 339 for details on Command and Data loading):
1. A:Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS1to “0” and BS2 to “1”. This selects extended data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. SetBS2 to “0”. This selects low data byte.

Figure 26-5. Programming the FUSES Waveforms

Write Fuse Low byte Write Fuse high byte Write Extended Fuse byte
A c K—H A c /—H A c /—H

oata _ K_ou0 Y oam X Xx X oo X oamn X X X oao Y oamn X *x

XA1 \

XA0

BS1

s2 /L

a0\ /AR /AR

R \/ \/ \/

RDY/BSY

RESET +12V

OE

PAGEL

26.6.11 Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on
page 339 for details on Command and Data loading):
1. A: Load Command “0010 0000".

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.

26.6.12 Reading the Fuse and Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash”
on page 339 for details on Command loading):

A IIIEI% 343

4250G-CAN-09/05

AIMEL

—_

A: Load Command “0000 0100”.

2. SetOE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can now
be read at DATA (“0” means programmed).

5. SetOE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at

DATA (“0” means programmed).

6. Set OE to “1”.
Figure 26-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

™

Fuse Low Byte

i

Extended Fuse Byte 1

BS2 DATA

/

Lock Bits

&

Fuse High Byte 1 BS1

BS2

26.6.13 Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on
page 339 for details on Command and Address loading):

A: Load Command “0000 1000".

B: Load Address Low Byte (0x00 - 0x02).

Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.

Set OE to “1”.

DN~

26.6.14 Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on
page 339 for details on Command and Address loading):

A: Load Command “0000 1000

B: Load Address Low Byte, 0x00.

Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

Set OE to “1”.

PoN =

26.7 SPI Serial Programming Overview

This section describes how to serial program and verify Flash Program memory, EEPROM Data
memory, Memory Lock bits, and Fuse bits in the AT90CAN128.

344 ATO0C AN 2 S

26.71 Signal Names

26.7.2 Pin Mapping

4250G-CAN-09/05

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-
put). After RESET is set low, the Programming Enable instruction needs to be executed first
before program/erase operations can be executed. NOTE, in Table 26-13 on page 345, the pin
mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal
SPI interface. Note that throughout the description about Serial downloading, MOSI and MISO
are used to describe the serial data in and serial data out respectively. For AT90CAN128 these
pins are mapped to PDI (PEO) and PDO (PE1).

Figure 26-7. Serial Programming and Verify(")

+2.7 - +5.5V
vce
POl PEO +2.7 - +5.5V
PDO «——| PE1 AVCC —?

SCK — > PB1

— > XTAL1

— > RESET

LB

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into OxFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for f,, < 12 MHz, 3 CPU clock cycles for f, > 12 MHz
High: > 2 CPU clock cycles for f, < 12 MHz, 3 CPU clock cycles for f,, > 12 MHz

Table 26-13. Pin Mapping Serial Programming

Symbol Pins 110 Description
MOSI (PDI) PEO | Serial Data in
MISO (PDO) PE1 O Serial Data out

SCK PB1 | Serial Clock

A IIIEI% 345

AIMEL

26.7.3 Parameters
The Flash parameters are given in Table 26-11 on page 338 and the EEPROM parameters in
Table 26-12 on page 338.

26.8 SPI Serial Programming

When writing serial data to the AT90CAN128, data is clocked on the rising edge of SCK. When
reading data from the AT90CAN128, data is clocked on the falling edge of SCK.

To program and verify the AT90CAN128 in the serial programming mode, the following
sequence is recommended (See four byte instruction formats in Table 26-15):

1. Power-up sequence:
Apply power between V- and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the
third byte of the Programming Enable instruction. Whether the echo is correct or not, all
four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give
RESET a positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at
a time by supplying the 7 LSB of the address and data together with the Load Program
Memory Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for a given address. The Program Memory
Page is stored by loading the Write Program Memory Page instruction with the 9 MSB
of the address. If polling is not used, the user must wait at least t,y5 F asy before issuing
the next page. (See Table 26-14.) Accessing the serial programming interface before
the Flash write operation completes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is
first automatically erased before new data is written. If polling is not used, the user must
wait at least ty,p geprom before issuing the next byte. (See Table 26-14.) In a chip
erased device, no OxFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the
content at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn V¢ power off.

26.8.1 Data Polling Flash
When a page is being programmed into the Flash, reading an address location within the page
being programmed will give the value OxFF. At the time the device is ready for a new page, the
programmed value will read correctly. This is used to determine when the next page can be writ-
ten. Note that the entire page is written simultaneously and any address within the page can be
used for polling. Data polling of the Flash will not work for the value OxFF, so when programming
this value, the user will have to wait for at least t,,; f agy before programming the next page. As

346 AT90C AN 1 2 S —

26.8.2

a chip-erased device contains OxFF in all locations, programming of addresses that are meant to
contain OxFF, can be skipped. See Table 26-14 for tyyp asy Value.

Data Polling EEPROM

When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value OxFF. At the time the device is ready for
a new byte, the programmed value will read correctly. This is used to determine when the next
byte can be written. This will not work for the value OxFF, but the user should have the following
in mind: As a chip-erased device contains OxFF in all locations, programming of addresses that
are meant to contain OxFF, can be skipped. This does not apply if the EEPROM is re-pro-
grammed without chip erasing the device. In this case, data polling cannot be used for the value
OxFF, and the user will have to wait at least t,5 geprom PefOre programming the next byte. See

Table 26-14 for tyyp geprom Value.

Table 26-14. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay
tWD_FUSE 45ms
two_FLASH 4.5 ms
two_eeprom 9.0 ms
twp_ErASE 9.0 ms

Figure 26-8. Serial Programming Waveforms

SERIAL DATA INPUT
(MOSI-PDI)

SERIAL DATA OUTPUT
(MISO-PDO)

LSB

/=YX X

XXX X\
XXX X\

SERIAL CLOCK INPUT

(SCK)

sl iy

Sample

Table 26-15. Serial Programming Instruction Set
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

bt

L N B R

Instruction Format("
Instruction Operation"
Byte 1 Byte 2 Byte 3 Byte4
E;‘;gbrlimm'”g 1010 1100 | 0101 0011 | xxxx xxxx | xxxx xxxx | Enable Serial Programming after RESET goes low.
Chip Erase 1010 1100 | 100x XXXX | XXXX XXXX | XXXX XXxX | Chip Erase EEPROM and Flash.
Read 0010 HO0O | aaaa aaaa | bbbb bbbb | 6000 6000 Read H (high or. low) data o from Program memory at
Program Memory word address a:b.

4250G-CAN-09/05

ATMEL

347

AIMEL

Table 26-15. Serial Programming Instruction Set (Continued)
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction Format("

Instruction Operation("
Byte 1 Byte 2@ Byte 3 Byte4
Write H (high or low) data i to Program Memory page
Load at word address b. Data low byte must be loaded
Program Memory 0100 HOOO | 000x xxxx | xbbb bbbb | iiii iiii . L py'e mu
Page before Data high byte is applied within the same
address.
Write
Program Memory 0100 1100 | aaaa aaaa | bxxx xxxx | xxxx xxxx | Write Program Memory Page at address a:b.
Page
Read .
EEPROM Memory 1010 0000 | 000x aaaa | bbbb bbbb | cooo oooo | Read data o from EEPROM memory at address a:b.
Write . . .
EEPROM Memory 1100 0000 | O0Ox aaaa | bbbb bbbb | iiii iiii | Write data i to EEPROM memory at address a:b.
Load Load data i to EEPROM memory page buffer. After
EEPROM Memory 1100 0001 | 0000 0000 | OO0 Obbb | diiii iiii . 'y pag '
data is loaded, program EEPROM page.
Page (page access)
Write
EEPROM Memory 1100 0010 | 000x aaaa | bbbb b000 | xxxx xxxx | Write EEPROM page at address a:b.
Page (page access)
. Read Lock bits. “0"=programmed, “1”=unprogrammed.
Read Lockbits 0101 1000 | OOOO OOOO | XXXX XXXX | XXO0 0000 See Table 26-1 on page 333 for details.
Write | Write Lock bits. Set bits = “0” to program Lock bits.
Lock bits 1010 1100 | 111x 000 | xxxx xxxx | 1141 1171 See Table 26-1 on page 333 for details.
Rgad 0011 0000 | 000x xxxx | xxxx Xxbb | oooo oooo | Read Signature Byte o at address b.
Signature Byte
Write | Oetbits =0 to program, “1” to unprogram.
Fuse Low bits 1010 1100 | 1810 0000 | xxxx x| 1111 11171 See Table 26-5 on page 335 for details.
Write | Setbits =“0” to program, “1” to unprogram.
Fuse High bits 1010 1100 | 1010 1000 | 000 xxxx | 1111 1111 | g0 70416 264 on page 334 for details.
Write | Setbits =“0” to program, “1” to unprogram.
Extended Fuse Bits 1010 1100 | 1610 0100 | 000 xxxx | xxxx 1111 See Table 26-3 on page 334 for details.
Read Read Fuse bits. “0”=programmed, “1”=unprogrammed.
Fuse Low bits 0101 00600 | 0000 BOAA | xxxx xxxx | 0000 0000 See Table 26-5 on page 335 for details.
Read Read Fuse High bits.
Fuse Hiah bits 0101 1000 | 0000 1000 | xxxx XXXX | 0000 0000 | “0”"=programmed, “1”=unprogrammed.
9 See Table 26-4 on page 334 for details.
Read Read Extended Fuse bits.
Extended Fuse Bits 0101 0000 | OO 1000 | xxxXX XXXX | 0000 0000 | “0”"=programmed, “1”"=unprogrammed.
See Table 26-3 on page 334 for details.
Read . .
S 0011 1000 | 000X xxxx | 00O 0000 | oooo o0ooo | Read Calibration Byte
Calibration Byte
If o =“1”, a programming operation is still busy. Wait
Poll RDY/BSY 1111 0000 | OO 0000 | xxxx Xxxxx | xxxx xxxo | until this bit returns to “0” before applying another
command.
Notes: 1. All bytes are represented by binary digits (Ob...).

2. Address bits exceeding PCMSB and EEAMSB (see Table 26-11 on page 338 and Table 26-12 on page 338) are don’t care.

348

AT90CAN128 mees———

4250G-CAN-09/05

26.9 JTAG Programming Overview

Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,
TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is
default shipped with the fuse programmed. In addition, the JTD bit in MCUCR must be cleared.
Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a
means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-
tem Programming via the JTAG interface. Note that this technique can not be used when using
the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-
icated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maximum fre-
quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input
into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

26.9.1 Programming Specific JTAG Instructions

4250G-CAN-09/05

The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions
useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which data register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be
used as an idle state between JTAG sequences. The state machine sequence for changing the
instruction word is shown in Figure 26-9.

A IIIEI% 349

AIMEL

Figure 26-9. State Machine Sequence for Changing the Instruction Word

1 Test-Logic-ReSet il -~ - -~ -
L0
0 G Run-Test/ldle | ~ Select-DR Scan |- SelectIR Scan |-
1o 0
1 ! 1
Capture-DR Capture-IR
1o 0
----=-p Shift-DR N0 Shift-IR Do
1 1
o L1) 1
Exit1-DR LRREEa L Exit1-IR
0 0
777777777777777777 y
Pause-DR 0 Pause-IR D 0
1 1
,,,,,,,,,,,,,,,,,, v
—————— 0. Exit2-DR 0 Exit2-IR
1 1
Update-DR i----' Update-IR |4
U o 1 0

26.9.1.1 AVR_RESET (0xC)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking
the device out from the Reset mode. The TAP controller is not reset by this instruction. The one
bit Reset Register is selected as data register. Note that the reset will be active as long as there
is a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:
» Shift-DR: The Reset Register is shifted by the TCK input.

26.9.1.2 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-

bit Programming Enable Register is selected as data register. The active states are the
following:

+ Shift-DR: The programming enable signature is shifted into the data register.

» Update-DR: The programming enable signature is compared to the correct value, and
Programming mode is entered if the signature is valid.

350 AAT90C AN 1 2 S —

4250G-CAN-09/05

26.9.1.3 PROG_COMMANDS (0x5)
The AVR specific public JTAG instruction for entering programming commands via the JTAG
port. The 15-bit Programming Command Register is selected as data register. The active states
are the following:

» Capture-DR: The result of the previous command is loaded into the data register.

+ Shift-DR: The data register is shifted by the TCK input, shifting out the result of the previous
command and shifting in the new command.

» Update-DR: The programming command is applied to the Flash inputs

* Run-Test/Idle: One clock cycle is generated, executing the applied command (not always
required, see Table 26-16 below).

26.9.1.4 PROG_PAGELOAD (0x6)
The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the data register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

» Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

» Update-DR: The content of the Flash Data Byte Register is copied into a temporary register.
A write sequence is initiated that within 11 TCK cycles loads the content of the temporary
register into the Flash page buffer. The AVR automatically alternates between writing the low
and the high byte for each new Update-DR state, starting with the low byte for the first
Update-DR encountered after entering the PROG_PAGELOAD command. The Program
Counter is pre-incremented before writing the low byte, except for the first written byte. This
ensures that the first data is written to the address set up by PROG_COMMANDS, and
loading the last location in the page buffer does not make the program counter increment into
the next page.

26.9.1.5 PROG_PAGEREAD (0x7)
The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the data register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

» Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte
Register. The AVR automatically alternates between reading the low and the high byte for
each new Capture-DR state, starting with the low byte for the first Capture-DR encountered
after entering the PROG_PAGEREAD command. The Program Counter is post-incremented
after reading each high byte, including the first read byte. This ensures that the first data is
captured from the first address set up by PROG_COMMANDS, and reading the last location
in the page makes the program counter increment into the next page.

 Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

26.9.2 Data Registers
The data registers are selected by the JTAG instruction registers described in section “Program-
ming Specific JTAG Instructions” on page 349. The data registers relevant for programming
operations are:
* Reset Register
» Programming Enable Register
* Programming Command Register

A IIIEI% 351

4250G-CAN-09/05

26.9.2.1

26.9.2.2

26.9.2.3

352

AIMEL

* Flash Data Byte Register

Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset
as long as there is a high value present in the Reset Register. Depending on the Fuse settings
for the clock options, the part will remain reset for a Reset Time-out period (refer to “Clock
Sources” on page 37) after releasing the Reset Register. The output from this data register is not
latched, so the reset will take place immediately, as shown in Figure 24-2 on page 300.

Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-
tents of the register is equal to the programming enable signature, programming via the JTAG
port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when
leaving Programming mode.

Figure 26-10. Programming Enable Register

TDI

I

0xA370

—_— D Q—» Programming Enable

r

ClockDR & PROG_ENABLE

> -4 >» 0

TDO

Programming Command Register

The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The
JTAG Programming Instruction Set is shown in Table 26-16. The state sequence when shifting
in the programming commands is illustrated in Figure 26-12.

AT 90 C /AN 123 500000

4250G-CAN-09/05

Figure 26-11. Programming Command Register
TDI

Table 26-16. JTAG Programming Instruction

I

S
T
R
o |&—Pp
B
E
S
Flash
EEPROM
A Fuses
o Lock Bits
R
E
S e
. [
/
D
A
T
A

TDO

Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence!"? TDO SequenceM®? Notes
0100011_10000000 XXXXXXX_XXXXXXXX
1a. Chio Erase 0110001_10000000 XXXXXXX_XXXXXXXX
’ P 0110011_10000000 XXXXXXX_XXXXXXXX
0110011_10000000 XXXXXXX_XXXXXXXX
1b. Poll for Chip Erase Complete 0110011_10000000 XXXXXOX_ XXXXXXXX “)
2a. Enter Flash Write 0100011_00010000 XXXXXXX_XXXXXXXX
2b. Load Address High Byte 0000111_aaaaaaaa XXXXXXX_XXXXXXXX an

2c

. Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

2d

. Load Data Low Byte

XXXXXXX_XXXXXXXX

2e

. Load Data High Byte

XXXXXXX_XXXXXXXX

0110111_00000000

XXXXXXX_XXXXXXXX

2f. Latch Data 1110111_00000000 XXXXXXX_XXXXXXXX ®)
0110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
0110101_00000000 XXXXXXX_XXXXXXXX

2g. Write Flash P - - ®)
g. Write Flash Page 0110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX

2h. Poll for Page Write Complete 0110111_00000000 XXXXXOX_XXXXXXXX @)
3a. Enter Flash Read 0100011_00000010 XXXXXXX_XXXXXXXX

3b. Load Address High Byte 0000111_aaaaaaaa XXXXXXX_XXXXXXXX an

4250G-CAN-09/05

ATMEL

353

AIMEL

Table 26-16. JTAG Programming Instruction (Continued)
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence!"? TDO Sequence("® Notes

3c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX
0110010_00000000 XXXXXXX_XXXXXXXX

3d. Read Data Low and High Byte 0110110_00000000 XXXXXXX_00000000 Low byte
0110111_00000000 XXXXXXX_00000000 High byte

4a. Enter EEPROM Write 0100011_00010001 XXXXXXX_XXXXXXXX

4b. Load Address High Byte 0000111_aaaaaaaa XXXXXXX_ XXXXXXXX an

4c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX

4d. Load Data Byte 0010011 _diidiiiii XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX

4e. Latch Data 1110111_00000000 XXXXXXX_XXXXXXXX ®)
0110111_00000000 XXXXXXX_XXXXXXXX
0110011_00000000 XXXXXXX_XXXXXXXX

4%, Write EEPROM Page 0110001_00000000 XXXXXXX_XXXXXXXX @)

0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

49.

Poll for Page Write Complete

0110011_00000000

XXXXXOX_XXXXXXXX

4)

5a.

Enter EEPROM Read

0100011_00000011

XXXXXXX_XXXXXXXX

5b.

Load Address High Byte

0000111_aaaaaaaa

XXXXXXX_XXXXXXXX

(1n

5c.

Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

5d.

Read Data Byte

0110011_bbbbbbbb
0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_00000000

6a.

Enter Fuse Write

0100011_01000000

XXXXXXX_XXXXXXXX

6b.

Load Data Low Byte®

XXXXXXX_XXXXXXXX

®)

6c¢.

Write Fuse Extended Byte

0111011_00000000
0111001_00000000
0111011_00000000
0111011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

(©)

6d.

Poll for Fuse Write Complete

0110111_00000000

XXXXXOX_XXXXXXXX

6e.

Load Data Low Byte®

XXXXXXX_XXXXXXXX

®)

6f.

Write Fuse High Byte

0110111_00000000
0110101_00000000
0110111_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

(©)

69

. Poll for Fuse Write Complete

0110111_00000000

XXXXXOX_XXXXXXXX

6h

. Load Data Low Byte®

XXXXXXX_XXXXXXXX

®)

354

AT 90 C /AN 123 500000

4250G-CAN-09/05

Table 26-16. JTAG Programming Instruction (Continued)
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction

6i. Write Fuse Low Byte

TDI Sequence!"?

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

TDO Sequence("®

Notes

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

(©)

6j. Poll for Fuse Write Complete

0110011_00000000

XXXXXOX_ XXXXXXXX

7a. Enter Lock Bit Write

0100011_00100000

XXXXXXX_XXXXXXXX

7b. Load Data Byte("!

XXXXXXX_XXXXXXXX

(6)

7c. Write Lock Bits

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

(©)

7d. Poll for Lock Bit Write complete

0110011_00000000

XXXXXOX_ XXXXXXXX

4)

8a. Enter Fuse/Lock Bit Read

0100011_00000100

XXXXXXX_XXXXXXXX

8b. Read Extended Fuse Byte®

0111010_00000000
0111011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8c. Read Fuse High Byte®

0111110_00000000
0111111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8d. Read Fuse Low Byte('%)

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8e. Read Lock Bits("

0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XX000000

)

8f. Read Fuses and Lock Bits

0111010_00000000
0111110_00000000
0110010_00000000
0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX

XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000

()

Fuse Ext. byte
Fuse High byte
Fuse Low byte
Lock bits

9a. Enter Signature Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

9b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

9c. Read Signature Byte

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

10a. Enter Calibration Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

10b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

10c. Read Calibration Byte

0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

11a. Load No Operation Command

0100011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

Notes: 1. Address bits exceeding PCMSB and EEAMSB (Table 26-11 and Table 26-12) are don’t care.
2. Al TDI and TDO sequences are represented by binary digits (Ob...).

4250G-CAN-09/05

ATMEL

355

AIMEL

3. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

Repeat until o = “1”.

Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.

Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
“0” = programmed, “1” = unprogrammed.

The bit mapping for Fuses Extended byte is listed in Table 26-3 on page 334.

9. The bit mapping for Fuses High byte is listed in Table 26-4 on page 334.

10. The bit mapping for Fuses Low byte is listed in Table 26-5 on page 335.

11. The bit mapping for Lock bits byte is listed in Table 26-1 on page 333.

© N oA

Figure 26-12. State Machine Sequence for Changing/Reading the Data Word

1 TeSt-LOGIC-RESE 1l - - - -~ oo oo
0
0 1 1 - Pl
Run-Test/Idle ~ Select-DR Scan |---------------1 ' Select-IR Scan roeeo--
0 0
1 1:
— Capture-DR ---4 Capture-IR
0 0
»| shiftDR D 0 —p ShiftlR i)0
1 : 1
v . A
. 1 H | ' . 1
—p Exit1-DR ' B 4 Exitl-IR
0 ! 0
Pause-DR :) 0 Pause-IR 0
1 ; 1
0 Exit2-DR L0 iR
1 1
Update-DR ! Update-lR iq---
J 1 0 T

26.9.2.4 Flash Data Byte Register
The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer
before executing Page Write, or to read out/verify the content of the Flash. A state machine sets
up the control signals to the Flash and senses the strobe signals from the Flash, thus only the
data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-
ister. During page load, the Update-DR state copies the content of the scan chain over to the

356 ATO0C AN 2 S

temporary register and initiates a write sequence that within 11 TCK cycles loads the content of
the temporary register into the Flash page buffer. The AVR automatically alternates between
writing the low and the high byte for each new Update-DR state, starting with the low byte for the
first Update-DR encountered after entering the PROG_PAGELOAD command. The Program
Counter is pre-incremented before writing the low byte, except for the first written byte. This
ensures that the first data is written to the address set up by PROG_COMMANDS, and loading
the last location in the page buffer does not make the Program Counter increment into the next
page.

During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte
Register during the Capture-DR state. The AVR automatically alternates between reading the
low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-
ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is
post-incremented after reading each high byte, including the first read byte. This ensures that
the first data is captured from the first address set up by PROG_COMMANDS, and reading the
last location in the page makes the program counter increment into the next page.

Figure 26-13. Flash Data Byte Register

_ STROBES
State
Machine
ADDRESS
TDI ”
Flash
EEPROM
Fuses
Lock Bits

7 Y
\ 4

> -4 >» 0

:

TDO

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal
operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate
through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-
ter with sufficient number of clock pulses to complete its operation transparently for the user.
However, if too few bits are shifted between each Update-DR state during page load, the TAP
controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at
least 11 TCK cycles between each Update-DR state.

26.9.3 Programming Algorithm
All references below of type “1a”, “1b”, and so on, refer to Table 26-16 on page 353.

A IIIEI% 357

4250G-CAN-09/05

AIMEL

26.9.3.1 Entering Programming Mode
1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enterinstruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

26.9.3.2 Leaving Programming Mode
1. Enter JTAG instruction PROG_COMMANDS.
2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

26.9.3.3 Performing Chip Erase
1. Enter JTAG instruction PROG_COMMANDS.
2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tyy, gy ce
(refer to Table 27-15 on page 378).

26.9.3.4 Programming the Flash

1. Enter JTAG instruction PROG_COMMANDS.
Enable Flash write using programming instruction 2a.
Load address High byte using programming instruction 2b.
Load address Low byte using programming instruction 2c.
Load data using programming instructions 2d, 2e and 2f.
Repeat steps 4 and 5 for all instruction words in the page.
Write the page using programming instruction 2g.

Poll for Flash write complete using programming instruction 2h, or wait for t,y, gy (refer
to).

9. Repeat steps 3 to 7 until all data have been programmed.
A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to
Table 26-11 on page 338) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, start-
ing with the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte

Register into the Flash page location and to auto-increment the Program Counter
before each new word.

6. Enter JTAG instruction PROG_COMMANDS.
7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for t,y gy (refer
to Table 27-15 on page 378).

9. Repeat steps 3 to 8 until all data have been programmed.

O N R DN

358 AATO0C AN 1 2 S —

26.9.3.5 Reading the Flash

Enter JTAG instruction PROG_COMMANDS.

Enable Flash read using programming instruction 3a.
Load address using programming instructions 3b and 3c.
Read data using programming instruction 3d.

Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

6.
7.

Enter JTAG instruction PROG_COMMANDS.
Enable Flash read using programming instruction 3a.

Load the page address using programming instructions 3b and 3c. PCWORD (refer to
Table 26-11 on page 338) is used to address within one page and must be written as 0.

Enter JTAG instruction PROG_PAGEREAD.

Read the entire page (or Flash) by shifting out all instruction words in the page (or
Flash), starting with the LSB of the first instruction in the page (Flash) and ending with
the MSB of the last instruction in the page (Flash). The Capture-DR state both captures
the data from the Flash, and also auto-increments the program counter after each word
is read. Note that Capture-DR comes before the shift-DR state. Hence, the first byte
which is shifted out contains valid data.

Enter JTAG instruction PROG_COMMANDS.
Repeat steps 3 to 6 until all data have been read.

26.9.3.6 Programming the EEPROM

1.

© NGO RA LN

9.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM write using programming instruction 4a.
Load address High byte using programming instruction 4b.
Load address Low byte using programming instruction 4c.
Load data using programming instructions 4d and 4e.
Repeat steps 4 and 5 for all data bytes in the page.

Write the data using programming instruction 4f.

Poll for EEPROM write complete using programming instruction 4g, or wait for ty,, ry
(refer to Table 27-15 on page 378).

Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

26.9.3.7 Reading the EEPROM

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM read using programming instruction 5a.
Load address using programming instructions 5b and 5c.
Read data using programming instruction 5d.

Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

26.9.3.8 Programming the Fuses

1.
2.

4250G-CAN-09/05

Enter JTAG instruction PROG_COMMANDS.
Enable Fuse write using programming instruction 6a.

A IIIEI% 359

AIMEL

3. Load data high byte using programming instructions 6b. A bit value of “0” will program
the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for t,,, g (refer to
Table 27-15 on page 378).

6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a
“1” will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for t,,, g (refer to
Table 27-15 on page 378).

26.9.3.9 Programming the Lock Bits
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for t, gy
(refer to Table 27-15 on page 378).

26.9.3.10 Reading the Fuses and Lock Bits
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Fuse/Lock bit read using programming instruction 8a.

3. Toread all Fuses and Lock bits, use programming instruction 8f.
To only read Extended Fuse byte, use programming instruction 8b.
To only read Fuse High byte, use programming instruction 8c.
To only read Fuse Low byte, use programming instruction 8d.
To only read Lock bits, use programming instruction 8e.

26.9.3.11 Reading the Signature Bytes
1. Enter JTAG instruction PROG_COMMANDS.
Enable Signature byte read using programming instruction 9a.
Load address 0x00 using programming instruction 9b.
Read first signature byte using programming instruction 9c.

Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

o kRN

26.9.3.12 Reading the Calibration Byte
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Calibration byte read using programming instruction 10a.
3. Load address 0x00 using programming instruction 10b.
4. Read the calibration byte using programming instruction 10c.

360 AT90C AN 2 S —

27. Electrical Characteristics

271

Absolute Maximum Ratings*

Industrial Operating Temperature

Storage Temperature

DC Current per I/0 Pin
DC Current V¢ and GND Pins

Voltage on any Pin except RESET
with respect to Ground

Voltage on RESET with respect to Ground....— 0.5V to +13.0V

Voltage on V¢ with respect to Ground

.......... —40°C to +85°C

........ —65°C to +150°C

..... ~ 0.5V to V0.5V

............. - 0.5V to 6.0V

*NOTICE:

Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect

device reliability.

27.2 DC Characteristics

T, =-40°C to +85°C, V¢ = 2.7V to 5.5V (unless otherwise noted)

4250G-CAN-09/05

ATMEL

Symbol | Parameter Condition Min. Typ. Max. Units
Except XTAL1 and)
Vi Input Low Voltage RESET pins -05 0.2 Vce \
XTAL1 pin - External)
T Input Low Voltage Clock Selected -0.5 0.1 Vee \Y,
Vo Input Low Voltage RESET pin -0.5 0.2 Vec v
. Except XTAL1 and @)
V4 Input High Voltage RESET pins 0.6 Vcc Vcec + 0.5 \%
. XTAL1 pin - External @)
A Input High Voltage Clock Selected 0.7 Vce Vee + 0.5 \Y
P Input High Voltage RESET pin 0.85Vcc @ Vce + 0.5 Y
v Output Low Voltage © loL =20 mA, Vg = 5V 07 v
oL (Ports A,B,C,D,E,F, G) | Ig =10 mA, Ve =3V 0.5
v Output High Voltage ¥ lon = =20 mA, Ve =5V 4.2 v
OH (Ports A,B,C,D,E,F,G) | Igy=—10mA, Vo =3V 24

| Input Leakage Ve = 5.5V, pin low 10 A
L Current I/0 Pin (absolute value) : M

| Input Leakage Ve = 5.5V, pin high 10 A
H Current I/O Pin (absolute value) : M
Rrst Reset Pull-up Resistor 30 100 kQ
Rou I/0 Pin Pull-up Resistor 20 50 kQ

361

AIMEL

Tp =-40°C to +85°C, V¢ = 2.7V to 5.5V (unless otherwise noted) (Continued)

Symbol | Parameter Condition Min. Typ. Max. Units
8 MHz, V¢ =5V 20 mA
Power Supply Current 16 MHz, Vg = 5V 37 mA
Active Mode
(external clock) 4 MHz, Vg = 3V 5.5 mA
8 MHz, Ve =3V 10.5 mA
8 MHz, Ve =5V 12 mA
Power Supply Current 16 MHz, V¢ = 5V 23 mA
lec Idle Mode
(external clock) 4 MHz, V¢ = 3V 3 mA
8 MHz, V¢ = 3V 7 mA
WDT enabled, V¢ = 5V 40 ® A
Power Supply Current WDT disabled, V¢ = 5V 18 © A
Power-down Mode WDT enabled, V¢ = 3V 25 ©) LA
WDT disabled, V¢ = 3V 10 ® HA
Analog Comparator Vee =5V
Vacio Input Offset Voltage Vi, = Vo2 10 8.0 20 mV
Analog Comparator Ve =5V B
acLk Input Leakage Current Vi, = Vee/2 S0 50 nA
Analog Comparator Voo =2.7V 170 ns
tacip Propagation Delay
Common Mode Vce/2 Vee = 9.0V 180 ns
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at V¢ = 5V, 10 mA at V¢ = 3V) under steady state
conditions (non-transient), the following must be observed:
TQFP and QFN Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, G2, C3 - C7 should not exceed 300 mA.
3] The sum of all IOL, for ports CO - C2, GO - G1, DO - D7, XTAL2 should not exceed 150 mA.
4] The sum of all IOL, for ports BO - B7, G3 - G4, EO - E7 should not exceed 150 mA.
5] The sum of all IOL, for ports FO - F7, should not exceed 200 mA.
If 15, exceeds the test condition, V, may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.
4. Although each I/O port can source more than the test conditions (-20 mA at V¢ = 5V, -10 mA at V¢ = 3V) under steady
state conditions (non-transient), the following must be observed:
TQFP and QFN Package:
1] The sum of all Iy, for all ports, should not exceed -400 mA.
2] The sum of all 15y, for ports AO - A7, G2, C3 - C7 should not exceed -300 mA.
3] The sum of all Iy, for ports CO - C2, GO - G1, DO - D7, XTALZ2 should not exceed 1-50 mA.
4] The sum of all I, for ports BO - B7, G3 - G4, EO - E7 should not exceed -150 mA.
5] The sum of all Iy, for ports FO - F7, should not exceed -200 mA.
If 1o exceeds the test condition, Vy; may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.
5. See errata “Power supply current in Power-down mode” of “Rev A & B” on page 414
362 ATI0CANT2E

4250G-CAN-09/05

27.3 External Clock Drive Characteristics

Figure 27-1.

External Clock Drive Waveforms

N terex
tercn — N *— toneL
I teiex >
< tercL >

4250G-CAN-09/05

ATMEL

Table 27-1. External Clock Drive
Ve =2.7-5.5V Vec =4.5-5.5V
Symbol Parameter Units
Min. Max. Min. Max.
MeLeL Oscillator Frequency 0 8 0 16 MHz
toLeL Clock Period 125 62.5 ns
tohHex High Time 50 25 ns
toLex Low Time 50 25 ns
teLcH Rise Time 1.6 0.5 us
teheL Fall Time 1.6 0.5 us
Atoror t((:)htar\]r;g:egr(\tpenod from one clock cycle 5 5 o
363

AIMEL

27.4 Maximum Speed vs. V¢

Maximum frequency is depending on V.. As shown in Figure 27-2., the Maximum Frequency
vs. V¢ curve is linear between 1.8V < Vi < 4.5V. To calculate the maximum frequency at a
given voltage in this interval, use this equation:

Frequency = ae (V-Vx)+Fy

To calculate required voltage for a given frequency, use this equation:
Voltage = be (F-Fy)+ Vx

Table 27-2. Constants used to calculate maximum speed vs. V¢

Voltage and Frequency range a b Vx Fy
2.7 <VCC < 4.5 0or 8 < Frequency < 16 8/1.8 1.8/8 2.7 8

At 3 Volt, this gives: Frequency = % ¢ (3-27)+8 =9.33

Thus, when V¢ = 3V, maximum frequency will be 9.33 MHz.

2.7
2.7V.

At 8 MHz this gives: Voltage = 1—6'?0(8—8)+2.7

Thus, a maximum frequency of 8 MHz requires V¢

Figure 27-2. Maximum Frequency vs. V;, AT90CAN128

A Frequency
16 MHz _|

8 MHz _]

Safe Operating Area

I I » \oltage
2.7V 4.5V 5.5V

364 AT90C AN 2 S o —

27.5 Two-wire Serial Interface Characteristics

Table 27-3 describes the requirements for devices connected to the Two-wire Serial Bus. The
AT90CAN128 Two-wire Serial Interface meets or exceeds these requirements under the noted
conditions.

Timing symbols refer to Figure 27-3.

Table 27-3. Two-wire Serial Bus Requirements

Symbol | Parameter Condition Min Max Units
VIL Input Low-voltage -0.5 0.3 Vee \Y,
VIH Input High-voltage 0.7 Vcc Vee + 0.5 \Y
Viys' Hysteresis of Schmitt Trigger Inputs 0.05 Vcc @ - \Y;
vo'? Output Low-voltage 3 mA sink current 0 0.4 %
Y Rise Time for both SDA and SCL 20 ?'3)?2')10*) 300 ns
o Output Fall Time from V,pymin t0 Vi max 10 pF < C, < 400 pF ©® 20 73)?2')10*) 250 ns
spl Spikes Suppressed by Input Filter 0 50 @ ns
l; Input Current each 1/0 Pin 0.1 Ve <V;<0.9Ve -10 10 MA
ch Capacitance for each I/0 Pin - 10 pF
fseL SCL Clock Frequency fox @ > max(16fgg, , 250kHz) ©) 0 400 kHz
fso < 100 kHz Vee—0,4V 1000ns Q
3mA c,
Rp Value of Pull-up resistor
fscL > 100 kHz Vee—0.4V 300ns Q
3mA c,
fgcL <100 kHz 4.0 - bs
thip.sTA Hold Time (repeated) START Condition
' fsoL > 100 kHz 0.6 - us
fscL < 100 kHz © 4.7 - Hs
t ow Low Period of the SCL Clock
fscL > 100 kHz 1.3 - s
fsoL < 100 kHz 4.0 - us
thicH High period of the SCL clock
fsoL > 100 kHz 0.6 - us
‘ Set-up time for a repeated START fscL < 100 kHz 4.7 - Hs
SUSTA | condition fooL > 100 kHz 06 - us
fsoL < 100 kHz 0 3.45 us
thp-DAT Data hold time
’ fsoL > 100 kHz 0 0.9 us
fsoL < 100 kHz 250 - ns
tsu.par Data setup time
fsoL > 100 kHz 100 - ns
fgcL <100 kHz 4.0 - bs
tsu-sto Setup time for STOP condition
' fsoL > 100 kHz 0.6 - us
Bus free time between a STOP and
teur START condition fso < 100 kHz 4.7 - us

Notes: 1. In AT90CAN128, this parameter is characterized and not 100% tested.

A IIIEI% 365

4250G-CAN-09/05

AIMEL

Required only for fgc, > 100 kHz.
C,, = capacitance of one bus line in pF.
fok = CPU clock frequency

ok owbd

This requirement applies to all AT9OCAN128 Two-wire Serial Interface operation. Other devices connected to the Two-wire
Serial Bus need only obey the general fg, requirement.

6. The actual low period generated by the AT90CAN128 Two-wire Serial Interface is (1/f5¢ - 2/fck), thus fox must be greater
than 6 MHz for the low time requirement to be strictly met at fg, = 100 kHz.

7. The actual low period generated by the ATO90CAN128 Two-wire Serial Interface is (1/fg¢, - 2/fc), thus the low time require-
ment will not be strictly met for 5, > 308 kHz when fg = 8 MHz. Still, AT9OCAN128 devices connected to the bus may
communicate at full speed (400 kHz) with other AT90OCAN 128 devices, as well as any other device with a proper t, 5,y accep-
tance margin.

Figure 27-3. Two-wire Serial Bus Timing

—, o e—tof (tmi, — e b
\
sc.——— | | v
tsU;STA |esje— | tHp:sTA HD;DAT 5|« | tsu.paT o
' tsu;sto
SPA——m——1| | T\~~~ Y
| taur

27.6 SPI Timing Characteristics
See Figure 27-4 and Figure 27-5 for details.

Table 27-4. SPI Timing Parameters

Description Mode Min. Typ. Max.
1 SCK period Master See Table 17-4
2 SCK high/low Master 50% duty cycle
3 Rise/Fall time Master 3.6
4 Setup Master 10
5 Hold Master 10
6 Out to SCK Master 0.5 « tge ns
7 SCK to out Master 10
8 SCK to out high Master 10
9 SS low to out Slave 15
10 SCK period Slave 4oty
11 SCK high/low (") Slave 2oty
12 Rise/Fall time Slave 1.6 us

366 AT90C AN 1 2 S —

Table 27-4. SPI Timing Parameters (Continued)

Description Mode Min. Typ. Max.
13 Setup Slave 10
14 Hold Slave tek
15 SCKto out Slave 15
— ns
16 SCK to SS high Slave 20
17 SS high to tri-state Slave 10
18 SS low to SCK Slave 2ty
Note: In SPI Programming mode the minimum SCK high/low period is:
- 2 tg g for fok <12 MHz
- 3 tg o for fok >12 MHz
Figure 27-4. SPI Interface Timing Requirements (Master Mode)
ss
SCK £ ,\
(CPOL = 0) Y \ \ \
2 -2
SCK 1 1 £
(CPOL =1) /
— 3#
MISO / LSB \
(Data Input)
7 8
MosI N /
(Data Output) X Mse N >< L8 /

Figure 27-5. SPI Interface Timing Requirements (Slave Mode)

4250G-CAN-09/05

s \ J/—

10

— -

N
(CPOLS=CO})(_j _/Ni) N

SCK
(CPOL = 1)

MOSI
(Data Input) “ L8
5] 17
MISO 4 N
(Data Output) — MS8 K, >< Lse >< X

A IIIEI% 367

27.7 CAN Physical Layer Characteristics
Only pads dedicated to the CAN communication belong to the physical layer.

AIMEL

Table : CAN Physical Layer Characteristics (

Parameter

Condition

Min.

Max.

Units

TxCAN output delay

Vee=2.7V
Load=20 pF
Voi/NVor=Vec/2

Vce=4.5V
Load=20 pF
VoiVon=Vec/2

5.3

RxCAN input delay

Vee=2.7V
VilVip=Vec/2

9+ fork,o®

Vce=4.5V
VilVip=Vec/2

72+ 1/ forko®

ns

Notes:

1. Characteristics for CAN physical layer have not yet been finalized.

2. Metastable immunity flip-flop.

368 AT90C AN 1 2 S —

4250G-CAN-09/05

27.8 ADC Characteristics

Table 27-5. ADC Characteristics, Single Ended Channels
Symbol | Parameter Condition Min(" Typ" Max(" Units
Resolution Single Ended Conversion 10 Bits
Single Ended Conversion
Vrer =4V, Vee = 4V 1.5 LSB
ADC clock = 200 kHz
Single Ended Conversion
Vger = 4V, Vece = 4V LSB
Absolute accuracy ADC clock = 1 MHz
(Included INL, DNL, Single Ended Conversion
Quantization Error, Gain and Vrer = 4V, Vee = 4V
Offset Error) ADC clock = 200 kHz 15 LSB
Noise Reduction Mode
Single Ended Conversion
Vger = 4V, Vee = 4V
ADC clock =1 MHz LSB
Noise Reduction Mode
Single Ended Conversion
Integral Non-linearity (INL) Vrer =4V, Vee = 4V 0.5 1 LSB
ADC clock = 200 kHz
Single Ended Conversion
Differential Non-linearity (DNL) | Vgge =4V, Vcc =4V 0.3 1 LSB
ADC clock = 200 kHz
Single Ended Conversion
Gain Error Vger =4V, Vece =4V -2 0 +2 LSB
ADC clock = 200 kHz
Single Ended Conversion
Offset Error Vrer = 4V, Vee = 4V -2 1 +2 LSB
ADC clock = 200 kHz
Clock Frequency Free Running Conversion 50 1000 kHz
Conversion Time Free Running Conversion 65 260 us
AVee | Analog Supply Voltage Vee—03® Vee +0.360) v
VREF External Reference Voltage 2.0 AVcc \Y
Vin Input voltage GND VRer \Y
Input bandwidth 38.5 kHz
ViNT Internal Voltage Reference 24 2.56 2.7 \
RRer Reference Input Resistance 32 kQ
RaiN Analog Input Resistance 100 MQ
Notes: 1. Values are guidelines only.
2. Minimum for AV is 2.7 V.
3. Maximum for AV is 5.5V
369

4250G-CAN-09/05

ATMEL

AIMEL

Table 27-6. ADC Characteristics, Differential Channels
Symbol | Parameter Condition Min" Typ™M Max(" Units
Differential Conversion .
Gain = 1x or 10x 8 Bits
Resolution
Differential Conversion 7 Bits
Gain = 200x
Gain = 1x, 10x or 200x
Absolute accuracy Vger =4V, Vcec =5V 1 LSB
ADC clock = 50 - 200 kHz
Integral Non-linearity (INL) Gain = 1x, 10x or 200x
(Accuracy after Calibration Vger = 4V, Vee = 5V 0.5 1 LSB
for Offset and Gain Error) ADC clock = 50 - 200 kHz
Gain Error Gain = 1x, 10x or 200x -2 0 +2 LSB
Gain = 1x, 10x or 200x
Offset Error Vrer =4V, Vee = 5V -1 0 +1 LSB
ADC clock = 50 - 200 kHz
Clock Frequency Free Running Conversion 50 200 kHz
Conversion Time Free Running Conversion 65 260 us
AVce | Analog Supply Voltage Vee—0.3®@ Vee +0.360) %
VREF External Reference Voltage | Differential Conversion 2.0 AVec_os \Y
Vin Input voltage Differential Conversion 0 AVic V
Voire Input Differential Voltage —Vgee/Gain +Vgee/Gain V
ADC Conversion Output -511 511 LSB
Input bandwidth Differential Conversion 4 kHz
ViNT Internal Voltage Reference 24 2.56 2.7 V
RRrer Reference Input Resistance 32 kQ
RaIN Analog Input Resistance 100 MQ
Notes: 1. Values are guidelines only.

2.
3.

370

Minimum for AV is 2.7 V.
Maximum for AV is 5.5V

AT90CAN128 mees———

4250G-CAN-09/05

27.9 External Data Memory Characteristics

Table 27-7. External Data Memory Characteristics, V¢ = 4.5 - 5.5 Volts, No Wait-state

8 MHz Oscillator Variable Oscillator
Symbol Parameter Unit
Min. Max. Min. Max.
0 MeLel Oscillator Frequency 0.0 16 MHz
1 o ALE Pulse Width 115 1.0t o — 10 ns
2 tavLL Address Valid A to ALE Low 57.5 0.5t -5 ns
3a fLax s Ad-dress Hold After ALE Low, 5 5 ns
- write access
36 | tuaio fgzrzscsc glsosld after ALE Low, 5 5 ns
4 taviLc Address Valid C to ALE Low 57.5 05t -5 ns
5 tavRL Address Valid to RD Low 115 1.0tg o — 10 ns
6 tavwiL Address Valid to WR Low 115 1.0tg . — 10 ns
7|t ALE Low to WR Low 47.5 67.5 0.5t —15@ 05ty +5@ | ns
8 tuRL ALE Low to RD Low 475 67.5 0.5t o —15@ 05t +5@ | ns
9 tovrH Data Setup to RD High 40 40 ns
10 | tripv Read Low to Data Valid 75 1.0 tg . — 50 ns
1 tRHDX Data Hold After RD High 0 0 ns
12 | trirH RD Pulse Width 115 1.0t e — 10 ns
13 | toww Data Setup to WR Low 425 0.5tg o —20 ™ ns
14 | twhpx Data Hold After WR High 115 1.0tg . — 10 ns
15 | tovwh Data Valid to WR High 125 1.0tc oL ns
16 | twown WR Pulse Width 115 1.0t o — 10 ns

Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.

Table 27-8. External Data Memory Characteristics, V. = 4.5 - 5.5 Volts, 1 Cycle Wait-state

8 MHz Oscillator Variable Oscillator
Symbol Parameter Unit
Min. Max. Min. Max.

0 1MeoL Oscillator Frequency 0.0 16 MHz
10 | tripv Read Low to Data Valid 200 2.0tg oL —50 ns
12 | triru RD Pulse Width 240 20tg . — 10 ns
15 | tovwh Data Valid to WR High 240 2.0tc oL ns
16 | twown WR Pulse Width 240 2.0t —10 ns

A IIIEI% 371

4250G-CAN-09/05

AIMEL

Table 27-9. External Data Memory Characteristics, V¢ = 4.5 - 5.5 Volts, SRWn1 =1, SRWn0 =0
Symbol Parameter 8 MHz Oscillator Variable Oscillator Unit
Min. Max. Min. Max.
0 1MeLoL Oscillator Frequency 0.0 16 MHz
10 | tripv Read Low to Data Valid 325 3.0tg L —50 ns
12 | trirn RD Pulse Width 365 3.0 tg o — 10 ns
15 | tovwn Data Valid to WR High 375 3.0tg oL ns
16 |ty WR Pulse Width 365 3.0tg L — 10 ns
Table 27-10. External Data Memory Characteristics, V¢ = 4.5 - 5.5 Volts, SRWn1 =1, SRWn0 = 1
Symbol Parameter 8 MHz Oscillator Variable Oscillator Unit
Min. Max. Min. Max.
0 MeLel Oscillator Frequency 0.0 16 MHz
10 | tripv Read Low to Data Valid 200 3.0t . —50 ns
12 | triry RD Pulse Width 365 3.0tg o — 10 ns
14 | twrox Data Hold After WR High 240 2.0tg o —10 ns
15 | tovwh Data Valid to WR High 375 3.0tg oL ns
16 | twiwn WR Pulse Width 365 3.0tg — 10 ns
Table 27-11. External Data Memory Characteristics, V¢ = 2.7 - 5.5 Volts, No Wait-state
4 MHz Oscillator Variable Oscillator
Symbol Parameter Unit
Min. Max. Min. Max.
0 1MeLoL Oscillator Frequency 0.0 16 MHz
1t ALE Pulse Width 235 toicL — 15 ns
2 |t Address Valid A to ALE Low 115 0.5tg o =100 ns
33 |ty st Ad.dress Hold After ALE Low, 5 5 ns
-~ write access
36 | i 1o ﬁ;i%rzzsc ssosld after ALE Low, 5 5 ns
4 | taic Address Valid C to ALE Low 15 0.5tgq — 10 ns
5 tavrL Address Valid to RD Low 235 1.0t — 15 ns
6 tavwi Address Valid to WR Low 235 1.0tg oL — 15 ns
7 |t ALE Low to WR Low 15 130 0.5t —10@ | 05t +5@ | ns
8 | ture ALE Low to RD Low 15 130 0.5t —10@ | 05t +5@ | ns
9 tovrH Data Setup to RD High 45 45 ns
10 | tripv Read Low to Data Valid 190 1.0tgc —60 | ns

372 ATO0C AN 2 S

4250G-CAN-09/05

Table 27-11. External Data Memory Characteristics, Vc = 2.7 - 5.5 Volts, No Wait-state (Continued)
Symbol Parameter 4 MHz Oscillator Variable Oscillator Unit
Min. Max. Min. Max.
11 | trupx Data Hold After RD High 0 0 ns
12 | triru RD Pulse Width 235 1.0tg o — 15 ns
13 | toww Data Setup to WR Low 105 0.5tg —20M ns
14 | twhpx Data Hold After WR High 235 1.0t oL — 15 ns
15 | tovwn Data Valid to WR High 250 1.0 tcL oL ns
16 | twown WR Pulse Width 235 1.0t o — 15 ns
Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.
Table 27-12. External Data Memory Characteristics, V¢ = 2.7 - 5.5 Volts, SRWn1 = 0, SRWn0 =1
4 MHz Oscillator Variable Oscillator
Symbol Parameter Unit
Min. Max. Min. Max.
0 1MeLoL Oscillator Frequency 0.0 8 MHz
10 | tripv Read Low to Data Valid 440 2.0tg . —60 ns
12 | trirn RD Pulse Width 485 20te o —15 ns
15 | tovwn Data Valid to WR High 500 2.0tc oL ns
16 | twown WR Pulse Width 485 2.0t — 15 ns
Table 27-13. External Data Memory Characteristics, V¢ = 2.7 - 5.5 Volts, SRWn1 =1, SRWn0 =0
4 MHz Oscillator Variable Oscillator
Symbol Parameter Unit
Min. Max. Min. Max.
0 MeLel Oscillator Frequency 0.0 8 MHz
10 | tripv Read Low to Data Valid 690 3.0 tg . — 60 ns
12 | triru RD Pulse Width 735 3.0t —15 ns
15 | tovwn Data Valid to WR High 750 3.0tc oL ns
16 | twown WR Pulse Width 735 3.0tg - 15 ns
Table 27-14. External Data Memory Characteristics, V¢ = 2.7 - 5.5 Volts, SRWn1 =1, SRWn0 =1
4 MHz Oscillator Variable Oscillator
Symbol Parameter Unit
Min. Max. Min. Max.
0 1MeLeL Oscillator Frequency 0.0 8 MHz
10 | tripv Read Low to Data Valid 690 3.0tg . —60 ns
12 | trigH RD Pulse Width 735 3.0tc o —15 ns
373

4250G-CAN-09/05

ATMEL

AIMEL

Table 27-14. External Data Memory Characteristics, Vc = 2.7 - 5.5 Volts, SRWn1 =1, SRWn0 =1 (Continued)

4 MHz Oscillator Variable Oscillator
Symbol Parameter Unit
Min. Max. Min. Max.
14 | twhpx Data Hold After WR High 485 20tg o — 15 ns
15 | tovwn Data Valid to WR High 750 3.0tc oL ns
16 | twown WR Pulse Width 735 3.0tgc —15 ns

Figure 27-6. External Memory Timing (SRWn1 =0, SRWnO = 0)

™ T2 T3 T4

System Clock (CLKspy) J__/__/__/__/_

1 (| (d
1 | |
1 1 1
I L 1

1
1
|
1
ALE - /
1 1
H 4 7
' >
A15:8 Prev. addr. 4 Address X
| | 15
1
! 2 (33 |13 —
> | > >
DA7:0 Prév. data (Address Data)r o
! =
14 S
| 6 16 > =
1
WR ! o\
] : : -
1 1 1
- 3B 9 11 R
I ! '
DA7:0 (XMBK = 0) : Addres j—;—«é Data S‘—C
. 1
| 5 .10 ! g
1 1 x
! . 8 12 |
1
! L e
RD : | |
1 1 1 1
! I I I ' —
: 1 I

374 ATO0C AN 2 S

Figure 27-7. External Memory Timing (SRWn1 =0, SRWnO0 = 1)

T5

T4

T3

T2

T

S pesy
<
=
S S
© o~
o Sl € o||la -
[2]
1%
o
e}
el
<
o
e 1J‘L
........ } BED . .
Q
Bl =3[,
o 6
I 3w
] S
< w3
© T
< <
5 S
S ©
@ ©
I - -3 R R R A
o T
o s
E @ ﬁ o =) [a)]
g Ce] = = I [
< [a) X
o)
=
S
A.U.
~
<
o

System Clock (CLKspy)

:0)

Figure 27-8. External Memory Timing (SRWn1 =1, SRWn0

ALM pesy
<
© -~
©
n
=
(2]
173
¢ = .
" e 8| ¢ ollg] o
< (=)
3]
[
o
wwwwwwwwwww 39 [I
) 3
o w © ol s
< |z 3
2 <
- SNe SNe
b
5 8
o [
© ©
> >
\\\\\\\\\\\\\ L 8{-----18}---1-------{------f-----
a a
= w @ ° @ = a
2 % © D = I 12
N < a X
o s
x S
8 o
(&) N~
<
£ [a)
i)
172
>
%)

375

4250G-CAN-09/05

AIMEL

Figure 27-9. External Memory Timing (SRWn1 = 1, SRWn0 = 1){")

T

ystom Clook (CLKcey) _/—_/ _/ \—/—_/—\—/—_/—_/_

‘
!
!
!
1
‘
!
!
‘

‘ ‘
1 I
] ‘
‘ ‘
1 1 ! ! 1
1 1 \ \ 1
ALE ! ! w ! L/
! 4 7 w ! !
: B 1 | :
‘ ‘
A15:8 Prev. addr. X Address . 1
| w M |
‘ 2 38 |13 | | ‘ —
I > (> -> I | !
DA7:0 Prév. data Addresg 7 Data ! ! o
i i i [S
! 6 ! 16 ! 14 =
! T T 1
! | | | | L=
1 b ‘ 9 l 11 1 !
‘ ‘ _
1 : : : = 1 -
DAT7:0 (XMBK = 0) —— Addres: | Data |) ‘ {
‘
| 5 10 | : | : g
l 1 l ! ! o
| ‘ 8 ‘ 12 | ! :
—] : ! ' : .
RD | | ! ! ‘ :
! 1 ! T T ! 1
‘ ‘ ‘ ‘ ‘ ‘ -
! ! 1 1 ! |

Note: 1. The ALE pulse in the last period (T4-T7) is only present if the next instruction accesses the
RAM (internal or external).

27.10 Parallel Programming Characteristics

Figure 27-10. Parallel Programming Timing, Including some General Timing Requirements

bawe

XTALA1 XX

tovxH txLbx
Data & Contol ---
(DATA, XA0/1, BS1, BS2) >

tsveH teLex | tevwi tvex
PAGEL toppL .
_ twiwH -
WR thLwiL —
- > WLRL
_ e N
RDY/BSY
- > twirH

376 ATO0C A N1 2 S

Figure 27-11. Parallel Programming Timing, Loading Sequence with Timing Requirements(")

LOAD ADDRESS LOAD DATA LOAD DATA LOAD DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
— — — —
t
ExixH XLPH tpL X
-
XTAL1 M m
BS1

PAGEL e N

DATA X ADDRO (Low Byte) >< DATA (Low Byte) >< DATA (High Byte) >< ADDR1 (Low Byte)

XAO

XA1

Note: 1. The timing requirements shown in Figure 27-10 (i.e., tpyxn, txHxL, @nd ty px) also apply to
loading operation.

Figure 27-12. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(!)

LOAD ADDRESS READ DATA READ DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
/—/H /—/H
tXLOL
-
XTAL1
tBVDV
R s
BS1
toLpov
<
OE
tonpz
<
DATA —< ADDRO (Low Byte) DATA (Low Byte) DATA (High Byte) ADDRH1 (Low Byte)
XAO0
XA1

A IIIEI% 377

4250G-CAN-09/05

AIMEL

Note: 1. The timing requirements shown in Figure 27-10 (i.e., tpyxn, txnxL, and ty px) also apply to
reading operation.

Table 27-15. Parallel Programming Characteristics, V; = 5V + 10%

Symbol Parameter Min. Typ. Max. Units
Vpp Programming Enable Voltage 11.5 12.5 \%
Ipp Programming Enable Current 250 pA
tovxh Data and Control Valid before XTAL1 High 67 ns
tyLxH XTAL1 Low to XTAL1 High 200 ns
txHxL XTAL1 Pulse Width High 150 ns
tx DX Data and Control Hold after XTAL1 Low 67 ns
tywL XTAL1 Low to WR Low 0 ns
txLPH XTAL1 Low to PAGEL high 0 ns
toLxH PAGEL low to XTAL1 high 150 ns
tavPH BS1 Valid before PAGEL High 67 ns
teHpPL PAGEL Pulse Width High 150 ns
tpLBX BS1 Hold after PAGEL Low 67 ns
twLBx BS2/1 Hold after WR Low 67 ns
teLwL PAGEL Low to WR Low 67 ns
taviL BS1 Valid to WR Low 67 ns
twLwH WR Pulse Width Low 150 ns
twirL WR Low to RDY/BSY Low 0 1 us
twLRH WR Low to RDY/BSY High(" 3.7 5 ms
twirH ce | WR Low to RDY/BSY High for Chip Erase® 7.5 10 ms
tyLoL XTAL1 Low to OE Low 0 ns
(Y BS1 Valid to DATA valid 0 250 ns
toLpy OE Low to DATA Valid 250 ns
tonDz OE High to DATA Tri-stated 250 ns
Notes: 1. ty Ry is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tyirH_ceis valid for the Chip Erase command.

378 AT90C AN 1 2 S —

28. Decoupling Capacitors

The operating frequency (i.e. system clock) of the processor determines in 95% of cases the
value needed for microcontroller decoupling capacitors.

The hypotheses used as first evaluation for decoupling capacitors are:
« The operating frequency (fop) supplies itself the maximum peak levels of noise. The main
peaks are located at fop and 2 e fop.
* An SMC capacitor connected to 2 micro-vias on a PCB has the following characteristics:
— 1.5 nH from the connection of the capacitor to the PCB,
— 1.5 nH from the capacitor intrinsic inductance.

1.5 nH
0.75 nH/ i Capacitor i \ 0.75 nH

| — e

Figure 28-1. Capacitor description

According to the operating frequency of the product, the decoupling capacitances are chosen
considering the frequencies to filter, fop and 2 e fop.

The relation between frequencies to cut and decoupling characteristics are defined by:

1 1

= and 20fop - —
211, /LC, 211, JLC,

fop
where:
— L: the inductance equivalent to the global inductance on the Vce/Gnd lines.
— C, & C,: decoupling capacitors (C,; =4 « C,).
Then, in normalized value range, the decoupling capacitors become:

Table 28-1. Decoupling Capacitors vs. Frequency

fop, operating frequency C, C,
16 MHz 33 nF 10 nF
12 MHz 56 nF 15 nF
10 MHz 82 nF 22 nF
8 MHz 120 nF 33 nF
6 MHz 220 nF 56 nF
4 MHz 560 nF 120 nF

These decoupling capacitors must to be implemented as close as possible to each pair of power
supply pins:

— 21-22 and 52-53 for logic sub-system,

— 64-63 for analogic sub-system.
Nevertheless, a bulk capacitor of 10-47 uF is also needed on the power distribution network of
the PCB, near the power source.

For further information, please refer to Application Notes AVR040 “EMC Design Considerations*
and AVR042 “Hardware Design Considerations® on the Atmel web site.

A IIIEI% 379

4250G-CAN-09/05

AIMEL

29. AT90CAN128 Typical Characteristics

* The following charts show typical behavior. These figures are not tested during
manufacturing. All current consumption measurements are performed with all I/0O pins
configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail
output is used as clock source.

» The power consumption in Power-down mode is independent of clock selection.

» The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient
temperature. The dominating factors are operating voltage and frequency.

» The current drawn from capacitive loaded pins may be estimated (for one pin) as C *V*f
where C, = load capacitance, V¢ = operating voltage and f = average switching frequency of
I/O pin.

» The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

* The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential
current drawn by the Watchdog Timer.

29.1 Active Supply Current

Figure 29-1. Active Supply Current vs. Frequency (0.1 - 1.0 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)

3
25 X
, ——550V
| /l —=—5.00V
< /‘, —4—4.50V
E1s ? —] —e-400v
S g ——3.30V
1]
N //‘ —5-3.00v
ﬁ —&—2.70V
05 1
O T T
0 01 02 03 04 05 06 07 08 09 1

Frequency (MHz)

380 /AT90C AN 1 2 S —

AT90CAN128

Figure 29-2. Active Supply Current vs. Frequency (1 - 16 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (25°C, 1 - 16 MHz)

40
35
/l
30
_a| —e-550v
25 - —=—5.00V
< —a— 450V

= 20 A —e—4.00V

- / / —o—3.30V
/ —5-3.00V
/e/e/ —&-2.70V
e

Frequency (MHz)

Figure 29-3. Active Supply Current vs. Vcc (Internal RC Oscillator 8 MHz)

ACTIVE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 8 MHz)

L2 g

4

z 12 —e—385°C
E 10 —a—25°C
L 8 ——-40°C

A IIIEI% 381

4250G-CAN-09/05

AIMEL
Figure 29-4. Active Supply Current vs. Vcc (Internal RC Oscillator 1 MHz)

ACTIVE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 1 MHz)

3
/}
.
25]
2 i
= —e—85°C
£ 1.5 —=—25°C
Q
S —A—-40°C
1
0.5 -
O T T T
25 3 35 4 45 5 55
Vce (V)
Figure 29-5. Active Supply Current vs. Vcc (32 kHz Watch Crystal)
ACTIVE SUPPLY CURRENT vs. Vce (32 kHz Watch Crystal)
140
120 - g
100 |
< 80
2 ——25°C
o
L2 60
40 -
20
O T T T T
25 3 35 4 45 5 55
Vce (V)
322 AT9I0OCAN128 meee——

4250G-CAN-09/05

AT90CAN128

29.2 Idle Supply Current

Figure 29-6. Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

IDLE SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)

1.6
4
14 - /
/ll
1.2 —e—5.50V
1 T _—*t =500V
z } —a— 450V
?E; 0.8 - // —e—4.00V
2 6 /'//: _——& —-330v
' / /A —-8-3.00V
04 / ///%? ——2.70V
4
02 —
0 ‘ ‘ ; ; ; ; ‘
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Frequency (MHz)
Figure 29-7. |dle Supply Current vs. Frequency (1 - 16 MHz)
IDLE SUPPLY CURRENT vs. FREQUENCY (25°C, 1 - 16 MHz)
25
|~
20 A =
A —e—5.50V
15 —a—5.00V
a —a—4.50V
% —e—4.00V
° 0] ——3.30V
—=-3.00V
—A—2.70V
5
O T T T T T T

9 10 11 12 13 14 15 16 17
Frequency (MHz)

A IIIEI% 383

4250G-CAN-09/05

AIMEL
Figure 29-8. Idle Supply Current vs. Vcc (Internal RC Oscillator 8 MHz)

IDLE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 8 MHz)

14

12 1

i /
8 ——85°C

—a—25°C
6 —A—-40°C

2 g

>

Icc (mA)

0 T T T
25 3 35 4 4.5 5 55

Vce (V)
Figure 29-9. Idle Supply Current vs. Vcc (Internal RC Oscillator 1 MHz)

IDLE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 1 MHz)

1.8

16 1 /:
14 % ‘
1.2 /
= —+—85°C
—=—25°C

0.8 —A—-40°C
0.6

Icc (mA)

04 -

0.2

25 3 35 4 45 5 55
Vce (V)

384 AT90C AN 1 2 S e —

4250G-CAN-09/05

Figure 29-10. Idle Supply Current vs. Vcc (32 kHz Watch Crystal)

IDLE SUPPLY CURRENT vs. Vce (32 KHz Watch Crystal)

2 30 - ——25°C

25 3 35 4 45 5 55
Vce (V)

29.3 Power-down Supply Current

Figure 29-11. Power-down Supply Current vs. Vcc (Watchdog Timer Disabled)

POWER-DOWN SUPPLY CURRENT vs. Vcc (Watchdog Timer Disabled)

<5 —+—85°C
= —m-25°C
Q

o4

——-40°C
3,
2,
1 M
0 T T T T T 1
25 3 3.5 4 45 5 55

Vee (V)

A IIIEI% 385

4250G-CAN-09/05

AIMEL
Figure 29-12. Power-down Supply Current vs. Vcc (Watchdog Timer Enabled)

POWER-DOWN SUPPLY CURRENT vs. Vcc (Watchdog Timer Enabled)

25
22.5 ~
20 A

17.5 A

15 1 —+—85°C

12.5 1 —a 25°C
10 ——-40°C

Icc (UA)

7.5 4

2.5 A

25 3 35 4 45 5 55
Vce (V)

29.4 Power-save Supply Current

Figure 29-13. Power-save Supply Current vs. Vcc (Watchdog Timer Disabled)

POWER-SAVE SUPPLY CURRENT vs. Vcc (Watchdog Timer Disabled)

25

225 A
20 ~
17.5
15 4
12.5 A —a—25°C
10

Icc (UA)

7.5 A

25

25 3 35 4 45 5 55
vee (V)

386 AT90C AN 2 S e —

29.5 Standby Supply Current

Figure 29-14. Power-save Supply Current vs. Vcc (25°C, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. Vcc (25°C, Watchdog Timer Disabled)

0.2

0.18 A
0.16 A
0.14 -
0.12 ~

011
008 | T

Icc (mA)

0.06 ~
0.04 -
0.02 -

25 3 35 4 45 5
Vce (V)

29.6 Pin Pull-up

Figure 29-15. I/O Pin Pull-up Resistor Current vs. Input Voltage (Vcc = 5V)

/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE (Vcc = 5V)

55

—e— 6 MHZ Xtal
—a— 4 MHZ Res
—a— 2 MHZ Xtal
—e— 2 MHZ Res

) /.
-20

40 -

-60 -

—e—385°C

lo (UA)
8

-100 -

-120 A

-140 7

-160 T T

—a—25°C
—&—-40°C

Vo (V)

ATMEL

4250G-CAN-09/05

387

AIMEL

Figure 29-16. 1/0 Pin Pull-up Resistor Current vs. Input Voltage (Vcc = 2.7V)

IO PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE (Vcc =2.7V)

< ——385°C
% - 25°C
= —&—-40°C
'90 T T T T
0 0.5 1 1.5 2 25 3
Vio (V)
Figure 29-17. Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vcc = 5V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE (Vcc = 5V)
0
-20
-40
< ——85°C
g -60 - —a 25°C
L —A—-40°C
-80
-100
-120 ‘ ‘
0 1 2 3 4 5 6

V ReseT (V)

388 AT90C AN 1 2 S e —

4250G-CAN-09/05

Figure 29-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vcc = 2.7V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE (Vcc =2.7V)

0 -

| RESET (UA)

-40

-50 4

-60 ~

V ReseT (V)

29.7 Pin Driver Strength

Figure 29-19. I/O Pin Source Current vs. Output Voltage (Vcc = 5V)

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE (Vcc = 5V)

) /
-10

loH (MA)

VoH (V)

ATMEL

4250G-CAN-09/05

—e—385°C
—a 25°C
——-40°C

—+—85°C
- 25°C
—a—-40°C

389

AIMEL
Figure 29-20. 1/0 Pin Source Current vs. Output Voltage (Vcc = 2.7V)

/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE (Vcc =2.7V)

0
5
-10 A
T ——385°C
% -15 —a—25°C
2 —A—-40°C
-20 /
PR
25 -
-30 T T T T
0.5 1 15 2 25 3
VoH (V)
Figure 29-21. 1/0 Pin Sink Current vs. Output Voltage (Vcc = 5V)
I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE (Vcc =5V)
90
> /
70
60 -
50 / —+—85°C

<

% - 25°C

5401 —a-40°C
30

10

0 0.5 1 1.5
VoL (V)

N

25

3900 AT90C AN 1 2 S —

4250G-CAN-09/05

Figure 29-22. 1/0 Pin Sink Current vs. Output Voltage (Vcc = 2.7V)

IO PIN SINK CURRENT vs. OUTPUT VOLTAGE (Vcc =2.7V)

35
30 -
25 /./
¢
< 20 _— —+—85°C
E —a—25°C
—4—-40°C
15 2 25
VoL (V)
29.8 Pin Thresholds and Hysteresis
Figure 29-23. 1/O Input Threshold Voltage vs. Vcc (V, I/0 Pin Read as “17)
V'O PIN INPUT THRESHOLD VOLTAGE vs. VCC (VIH, VO PN READ AS "1")
2
1.75 /L
15
S —e—85°C
o
© 1.25] —m—25°C
3 —&—-40°C
c
[14
0.75 -
0.5 ‘ ‘ ‘ ‘
2.5 3 35 4 45 5 55

Vee (V)

AIMEL 3901
4250G-CAN-09/05 Y)

AIMEL
Figure 1. 1/O Input Threshold Voltage vs. Vcc (V| I/0 Pin Read as “0”)

/O PIN INPUT THRESHOLD VOLTAGE vs. VCC (VIL, /O PIN READ AS "0")

2
1.75
—~ 154
2
2 % —og5C
% 1.25 —=—25°C
o —A—-40°C
e
SR —
0.75 -
0.5 ‘ ; ; ‘
25 3 35 4 45 5 5.5
Vce (V)
Figure 2. 1/O Input Hysteresis vs. Vcc
VO PIN INPUT HYSTERESIS vs. VCC
0.6
05
4
~ 04 —
> A
5 ——85°C
% 0.3 —=—25°C
o —&—-40°C
S
N //
0.1 - :i://‘/./
O T T T T
25 3 35 4 45 5 55
Vee (V)

392 AT90C AN 1 2 S —

4250G-CAN-09/05

ey N e L0 [0921\ 4
29.9 BOD Thresholds and Analog Comparator Offset

4250G-CAN-09/05

Figure 29-24. BOD Thresholds vs. Temperature (BOD level is 4.1V)

BOD THRESHOLDS vs. TEMPERATURE (BOD level is 4.1V)

Temp (°C)

ATMEL

4.4
4.2
— — = —a
2 4
e}
o]
<
(%]
(0]
c 38
'_
3.6 1
34 T ‘ ‘ ‘ ‘ ‘ ‘
-60 -40 -20 0 20 40 60 80 100
Temp (°C)
Figure 29-25. BOD Thresholds vs. Temperature (BOD level is 2.7V)
BOD THRESHOLDS vs. TEMPERATURE (BOD level is 2.7V)
3
2.8 A R
. — u
<26
ke
[e]
<
o
c 24 A
'_
2.2 1
2 T T T T T T T
-60 -40 -20 0 20 40 60 80

100

—e— Rising Vcc
—a— Falling Vcc

—e— Rising Vcc
——Falling Vcc

393

AIMEL
Figure 29-26. Bandgap Voltage vs. Operating Voltage

BANDGAP VOLTAGE vs. OPERATING VOLTAGE

1.13
< 112 1
S
£ —e—85°C
L 1.11 - —=—25°C
>3 —&—-40°C
()]
2 11
®© 9 — =
m A4 L g
1.09 A '
4
A
1.08 \ ‘ ‘ ‘ 1
25 3 35 4 4.5 5 55
Vce (V)
Figure 29-27. Analog Comparator Offset vs. Common Mode Voltage (Vcc = 5V)
ANALOG COMPARATOR OFFSET vs. COMMON MODE VOLTAGE (Vcc =5V)
0.012
001
\>_/ /»
(0] * —— — L 2 L 4
()] .
) l——l——.—l/.—/—./_‘k’/‘
)
; |_‘__/—‘—‘—‘——‘/’/‘_’—-“ ——385°C
L —a—25°C
o —a—-40°C
]
©
(]
Q.
1S
o]
&)
-0.002 T T T T T T T T T
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5 55
Common Voltage Mode (V)
304 ATO0 C A N 12 5

4250G-CAN-09/05

29.10 Internal Oscillator Speed

Figure 29-28. Watchdog Oscillator Frequency vs. Operating Voltage

WATCHDOG OSCILLATOR FREQUENCY vs. VCC

1200
:
1100 ——————
Q
8 1000
5
£ 950
L
900 -
850
800 ‘ ; ;
25 3 35 4 45 5.5
Vce (V)
Figure 29-29. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature
CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE
8.8
8.6
8.4 —A
. 8.2+
N
T /
S 8 //{/'/
i .’%
78
7.6 1
7.4 1
7.2 T T T T T
-60 -40 -20 0 20 40 60 80 100
Temp (°C)

4250G-CAN-09/05

ATMEL

—e—385°C
—=—25°C
——-40°C

——2.7V
—a— 4.0V
—A—5.5V

395

AIMEL
Figure 29-30. Calibrated 8 MHz RC Oscillator Frequency vs. Operating Voltage

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. VCC

10

9.5 -

L 2

*
>
*

—e—385°C
—a—25°C
——-40°C

Frc (MHZz)
©
.

7.5 A

6.5 1

25 3 35 4 45 5 55
Vce (V)

Figure 29-31. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

11 1 ——85°C
10 A —=—25°C
9 - ——-40°C

Frc (MHZz)

4 hnal T T T T T T
0 16 32 48 64 80 96 112 128
OSCCAL Value

3906 AT90C AN 1 2 S —

29.11 Current Consumption of Peripheral Units

Figure 29-32. Brownout Detector Current vs. Operating Voltage

BROWNOUT DETECTOR CURRENT vs. Vcc

35
30 ~ /k//r//-h
A & '_//-II
25 A r’—-'/_/_._//a—/"}_//o
z "’—'»/‘//’// —+—85°C
% 20 A —=—25°C
8 —a—-40°C
15
10
5 ‘ ‘ ‘
25 3 3.5 4 4.5 5 55
Vce (V)
Figure 29-33. ADC Current vs. Operating Voltage (ADC at 1 MHz)
ADC CURRENT vs. Vcc (ADC at 1 MHz)
300
A
250 1 / .
?ﬂ
200 _/.C//f-?/'//
< ’,_/—0——0///’4 —e—85°C
% 150 —=25°C
= —&—-40°C
100 -
50
0 T T T
25 3 3.5 4 4.5 5 55
Vce (V)
397

ATMEL

4250G-CAN-09/05

AIMEL
Figure 29-34. AREF External Reference Current vs. Operating Voltage

AREF EXTERNAL REFERENCE CURRENT vs. Vcc

200

180 -

160

140
—e—385°C
—a—25°C

—a—-40°C
100

120 -

IaRer (UA)

80 A

60 -

40 ‘ ‘
25 3 35 4 45 5 55
Vce (V)

Figure 29-35. Analog Comparator Current vs. Operating Voltage

ANALOG COMPARATOR CURRENT vs. Vcc

120

100 -

80 - A_"/‘—/

60 -

|
\

——85°C
;f///* —=—25°C

—a—-40°C

lcc (UA)

J.

40

20 A

25 3 35 4 45 5 55
Vce (V)

398 AT90C AN 1 2 S —

4250G-CAN-09/05

AT90CAN128

Figure 29-36. Programming Current vs. Operating Voltage

PROGRAMMING CURRENT vs. Vcc

25
A
20 | /
/l
2\ 15 | ’/“ +85°C
% —a—25°C
= 10 1 / —a—-40°C
5 a
—
0 T T T
25 3 35 4 45 5 55
Vce (V)
29.12 Current Consumption in Reset and Reset Pulse Width
Figure 29-37. Reset Supply Current vs. Operating Voltage (0.1 - 1.0 MHz)
(Excluding Current Through the Reset Pull-up)
RESET SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)
(EXCLUDING CURRENT THROUGH THE RESET PULL-UP)
0.25
4
0.2 /l
/ ——5.50V
< 015 /0 —4—4.50V
% —e—4.00V
/ — — 1 -8-3.00V
/ —a-2.70V
0.05 1 %
O T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

A IIIEI% 399

4250G-CAN-09/05

AIMEL

Figure 29-38. Reset Supply Current vs. Operating Voltage (1 - 16 MHz)

(Excluding Current Through the Reset Pull-up)

RESET SUPPLY CURRENT vs. FREQUENCY (1 - 16 MHz)
(EXCLUDING CURRENT THROUGH THE RESET PULL-UP)

35
25 - / —e— 550V
//.é‘/.//‘ —=—5.00V
T 2 —a —A— 4.50V
£ —e—4.00V
Q | —o
9 15 A ——3.30V
—=-3.00V
11 —A—2.70V
0.5 -
0 T T T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
Frequency (MHz)
Figure 29-39. Minimum Reset Pulse Width vs. Operating Voltage
MINIMUM RESET PULSE WIDTH vs. Vcc
1500
1250 -
% 1000 -
£
< —e—85°C
S 750 - —=-25°C
2 ‘\‘\L‘ \.\ —a—-40°C
£ 500
S —
A
250 -
0 T T T T
25 3 35 4 45 5 55
Vce (V)
400 ATO0C AN 2S

4250G-CAN-09/05

30. Register Summary
-
Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 Page

(0xFF) Reserved

(OXFE) Reserved

(OxFD) Reserved

(0xFC) Reserved

(0xFB) Reserved

(OxFA) CANMSG MSG 7 MSG 6 MSG 5 MSG 4 MSG 3 MSG 2 MSG 1 MSG 0 page 264
(0xF9) CANSTMH TIMSTM15 TIMSTM14 TIMSTM13 TIMSTM12 TIMSTM11 TIMSTM10 TIMSTM9 TIMSTM8 page 263
(OxF8) CANSTML TIMSTM7 TIMSTM6 TIMSTM5 TIMSTM4 TIMSTM3 TIMSTM2 TIMSTM1 TIMSTMO page 263
(OxF7) CANIDM1 IDMSK28 IDMSK27 IDMSK26 IDMSK25 IDMSK24 IDMSK23 IDMSK22 IDMSK21 page 262
(OxF6) CANIDM2 IDMSK20 IDMSK19 IDMSK18 IDMSK17 IDMSK16 IDMSK15 IDMSK14 IDMSK13 page 262
(OxF5) CANIDM3 IDMSK12 IDMSK11 IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 page 262
(0xF4) CANIDM4 IDMSK4 IDMSK3 IDMSK2 IDMSK1 IDMSKO RTRMSK - IDEMSK page 262
(OxF3) CANIDT1 IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 page 261
(0xF2) CANIDT2 IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 page 261
(OxF1) CANIDT3 IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 page 261
(0xF0) CANIDT4 IDT4 IDT3 IDT2 IDT1 IDTO RTRTAG RB1TAG RBOTAG page 261
(OxEF) CANCDMOB CONMOBH1 CONMOBO RPLV IDE DLC3 DLC2 DLC1 DLCO page 260
(OXEE) CANSTMOB DLCW TXOK RXOK BERR SERR CERR FERR AERR page 259
(OxED) CANPAGE MOBNB3 MOBNB2 MOBNB1 MOBNBO AINC INDX2 INDX1 INDXO0 page 258
(0xEC) CANHPMOB HPMOB3 HPMOB2 HPMOB1 HPMOBO CGP3 CGP2 CGP1 CGPO page 258
(OXEB) CANREC REC7 REC6 REC5 REC4 REC3 REC2 REC1 RECO page 258
(OXEA) CANTEC TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TECO page 258
(OxE9) CANTTCH TIMTTC15 TIMTTC14 TIMTTC13 TIMTTC12 TIMTTC11 TIMTTC10 TIMTTC9 TIMTTC8 page 257
(OxE8) CANTTCL TIMTTC?7 TIMTTC6 TIMTTC5 TIMTTC4 TIMTTC3 TIMTTC2 TIMTTC1 TIMTTCO page 257
(OXE7) CANTIMH CANTIM15 CANTIM14 CANTIM13 CANTIM12 CANTIM11 CANTIM10 CANTIM9 CANTIM8 page 257
(OxEB) CANTIML CANTIM7 CANTIM6 CANTIM5 CANTIM4 CANTIM3 CANTIM2 CANTIM1 CANTIMO page 257
(OxE5) CANTCON TPRSC7 TPRSC6 TPRSC5 TPRSC4 TPRSC3 TPRSC2 TRPSC1 TPRSCO page 257
(OxE4) CANBT3 - PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP page 256
(OxE3) CANBT2 = SJw1 SJWo - PRS2 PRS1 PRS0 = page 256
(OxE2) CANBT1 - BRP5 BRP4 BRP3 BRP2 BRP1 BRPO - page 255
(OxE1) CANSIT1 - SIT14 SIT13 SIT12 SIT11 SIT10 SIT9 SIT8 page 255
(OxEQ) CANSIT2 SIT7 SIT6 SITS SIT4 SIT3 SIT2 SIT1 SITO page 255
(OxDF) CANIE1 - IEMOB14 IEMOB13 IEMOB12 IEMOB11 IEMOB10 IEMOB9 IEMOB8 page 254
(0xDE) CANIE2 IEMOB7 IEMOB6 IEMOB5 IEMOB4 IEMOB3 IEMOB2 IEMOB1 IEMOBO page 254
(0xDD) CANEN1 - ENMOB14 ENMOB13 ENMOB12 ENMOB11 ENMOB10 ENMOB9 ENMOB8 page 254
(0xDC) CANEN2 ENMOB7 ENMOB6 ENMOB5 ENMOB4 ENMOB3 ENMOB2 ENMOB1 ENMOBO page 254
(0xDB) CANGIE ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRT page 253
(0xDA) CANGIT CANIT BOFFIT OVRTIM BXOK SERG CERG FERG AERG page 252
(0xD9) CANGSTA - OVRG - TXBSY RXBSY ENFG BOFF ERRP page 251
(0xD8) CANGCON ABRQ OVRQ TTC SYNTTC LISTEN TEST ENA/STB SWRES page 250
(0xD7) Reserved

(0xD6) Reserved

(0xD5) Reserved

(0xD4) Reserved

(0xD3) Reserved

(0xD2) Reserved

(0xD1) Reserved

(0xDO0) Reserved

(0xCF) Reserved

(0xCE) UDR1 UDR17 UDR16 UDR15 UDR14 UDR13 UDR12 UDR11 UDR10 page 193
(0xCD) UBRR1H - - - - UBRR111 UBRR110 UBRR19 UBRR18 page 197
(0xCC) UBRR1L UBRR17 UBRR16 UBRR15 UBRR14 UBRR13 UBRR12 UBRR11 UBRR10 page 197
(0xCB) Reserved

(0xCA) UCSR1C - UMSEL1 UPM11 UPM10 USBS1 uUcsz11 UCSZ10 UCPOLA1 page 196
(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCsz12 RXB81 TXB81 page 195
(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 uU2x1 MPCM1 page 193
(0xC7) Reserved

(0xC6) UDRO UDRO7 UDRO06 UDRO05 UDRO4 UDRO3 UDRO02 UDRO1 UDRO00 page 193
(0xC5) UBRROH - - - - UBRRO11 UBRRO010 UBRR09 UBRRO08 page 197
(0xC4) UBRROL UBRRO7 UBRRO06 UBRRO05 UBRR04 UBRRO03 UBRR02 UBRRO1 UBRROO page 197
(0xC3) Reserved

(0xC2) UCSROC - UMSELO UPMO1 UPMO0 USBS0 UCSZ01 UCSZ00 UCPOLO page 195
(0xC1) UCSR0B RXCIEO TXCIEO UDRIEO RXENO TXENO UCSZ02 RXB80 TXB80 page 194
0xC0 UCSROA RXCO TXCO UDREQ FEO DORO UPEQ U2X0 MPCMO Rade 193
(0xBF) Reserved

A IIIEI% 401

4250G-CAN-09/05

AIMEL

Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 Page
(OxBE) Reserved
(0xBD) Reserved
(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE page 210
(0xBB) TWDR TWDR7 TWDR6 TWDR5 TWDR4 TWDR3 TWDR2 TWDR1 TWDRO page 212
(0xBA) TWAR TWARG TWARS5 TWAR4 TWAR3 TWAR2 TWAR1 TWARO TWGCE page 212
(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0 page 211
(0xB8) TWBR TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBRO page 210
(0xB7) Reserved
(0xB6) ASSR = - = EXCLK AS2 TCN2UB OCR2UB TCR2UB page 158
(0xB5) Reserved
(0xB4) Reserved
(0xB3) OCR2A OCR2A7 OCR2A6 OCR2A5 OCR2A4 OCR2A3 OCR2A2 OCR2A1 OCR2A0 page 157
(0xB2) TCNT2 TCNT27 TCNT26 TCNT25 TCNT24 TCNT23 TCNT22 TCNT21 TCNT20 page 157
(0xB1) Reserved
(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 page 162
(OxAF) Reserved
(OXAE) Reserved
(0xAD) Reserved
(0xAC) Reserved
(OxAB) Reserved
(0xAA) Reserved
(0xA9) Reserved
(0xA8) Reserved
(0xA7) Reserved
(0xAB) Reserved
(0xA5) Reserved
(0xA4) Reserved
(0xA3) Reserved
(0xA2) Reserved
(0xA1) Reserved
(0xA0) Reserved
(0x9F) Reserved
(0x9E) Reserved
(0x9D) OCR3CH OCR3C15 OCR3C14 OCR3C13 OCR3C12 OCR3C11 OCR3C10 OCR3C9 OCR3C8 page 140
(0x9C) OCR3CL OCR3C7 OCR3C6 OCR3C5 OCR3C4 OCR3C3 OCR3C2 OCR3C1 OCR3CO0 page 140
(0x9B) OCR3BH OCR3B15 OCR3B14 OCR3B13 OCR3B12 OCR3B11 OCR3B10 OCR3B9 OCR3B8 page 140
(0x9A) OCR3BL OCR3B7 OCR3B6 OCR3B5 OCR3B4 OCR3B3 OCR3B2 OCR3B1 OCR3B0 page 140
(0x99) OCR3AH OCR3A15 OCR3A14 OCRB3A13 OCR3A12 OCRB3A11 OCR3A10 OCRB3A9 OCR3A8 page 140
(0x98) OCR3AL OCR3A7 OCR3A6 OCR3A5 OCR3A4 OCR3A3 OCR3A2 OCR3A1 OCR3A0 page 140
(0x97) ICR3H ICR315 ICR314 ICR313 ICR312 ICR311 ICR310 ICR39 ICR38 page 141
(0x96) ICR3L ICR37 ICR36 ICR35 ICR34 ICR33 ICR32 ICR31 ICR30 page 141
(0x95) TCNT3H TCNT315 TCNT314 TCNT313 TCNT312 TCNT311 TCNT310 TCNT39 TCNT38 page 139
(0x94) TCNT3L TCNT37 TCNT36 TCNT35 TCNT34 TCNT33 TCNT32 TCNT31 TCNT30 page 139
(0x93) Reserved
(0x92) TCCR3C FOC3A FOC3B FOC3C - - - - page 139
(0x91) TCCR3B ICNC3 ICES3 - WGM33 WGM32 CS32 CS31 CS30 page 137
(0x90) TCCR3A COMB3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3CO0 WGM31 WGM30 page 134
(0x8F) Reserved
(0x8E) Reserved
(0x8D) OCR1CH OCR1C15 OCR1C14 OCR1C13 OCR1C12 OCR1C11 OCR1C10 OCR1C9 OCR1C8 page 140
(0x8C) OCR1CL OCR1C7 OCR1C6 OCR1C5 OCR1C4 OCR1C3 OCR1C2 OCR1C1 OCR1CO page 140
(0x8B) OCR1BH OCR1B15 OCR1B14 OCR1B13 OCR1B12 OCR1B11 OCR1B10 OCR1B9 OCR1B8 page 140
(0x8A) OCR1BL OCR1B7 OCR1B6 OCR1B5 OCR1B4 OCR1B3 OCR1B2 OCR1B1 OCR1B0 page 140
(0x89) OCR1AH OCR1A15 OCR1A14 OCR1A13 OCR1A12 OCR1A11 OCR1A10 OCR1A9 OCR1A8 page 140
(0x88) OCR1AL OCR1A7 OCR1A6 OCR1A5 OCR1A4 OCR1A3 OCR1A2 OCR1A1 OCR1A0 page 140
(0x87) ICR1TH ICR115 ICR114 ICR113 ICR112 ICR111 ICR110 ICR19 ICR18 page 141
(0x86) ICRIL ICR17 ICR16 ICR15 ICR14 ICR13 ICR12 ICR11 ICR10 page 141
(0x85) TCNT1H TCNT115 TCNT114 TCNT113 TCNT112 TCNT111 TCNT110 TCNT19 TCNT18 page 139
(0x84) TCNTIL TCNT17 TCNT16 TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 page 139
(0x83) Reserved
(0x82) TCCR1C FOC1A FOC1B FOC1C - - - - - page 138
(0x81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 Cs12 CS11 CS10 page 137
(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0O COM1C1 COM1C0 WGM11 WGM10 page 134
(OX7F) DIDR1 - - - - - - AIN1D AINOD page 270
(0_><7E) Dw ABC?D AECBD Aw AEC4D Aﬁ) A%) AEC1D ABCOD Rage 290
(0x7D) Reserved

402 AAT'O0C AN 12 S o —

Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 Page
(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUXO0 page 285
(0x7B) ADCSRB — ACME — — — ADTS2 ADTS1 ADTSO page 289, 267
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 287
(0x79) ADCH -/ ADC9 -/ ADC8 -/ ADC7 -/ ADC6 -/ ADC5 -/ ADC4 ADC9/ADC3 ADC8 / ADC2 page 288
(0x78) ADCL ADC7 / ADC1 | ADC6/ADCO ADC5 / - ADC4 / - ADC3 /- ADC2 /- ADC1 /- ADCO / page 288
(0x77) Reserved
(0x76) Reserved
(0x75) XMCRB XMBK — — — — XMM2 XMM1 XMMO page 32
(0x74) XMCRA SRE SRL2 SRL1 SRLO SRW11 SRW10 SRWO01 SRWO00 page 31
(0x73) Reserved
(0x72) Reserved
(0x71) TIMSK3 = = ICIE3 — OCIE3C OCIE3B OCIE3A TOIE3 page 141
(0x70) TIMSK2 — — — — — — OCIE2A TOIE2 page 160
(0x6F) TIMSK1 — — ICIE1 — OCIE1C OCIE1B OCIE1A TOIE1 page 141
(OX6E) TIMSKO = = = = = = OCIEOA TOIEO page 111
(0x6D) Reserved
(0x6C) Reserved
(0x6B) Reserved
(0x6A) EICRB ISC71 ISC70 1ISC61 1ISC60 ISC51 ISC50 1ISC41 1ISC40 page 93
(0x69) EICRA 1SC31 ISC30 1SC21 I1SC20 ISC11 ISC10 I1SCO1 1SC00 page 92
(0x68) Reserved
(0x67) Reserved
(0x66) OSCCAL — CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO page 41
(0x65) Reserved
(0x64) Reserved
(0x63) Reserved
(0x62) Reserved
(0x61) CLKPR CLKPCE — — - CLKPS3 CLKPS2 CLKPS1 CLKPSO page 43
(0x60) WDTCR — — — WDCE WDE WDP2 WDP1 WDPO page 56

0x3F (0x5F) SREG I T H S \ N z [¢] page 10
0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 page 12
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO page 12
0x3C (0x5C) Reserved
0x3B (0x5B) RAMPZ") - - - - - - - RAMPZ0 page 12
0x3A (0x5A) Reserved
0x39 (0x59) Reserved
0x38 (0x58) Reserved
0x37 (0x57) SPMCSR SPMIE RWWSB — RWWSRE BLBSET PGWRT PGERS SPMEN page 324
0x36 (0x56) Reserved — — — — — — — —
0x35 (0x55) MCUCR JTD — — PUD - - IVSEL IVCE page 63, 72, 301
0x34 (0x54) MCUSR = — — JTRF WDRF BORF EXTRF PORF page 54, 302
0x33 (0x53) SMCR — — — — SM2 SM1 SMO0 SE page 45
0x32 (0x52) Reserved
0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDRO page 297
0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO page 268
0x2F (0x4F) Reserved
0x2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPDO page 173
0x2D (0x4D) SPSR SPIF WCOL — — — — — SPI2X page 173
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO page 171
0x2B (0x4B) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 page 35
0x2A (0x4A) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 page 35
0x29 (0x49) Reserved
0x28 (0x48) Reserved
0x27 (0x47) OCROA OCROA7 OCRO0A6 OCROA5 OCRO0A4 OCROA3 OCRO0A2 OCROA1 OCROAO0 page 111
0x26 (0x46) TCNTO TCNTO7 TCNTO06 TCNTO05 TCNTO04 TCNTO03 TCNTO02 TCNTO1 TCNTOO page 110
0x25 (0x45) Reserved
0x24 (0x44) TCCROA FOCOA WGMO00 COMOA1 COMOAO WGMO01 CS02 CS01 CS00 page 108
0x23 (0x43) GTCCR TSM — — — — — PSR2 PSR310 page 97, 162
0x22 (0x42) EEARH® - - - - EEAR11 EEAR10 EEAR9 EEARS page 21
0x21 (0x41) EEARL EEAR7 EEARG6 EEARS5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO page 21
0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDRO page 22
0x1F (0x3F) EECR — — — — EERIE EEMWE EEWE EERE page 22
0x1E (0x3E) GPIOR0 GPIOR0O7 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIORO1 GPIOR00 page 35
0x1D (0x3D) EIMSK INT7 INT6 INTS INT4 INT3 INT2 INT1 INTO page 94
0x1C (0x3C) ﬂFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTFO Rage 94
0x1B (0x3B) Reserved

A IIIEI% 403

4250G-CAN-09/05

AIMEL

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
0x1A (0x3A) Reserved
0x19 (0x39) Reserved
0x18 (0x38) TIFR3 — — ICF3 — OCF3C OCF3B OCF3A TOV3 page 142
0x17 (0x37) TIFR2 = = = = = = OCF2A TOV2 page 160
0x16 (0x36) TIFR1 = — ICF1 — OCF1C OCF1B OCF1A TOV1 page 142
0x15 (0x35) TIFRO = = = = = = OCFO0A TOVO page 111
0x14 (0x34) PORTG — — — PORTG4 PORTG3 PORTG2 PORTG1 PORTGO page 91
0x13 (0x33) DDRG — - - DDG4 DDG3 DDG2 DDG1 DDGO page 91
0x12 (0x32) PING — — — PING4 PING3 PING2 PING1 PINGO page 91
0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTFO page 90
0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDFO page 90
0xOF (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINFO page 91
0x0E (0x2E) PORTE PORTE7 PORTE6 PORTES PORTE4 PORTE3 PORTE2 PORTE1 PORTEO page 90
0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDEO page 90
0x0C (0x2C) PINE PINE7 PINE6 PINES PINE4 PINE3 PINE2 PINE1 PINEO page 90
0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO page 90
0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO page 90
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO page 90
0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO page 89
0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO page 89
0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO page 89
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO page 89
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO page 89
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO page 89
0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO page 88
0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDAO page 89
0x00 ‘0x20) PINA PINA7 PINAG_ PINAS PINA4 PINA3_ PINA2 PINA1 PINAQ Rage 89
Notes: 1. Address bits exceeding PCMSB (Table 26-11 on page 338) are don’t care.
2. Address bits exceeding EEAMSB (Table 26-12 on page 338) are don’t care.
3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved /O memory addresses
should never be written.
4. 1/O Registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
5. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to Ox1F only.
6. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing 1/0

Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90CAN128 is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

404 ATO0C AN 2S

4250G-CAN-09/05

31. Instruction Set Summary

4250G-CAN-09/05

ATMEL

Mnemonics Operands | Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd < Rd + Rr Z,CNV,H 1
ADC Rd, Rr Add with Carry two Registers Rd« Rd+Rr+C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl «- Rdh:Rdl + K ZCN)\V,S 2
SUB Rd, Rr Subtract two Registers Rd < Rd - Rr Z,C,N,V,H 1
SuBI Rd, K Subtract Constant from Register Rd « Rd-K Z,CNVH 1
SBC Rd, Rr Subtract with Carry two Registers Rd« Rd-Rr-C Z,CN\V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd« Rd-K-C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl <~ Rdh:RdI - K ZCN\V,S 2
AND Rd, Rr Logical AND Registers Rd <~ Rd ¢ Rr Z NV 1
ANDI Rd, K Logical AND Register and Constant Rd <~ Rd e K ZN,V 1
OR Rd, Rr Logical OR Registers Rd < Rd v Rr Z NV 1
ORI Rd, K Logical OR Register and Constant Rd « Rdv K Z NV 1
EOR Rd, Rr Exclusive OR Registers Rd < Rd @ Rr Z NV 1
COM Rd One’s Complement Rd « OxFF — Rd Z,CNV 1
NEG Rd Two’s Complement Rd « 0x00 - Rd Z,CNVH 1
SBR Rd,K Set Bit(s) in Register Rd «~ RdvK ZN,V 1
CBR Rd,K Clear Bit(s) in Register Rd < Rd e (OxFF - K) ZN\V 1
INC Rd Increment Rd < Rd +1 Z NV 1
DEC Rd Decrement Rd < Rd -1 Z NV 1
TST Rd Test for Zero or Minus Rd < Rd ¢ Rd ZN\V 1
CLR Rd Clear Register Rd <« Rd ® Rd ZN,V 1
SER Rd Set Register Rd « OxFF None 1
MUL Rd, Rr Multiply Unsigned R1:R0O «— Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 <~ Rd x Rr ZC 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 <~ Rd x Rr ZC 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 <~ (Rd xRr) << 1 ZC 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 « (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multielz Signed with Unsigned R1:R0 < (Rd x Rr) << 1 EC 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC«PC+k +1 None 2
IJMP Indirect Jump to (Z) PC«Z None 2
JMP k Direct Jump PC « k None 3
RCALL k Relative Subroutine Call PC« PC+k+1 None 3
ICALL Indirect Call to (Z) PC «Z None 3
CALL k Direct Subroutine Call PC <k None 4
RET Subroutine Return PC « STACK None 4
RETI Interrupt Return PC <« STACK | 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd=Rr) PC« PC+2o0r3 None 1/2/3
CP Rd,Rr Compare Rd - Rr Z,NV,CH 1
CPC Rd,Rr Compare with Carry Rd-Rr-C Z,N\V,CH 1
CPI Rd,K Compare Register with Immediate Rd - K Z,N,V,CH 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC <~ PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC« PC+2o0r3 None 1/2/3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC«~ PC +20r3 None 1/2/3
SBIS P,b Skip if Bit in /0 Register is Set if (P(b)=1) PC« PC+2o0r3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC«-PC+k + 1 None 112
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC«PC+k + 1 None 1/2
BREQ k Branch if Equal if Z=1)then PC« PC+k+1 None 12
BRNE k Branch if Not Equal if (Z=0)then PC« PC+k+1 None 1/2
BRCS k Branch if Carry Set if (C=1)then PC« PC+k+1 None 1/2
BRCC k Branch if Carry Cleared if (C=0)then PC« PC+k+1 None 1/2
BRSH k Branch if Same or Higher if (C=0)then PC« PC+k +1 None 1/2
BRLO k Branch if Lower if C=1)then PC« PC+k+1 None 12
BRMI k Branch if Minus if (N=1)then PC« PC+k +1 None 1/2
BRPL k Branch if Plus if (N = 0) then PC «~ PC +k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N® V=0)then PC «— PC +k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N® V=1)then PC« PC+k +1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H=1)then PC« PC+k+1 None 112
BRHC k Branch if Half Carry Flag Cleared if (H=0) then PC« PC +k + 1 None 1/2
BRTS k Branch if T Flag Set if T=1)then PC« PC+k +1 None 12
BRTC k Branch if T Flag Cleared if (T=0)then PC« PC+k+1 None 1/2
BRVS k Branch if Overflow Flag is Set if V=1)then PC« PC+k+1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if (V=0)then PC« PC+k+1 None 1/2
405

AIMEL

Mnemonics Operands Description Operation Flags #Clocks
BRIE k Branch if Interrupt Enabled if (1=1)then PC« PC+k+1 None 1/2
BRID K Bra_nch if InterruEt Disabled if (1=0)then PC« PC+k+1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS
SBI P.b Set Bit in I/O Register I/O(P,b) « 1 None 2
CBI P,b Clear Bit in 1/0O Register 1/0(P,b) - 0 None 2
LSL Rd Logical Shift Left Rd(n+1) < Rd(n), Rd(0) «- 0 ZCNV 1
LSR Rd Logical Shift Right Rd(n) «- Rd(n+1), Rd(7) «- 0 Z,CNV 1
ROL Rd Rotate Left Through Carry Rd(0)«-C,Rd(n+1)« Rd(n),C«Rd(7) Z,C NV 1
ROR Rd Rotate Right Through Carry Rd(7)«-C,Rd(n)<~ Rd(n+1),C«-Rd(0) Z,CNV 1
ASR Rd Arithmetic Shift Right Rd(n) < Rd(n+1), n=0..6 ZCNV 1
SWAP Rd Swap Nibbles Rd(3..0)«Rd(7..4),Rd(7..4)«<Rd(3..0) None 1
BSET s Flag Set SREG(s) « 1 SREG(s) 1
BCLR S Flag Clear SREG(s) < 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T < Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) « T None 1
SEC Set Carry C1 C 1
CLC Clear Carry C«0 C 1
SEN Set Negative Flag N« 1 N 1
CLN Clear Negative Flag N« 0 N 1
SEZ Set Zero Flag Z<«1 z 1
CLZ Clear Zero Flag Z«0 z 1
SEI Global Interrupt Enable |1 | 1
CLI Global Interrupt Disable <0 | 1
SES Set Signed Test Flag S« 1 S 1
CLS Clear Signed Test Flag S« 0 S 1
SEV Set Twos Complement Overflow. Ve 1 \ 1
CLV Clear Twos Complement Overflow V<0 \ 1
SET Set T in SREG T«1 T 1
CLT Clear T in SREG T«0 T 1
SEH Set Half Carry Flag in SREG H«1 H 1
CLH Clear Half Carry Flag in SREG H«0 H 1
DATA TRANSFER INSTRUCTIONS

MoV Rd, Rr Move Between Registers Rd « Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd <~ Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd « K None 1
LD Rd, X Load Indirect Rd « (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd « (X), X « X +1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X« X-1,Rd « (X) None 2
LD Rd, Y Load Indirect Rd « (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd < (Y), Y« Y+1 None 2
LD Rd, -Y Load Indirect and Pre-Dec. Y < Y-1,Rd« (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd « (Y +q) None 2
LD Rd, Z Load Indirect Rd « (2) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd « (2), Z « Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z«Z-1,Rd« (2) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd « (Z+q) None 2
LDS Rd, k Load Direct from SRAM Rd « (k) None 2
ST X, Rr Store Indirect (X) < Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X)« Rr, X« X +1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X« X-1,(X)«<Rr None 2
ST Y, Rr Store Indirect (Y) < Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y)«<Rr,Y«<Y+1 None 2
ST -Y,Rr Store Indirect and Pre-Dec. Y<Y-1,()«Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y +qg) « Rr None 2
ST Z, Rr Store Indirect (Z) < Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z)«Rr,Z«Z+1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z«2Z-1,(Z)«Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z+qg)«Rr None 2
STS k, Rr Store Direct to SRAM (k) < Rr None 2
LPM Load Program Memory RO « (2) None 3
LPM Rd, Z Load Program Memory Rd « (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd « (2), Z « Z+1 None 3
ELPM Extended Load Program Memory RO < (RAMPZ:Z) None 3
ELPM Rd, Z Extended Load Program Memory Rd « (RAMPZ:2) None 3
ELPM Rd, Z+ Extended Load Program Memory and Post-Inc Rd < (RAMPZ:Z), RAMPZ:Z <~ RAMPZ:Z+1 None 3
SPM Store Program Memory (Z) < R1:RO None -

406 AT'O0C AN 12 S o —

4250G-CAN-09/05

Mnemonics Operands Description Operation Flags #Clocks
IN Rd, P In Port Rd « P None 1
ouT P, Rr Out Port P« Rr None 1
PUSH Rr Push Register on Stack STACK « Rr None 2
POP Rd Pop Reqis_ter from Stgck Rd < STACK None 2
MCU CONTROL INSTRUCTIONS

NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

A mEl% 407

4250G-CAN-09/05

32. Ordering Information

AIMEL

(1)

Green

Ordering Code Speed (MHz) Power Supply (V) Package Operation Range Product Marking
AT90CAN128-16Al 16 27-55 64A Industrial (-40° to +85°C) AT90CAN128-IL
AT90CAN128-16MI 16 27-55 64M1 Industrial (-40° to +85°C) AT90CAN128-IL
AT90CAN128-16AU 16 27-55 64A gfe“esr:”a' (-40° to +85°C) AT90CAN128-UL
AT90CAN128-16MU 16 27-55 64M1 Industrial (-40° to +85°C) AT90CAN128-UL

Note: 1. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa-
tion and minimum quantities.

33. Packagi&; Information

Package Type
64A 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
64M1 64-Lead, Quad Flat No lead (QFN)

4250G-CAN-09/05

33.1 TQFP64
64 LEADS Thin Quad Flat Package
PIN 64
R RN RN TRTETREE AT

PIN1—| o -
s =
= INDEX CORNER =3
= =

e LE% %E E1 E
I = =

/\\11:”‘13[

|t —

J
j At A2
- L

c OL~7H Vo])
%w !
A/ paninnimnnnninyas

B
>

MM INCH
SYMBOL| MIN NOM MAX MIN NOM MAX
A 1.20 - - . 047
A1 0.05 - 0.15 . 002 - . 006
A2 0.95 1.00 1.05 . 037 . 039 . 041
D 15.75 16.00 16.25 . 620 . 630 . 640
D1@ | 1390 | 14.00 | 14.10 | .547 . 551 . 555
E 15.75 16.00 16.25 . 620 . 630 . 640
Notes: 1. This package conforms to JEDEC reference MS-026, 2
Variation AEB. E1 13.90 14.00 14.10 . 547 . 551 . 555
2. Dimensions D1 and E1 do not include mold protrusion. B 0.30 - 0.45 . 012 — .018
Allowable protrusmn is 0.25 mm per S|dg. Dlmen5|9ns c 0.09 _ 020 004 _ 008
D1 and E1 are maximum plastic body size dimensions

including mold mismatch. L 0.45 - 0.75 .018 - . 030

3. Lead coplanarity is 0.10 mm maximum. e 0.80 TYP 0315 TYP

A mEl% 409

4250G-CAN-09/05

AIMEL

33.2 QFN64
64 LEADS Quad Flat No lead
D ‘ 5
| $A2%A1
I
o)
INDEX CORNER
+ . : :
0
—t SEATING PLANE
TOP VIEW ol0.08
SIDE VIEW
J
o oo 4 e o4 INDEX CORNER
AR -
% B ‘ §1 MIN [Nom | MAX | MIN [Nom | mAax
= — A |o080 1.00 |. 031 039
— — JIK| 647657667 255].259]. 263
=1 =
=) — D/E| 9.00BSC 354 BSC
=1 =
=1 =
K= + — a1 [ooo] Joos|.oo0] [o002
=1 = N 64
i g A2 [075] [100].020] [030
— — e 0.50 BSC .020 BSC
— — L |040]045]050].016].018]. 020
=t += b |0.17]0.25|0.27 |.007|.010]. 011
P = SRRV FRNRTRNRR =
sac | (I [TCICI LTI ENCTCT D COCT cl i e
T 2 S R S s p EXPOSED DIE
BOTTOM VIEW ATTACH PAD

Note: Compliant JEDEC MO-220

410 ATO90C A N1 2S

A mEl% 411

4250G-CAN-09/05

AIMEL

34. Errata
The revision letter in this section refers to the revision of the AT90CAN128 device.
341 RevC
Rev C (Part marked: MOOCAN128 - 1)
» Power supply current in Power-down mode
* Reset of Timer-2 flags in asynchronous mode
» Miss-functioning when code stack is in XRAM
» CAN transmission after a 3-bit intermission
» Extra consumption in power reduction modes
» Asynchronous Timer-2 wakes up without interrupt
» SPI programming timing
7. Power supply current in Power-down mode
The power supply current in Power-down mode of parts with lot number before A04900 is:
T, =-40°C to +85°C
Symbol | Parameter Condition Min. | Typ. | Max. | Units
WDT enabled, V¢ = 5V 150 MA
| Power Supply Current | WDT disabled, V¢ = 5V 120 HA
e Power-down Mode WDT enabled, Vg = 3V 50 | pA
WDT disabled, V¢ = 3V 40 A
6. Reset of Timer-2 flags in asynchronous mode
In asynchronous mode, a writing in any register of the TIMER-2 (TCCR2A, TCNT2 &
OCR2A) automatically clears TOV2 and OCF2A flags in TFIR register.
Problem fix/workaround
- TOV2: Do not write in Timer-2 registers if TCNT2 is equal to OxFF, 0x00 or 0x01.
- OCF2A: Do not write in Timer-2 registers if TCNT2 and OCR2A differ from -1, 0 or 1.
5. Miss-functioning when code stack is in XRAM
If the stack pointer (SP) targets the XRAM and if the execution of an instruction is split to
serve a rising interrupt, the last operation of this instruction, executed after pushing out the
return address from XRAM, may be disturbed providing wrong data to the system.
Example: - the “OUT” instruction can be executed twice
- the “MOV” instruction can update a register with un-predictable data.
Problem Fix/workaround
Map the code stack in internal SRAM.
4. CAN Transmission after a 3-bit intermission
If a Transmit Message Object (MODb) is enabled while the CAN bus is busy with an on going
message, the transmitter will wait for the 3-bit intermission before starting its transmission.
This is in full agreement with the CAN recommendation.
If the transmitter lost arbitration against another node, two conditions can occur:
- At least one receive MOb of the chip are programmed to accept the incoming message. In
this case, the transmitter will wait for the next 3-bit intermission to retry its transmission.

4250G-CAN-09/05

4250G-CAN-09/05

- No receive MOb of the chip are programmed to accept the incoming message. In this
case the transmitter will wait for a 4-bit intermission to retry its transmission. In this case,
any other CAN nodes ready to transmit after a 3-bit intermission will start transmit before
the chip transmitter, even if their messages have lower priority IDs.

Problem fix/ workaround

Always have a receive MOb enabled ready to accept any incoming messages. Thanks to
the implementation of the CAN interface, a receive MOb must be enable at latest, before the
15t bit of the DLC field. The receive MOb status register is written (RXOK if message OK)
immediately after the 6th bit of the End of Frame field. This will leave in CAN2.0A mode a
minimum 19-bit time delay to respond to the end of message interrupt (RXOK) and re-
enable the receive MOb before the start of the DLC field of the next incoming message. This
minimum delay will be 39-bit time in CAN2.0B. See CAN2.0A CAN2.0B frame timings
below.

T1 T2

CAN 2.0A lqi 19-bit time minimum 4(>l
(RXOK)
U ; CRC|onJACK] T T T T T 1 T 1 T1-bit identifier abtoic |
| 15-bit CRC |de‘_|ACK|de‘_| b . ol ident RTR[IDE| ro | 4PILDLC

4 EII:‘% > élte:\}fi > End of Frame > Imer-4> 4 Arbitration > Control >

mission Field Field

T1 T2

l<} 39-bit time minimum {>l
(RXOK)

U . CRC| ack] T T o 11-bit base identifier 18-bit identifier extension 4-bit DLC =T
| 15-bit CRC |de|.|ACK|deI.| 7 bits abis 1°9F IDT26..18 SRR| IDE ID17.0 RTR| 1| 0| pica.o

CRC ACK Inter- Arbitration Control
< Fod P Re < —D<t I t _— —
Field Field End of Frame >t Field Field

mission

Workaround implementation

The workaround is to have the last MOb (MOb14) as "spy" enabled all the time; it is the MOb
of lowest priority. If a MOb other than MOb14 is programmed in receive mode and its accep-
tance filter matches with the incoming message ID, this MOb will take the message. MOb14
will only take messages than no other MObs will have accepted. MOb14 will need to be re-
enabled fast enough to manage back to back frames. The deadline to do this is the begin-
ning of DLC slot of incoming frames as explained above.

Minimum code to insert in CAN interrupt routine:

__interrupt void can_int_handl er(void)

{
if ((CANSI T1 & 0x40) == 0x40)/* M14 interrupt (SIT14=1) */
{
CANPAGE = (OxOE << 4); [/* select Mb14 */
CANSTMOB = 0x00; /* reset Mbl4 status */
CANCDMOB = 0x88; /* reception enable */
}
}

3. Extra consumption in power reduction modes

When AVCC is selected as voltage reference for ADC (REFS[1,0]=0,1), an extra consump-
tion close to 30 pA (5.0V/25°C) appears in power reduction modes.

A IIIEI% 413

AIMEL

Problem fix/ workaround
Switch from AVCC to AREF pin (REFS[1,0]=0,0) before enabling one of the power reduction
modes.

2. Asynchronous Timer-2 wakes up without interrupt
The asynchronous timer can wake from sleep without giving interrupt. The error only occurs
if the interrupt flag(s) is cleared by software less than 4 cycles before going to sleep and this
clear is done exactly when it is supposed to be set (compare match or overflow). Only the
interrupts flags are affected by the clear, not the signal witch is used to wake up the part.

Problem fix/workaround
No known workaround, try to lock the code to avoid such a timing.

1. SPI programming timing
When the fuse high byte or the extended fuse byte has been written, it is necessary to wait
the end of the programming using “Poll RDY/BSY” instruction. If this instruction is entered
too speedily after the “Write Fuse” instruction, the fuse low byte is written instead of high
fuse /extended fuse byte.

Problem fix/workaround
Wait sometime before applying the “Poll RDY/BSY” instruction. For 8MHz system clock,
waiting 1 ps is sufficient.

342 RevA&B
- Rev A (Part marked: M128CAN11 - EL)

- Rev B (Part marked: 90CAN128 - EL)
» Sporadic CAN error frames
» Spike on TWI pins when TWI is enabled
» ADC differential gain error with x1 & x10 amplification
» Asynchronous Timer-2 wakes up without interrupt
* SPI programming timing
» IDCODE masks data from TDI input

6. Sporadic CAN error frames
When BRP = 0 the CAN controller may desynchronize and send one error frame to ask for
the retransmission of the incoming frame, even though it had no error.
This is likely to occur with BRP = 0 after long inter frame periods without synchronization
(low bus load). The CAN macro can still properly synchronize on frames following the error.

Problem fix/workaround
Set BRP greater than 0 in CANBT1.

5. Spike on TWI pins when TWI is enabled
100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/workaround
No known workaround, enable AT90CAN128 TWI first versus the others nodes of the TWI
network.

414 ATO0C AN 2S

4250G-CAN-09/05

ADC differential gain error with x1 & x10 amplification
Gain error of - 4 Isb has been characterized on the part.

Problem fix/workaround
Software adjustment.

Asynchronous Timer-2 wakes up without interrupt

The asynchronous timer can wake from sleep without giving interrupt. The error only occurs
if the interrupt flag(s) is cleared by software less than 4 cycles before going to sleep and this
clear is done exactly when it is supposed to be set (compare match or overflow). Only the
interrupts flags are affected by the clear, not the signal witch is used to wake up the part.

Problem fix/workaround
No known workaround, try to lock the code to avoid such a timing.

SPI programming timing

When the fuse high byte or the extended fuse byte has been written, it is necessary to wait
the end of the programming using “Poll RDY/BSY” instruction. If this instruction is entered
too speedily after the “Write Fuse” instruction, the fuse low byte is written instead of high
fuse /extended fuse byte.

Problem fix/workaround
Wait sometime before applying the “Poll RDY/BSY” instruction. For 8MHz system clock,
waiting 1 ps is sufficient.

IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem fix / workaround

- If AT90CAN128 is the only device in the scan chain, the problem is not visible.

- Select the Device ID Register of the AT90CAN128 by issuing the IDCODE instruction or by
entering the Test-Logic-Reset state of the TAP controller to read out the contents of its
Device ID Register and possibly data from succeeding devices of the scan chain. Issue
the BYPASS instruction to the AT90CAN128 while reading the Device ID Registers of pre-
ceding devices of the boundary scan chain.

- If the Device IDs of all devices in the boundary scan chain must be captured simulta-
neously, the AT90CAN128 must be the first device in the chain.

A IIIEI% 415

AIMEL

35. Datasheet Change Log for AT90CAN128

Please note that the referring page numbers in this section are referring to this document.
The referring revision in this section are referring to the document revision.

35.1 Changes from 4250F-04/05 to 4250G-09/05

1. Added “Pin Thresholds and Hysteresis” on page 391 in section “AT90CAN128 Typical
Characteristics” .

2. Updated Icc Power -down in section “Electrical Characteristics” on page 361.
3. Changed Datasheet templates.
4. Updated Errata device REV C.

35.2 Changes from 4250E-12/04 to 4250F-04/05

Added “Decoupling Capacitors” on page 379.

Updated curves in section “AT90CAN128 Typical Characteristics” on page 380.
Updated characteristics in section “Electrical Characteristics” on page 361.
Removed “Preliminary” disclaimer.

Updated Errata device REV C.

Changed Ordering Information.

@0k wh -~

35.3 Changes from 4250D-07/04 to 4250E-12/04

1. Information on PHS2 segment of CAN bit timing (See “CAN Bit Timing” on page 234.)
(See “Baud Rate” on page 240.) (See “CAN Bit Timing Register 3 - CANBT3” on page

256.).

2. Information on capacitors when using 32.768 KHz crystal on XTAL1 & 2 and TOSC1 & 2
pins.

3. Correction Table 26-15 on page 347 in section “SPI Serial Programming”

4. Updated RESET, BOD & Bandgap characteristics in section “System Control and Reset” on
page 50.

5. Added curves in section “AT90CAN128 Typical Characteristics” on page 380.

6. Updated characteristics in section “Electrical Characteristics” on page 361.

7. Updated Errata device REV C.

8. Changed Ordering Information.

35.4 Changes from 4250C-03/04 to 4250D-07/04
1. Updated Errata device REV A & B.

35.5 Changes from 4250B-02/04 to 4250C-03/04
1. Changed part number to AT90CAN128.
2. Changed Ordering Information.

416 ATO0C AN 12 S e —

35.6 Changes from 4250A-10/03 to 4250B-02/04

Modified Product Ordering Information.

Added Errata section.

Updated Section 24. "Boundary-scan IEEE 1149.1 (JTAG)” on page 298
Updated assembler examples.

hPoN -~

A mEl% 417

4250G-CAN-09/05

AIMEL

418 ATO0C AN 12 S s —

L - 1 (7 4 =X S 1
A 9 1=T=T o7] o1 [o) o R 2
21 BIOCK DIagIrameeeeiiiiiiiee e 3
2.2 Pin Configurationsoiiiiiiiiii s 4
2.3 Pin DESCIIPLIONS ...t e e e e e e e e e e e e e e aaeeas 5
3 About Code EXamMPIEScccoemmmiimmeieeeeeecesscccsssssssnssssnnnnnnsnsssssssssas 7
B AVR CPU COF@ ...ttt e e e e e e e e e e e e aaaannnans 8
4.1 INTrOTUCTION ..t s 8
4.2 ArchiteCtural OVEIVIEWuiiiiiiiiiiiii ettt 8
4.3 ALU — Arithmetic LOGIC UNItcoooiiiiiiiiiii e 9
4.4 Status REGISIEr .. 10
4.5 General Purpose Register File ... 11
4.6 STACK POINEET .. 12
4.7 Instruction EXecution TiMINGoccueeeiiiiiiiiie e 13
4.8 Reset and Interrupt Handlingc.oooiiiiiiii e 14
L =Y 1 £ o T o =X SRR 17
5.1 In-System Reprogrammable Flash Program Memorycccccvviieeiiiiiiinenn. 17
5.2 SRAM Data MEMOTY ...t e e 18
5.3 EEPROM Data MEMOIYcoiiiiiiiieiiiiiee ettt 21
54 [/O MEBMOIY ittt ettt e et e e e e e e 26
5.5 External Memory Interfaceccccooiiiiiiiii e 26
5.6 General Purpose I/O REGIStErSccoiiiiiiiiiiiiiiiie e 35
(TS VY =T 1 I 0 (o Yo G RRRRRRI 36
6.1 Clock Systems and their Distribution ... 36
6.2 ClOCK SOUICES ..ottt e et e e e st e e e e enraeeeeeaans 37
6.3 Default CIOCK SOUICEooiiiiiiiiiie e 37
6.4 Crystal OSCillatorooiiiiieie e 38
6.5 Low-frequency Crystal OSCIllator ... 39
6.6 Calibrated Internal RC OsCillatorcooooiiiiiiiiii e 40
6.7 EXIErNal CIOCK ... 41
6.8 Clock OUIPUL BUFFETcooiiiiiiiie e 42
6.9 Timer/Counter2 OSCIllatoroooiuiiiiiiii e 42
6.10 System ClOCK PreSCalerooiiiiiiiiiii e 43
7 Power Management and Sleep Modeseeeueeeeceeveerseeensnnnnnnnnnnnns 45

ATMEL i

4250G-CAN-09/05

71 [AIE MOAE ...ttt sttt st eeas 46
7.2 ADC Noise Reduction MOAEccoiuiiiiiiiiiiee e 46
7.3 Power-down MOAEoooiiiiiiiii e 46
7.4 POWEI-SAVe MOGE ..o 46
7.5 StANADY MOGE ... 47
7.6 Minimizing Power ConsumMpPtionoooiiiiiiiiie e 47
8 System Control and ReSetccooveemmmmmmmmmeeeeiiiiiissssssssssssssssssssnnnnnnns 50
8.1 RSB e 50
8.2 Internal Voltage REfEreNCecccuueiiiiiiiiiiii et 55
8.3 Watchdog TIMEr ... e e e e 56
8.4 Timed Sequences for Changing the Configuration of the Watchdog Timer 58
L I [11 (=T g gV o 59
9.1 Interrupt Vectors in ATOOCANT28eeeiiiiiieee e 59
9.2 Moving Interrupts Between Application and Boot Spacecccccoeccvvvveeennnen. 63
A 0 oo o £ 65
101 INFOAUCHION ..o 65
10.2 Ports as General Digital 1/Occ.eoiiiiiiiiiiie e 66
10.3 Alternate Port FUNCHONScoooiiiiiiii e 70
10.4 Register Description for I/O-Portscccooeiiiiiiiiiiiiiee e 88
11 External INterrupts ... meeeeeeiieeee e eee e s e s s en e 92
12 Timer/Counter3/1/0 Prescalersccoouvvveeeeeememmmmemmmmmmsssssnssssssisssas 95
T2.1 OVEIVIEW ..ottt ettt ettt e b e e b e bt e e e st e e e sabe e e e bt e e e eneeas 95
12.2 Timer/Counter0/1/3 Prescalers Register Descriptionccccccevvcivieeeiiiinennnn. 97
13 8-bit Timer/Counter0 wWith PWM ...t 98
T30 FEALUMES .ot 98
T3.2 OVEIVIEW ..ottt ettt et e bt e bt e e e st e e e snbe e e s bt e e e nnneas 98
13.3 Timer/Counter CIOCK SOUICESociiiiiiiiiiiiiiie e 99
134 Counter UNItoeeiiiiie e 99
13.5 Output Compare UNitoooiiiiiiiiee e 100
13.6 Compare Match Output Unitoveiiiiiiiiiiiiiieeeeeeee e 102
13.7 Modes Of OPErationcoooiiiiiiiiiiieeee e 103
13.8 Timer/Counter Timing Diagramscocciiieiiiiiirie e 107
13.9 8-bit Timer/Counter Register Descriptionccceeeeviiiiiiiiiiiiiiiiieeeeeeee. 108
14 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3) 112
i ATI0CAN128 m——————

4250G-CAN-09/05

T4 FEALUMES ..ot 112
T4.2 OVEIVIEW ..ottt ettt b ettt e et s e e sb e e e enb e e e sabeeesnaeeenes 112
14.3 Accessing 16-bit Registers ... 115
14.4 Timer/Counter CIOCK SOUICEScciiuiiiiiiiiiiiiie e 118
T4.5 Counter UNIt ..o 119
14.6 Input Capture UNitcooooiiiiii e 120
14.7 Output Compare UNItScooiiiiiiiiieiieee e 122
14.8 Compare Match Output Unitooveiiiiiiiiiiiiieeee e 124
14.9 Modes Of OPErationcoooiiiiiiiiiieee e 125
14.10 Timer/Counter Timing Diagramsccoocciiiieiiiiiiiee e 133
14.11 16-bit Timer/Counter Register Descriptionccccoeciiiieeiiiie e, 134
15 8-bit Timer/Counter2 with PWM and Asynchronous Operation 144
T80 FEALUMES .ot 144
T5.2 OVEIVIEW ..ottt b ettt ettt e s e e s bte e e eabe e e sabe e e snaeeeans 144
15.3 Timer/Counter CIOCK SOUICESccoiuiiiiiiiiiiiie e 146
15.4 Counter UNItoeeiiiiiee e 146
15.5 Output Compare UNitoooiiiiiiiiiiiie e 147
15.6 Compare Match Output Unitovvieiiiiiiiiiiiieeeeeeeeeeeeeeeee 148
15.7 Modes Of OPErationocooiiiiiiiiiieeee e 149
15.8 Timer/Counter Timing Diagramsoccciiieiiiiiiiee e 153
15.9 8-bit Timer/Counter Register Descriptioncccceeeeeieiiiiiiiiiiiiiiieeeeeeeeee 155
15.10 Asynchronous operation of the Timer/Counter2cccccoeviiiveieiicinee e, 158
15.11 Timer/Counter2 PreSCaleroccoiiiiiiiiiiieiiee e 161
16 Output Compare Modulator - OCMeeeeeeeeeeeeeeeeeeeeeereeseenennaas 163
TB.T OVEIVIEW ..ottt ettt s bt e s bt e e e sab e e e sabe e e snreeeaes 163
16.2 DESCHPLON oot ———— 163
17 Serial Peripheral Interface — SPIoeeeeeeeeccvcceneeaeenes 166
P70 FEALUMES .ot e e 166
17.2 SS PN FUNCHONAILY ..ot e ettt eeeee et es s e e e eeeeeeens 170
17.3 Data MOUES ... e 173
18 USART (USARTO0 a@nd USART) ettt 175
T80 FEALUMES .. 175
T8.2 OVEIVIEW ..ottt ettt ettt ettt e st e st e e e aab e e e sabe e e snreeanes 175
18.3 DUAI USART ..ottt ettt ettt et et sae e eeeesneeeeeeas 175
18.4 ClOCK GENEIAtIONocueiiiiiiiiiiie ettt 177

A IIIEI% i

4250G-CAN-09/05

18.5 Serial Framecociiiiiiiiiii e e 179
18.6 USART INItialiZationcccooiiiiiiieiiicee e 180
18.7 Data Transmission — USART TranSmitterccccceiiiiiiiiiieiniie e 181
18.8 Data Reception — USART RECEIVETcccoiiiiiiiiiiiiciiee e 184
18.9 Asynchronous Data Reception ... 188
18.10 Multi-processor Communication Modeccoccciiiiiiiiiiiiieeeeeeeceecieeee 191
18.11 USART Register DesCriptioncccooviiiiiiieeiiiiee e 193
18.12 Examples of Baud Rate Settingccccoocuviiieiiiie e 198
19 Two-wire Serial INterfaceoooeveveevvcciiieeeeeeeeeeeeeeee s 202
TO1 FEALUMES .o 202
19.2 Two-wire Serial Interface Bus Definitionccooceiiiiii e 202
19.3 Data Transfer and Frame Formatccccooiiiiiiiiinii e 203
19.4 Multi-master Bus Systems, Arbitration and Synchronization 205
19.5 Overview of the TWI MOodUIEcooiiiiiiiiiiiii e 207
19.6 TWI Register DescCription ... 210
19.7 USING the TWI et 213
19.8 TransmiSSION MOUEScoiiuiiiiiiiiiiii e 216
19.9 Multi-master Systems and Arbitration ... 230
20 Controller Area Network = CANeeeeemmeeeeeeeeieeeeeesssssssss e 232
20,1 FRAMUIES ..o 232
20.2 CAN PIrOtOCOIcooiiiiiiiiieite ettt 232
20.3 CAN CONIOIIET ..coiiiieieeeee et 238
b0 07 N V@7 o = o T SR 239
20.5 MeSSAQE ODJECES ...uuviiieiiiiiiiie ettt et e e e e 241
b0 LG B 07 NV I T 1Y SRR 244
20.7 Error ManagemeNtoouiiiiiiiiiiiiie it a e e e e e 245
20.8 INTEITUPES ... e e e e e e e e e e e ae 247
20.9 CAN Register DesCriptionccc.uuuieiiiiiiaiaea e 249
20.10 General CAN REQGISIEISccooiiiiiiiiiieeeeeee e 250
20.11 MOD REGISIETS ...ooiiiiiiiee ittt ettt e e e e e e s s eee e e s annneeae s 259
20.12 Examples of CAN Baud Rate Settingccccoccveiviiiiiiiiieiiee e, 264
21 Analog COMPAratorccccccevvvssssssmemmmnnnnensnssssssssssssssssssssssssssssssssnnes 267
271 OVEIVIEW ..eiiiiiiietit ettt ettt et e et b et e e abe e e e eabe e e sabeeesbeeesnes 267
21.2 Analog Comparator Register Descriptionccccuueiiieiiiiiiiiiiieeeeeeeeee, 267
21.3 Analog Comparator Multiplexed Inputccoiiiiiiie e 269
iv ATI0CAN128 m——————

4250G-CAN-09/05

22 Analog to Digital Converter = ADCooeeeeeeeeeeeiiiicicicccccccsssssssnnnenens 271
221 FEAMUIES ..ot 271
D7 A © | o T - (o] o SRR 272
22.3 Starting @ CONVEISIONuuiiiiiiiiiiii et 273
22.4 Prescaling and Conversion TIMINGccooiiiiiiiiniiiii e 274
22.5 Changing Channel or Reference Selectionccccoiiiiiiiiiiiiiei e 277
226 ADC NOISE CANCEIET ...ttt 278
227 ADC Conversion RESUILooiiiiiiiiiiiiie e 282
22.8 ADC Register DescCriplionceeeiiiiiiiiiiiiiie e 285
23 JTAG Interface and On-chip Debug Systemccccccevvvvivinueeennnns 291
231 FEAMUIES ..o 291
23.2 OVEIVIEW ottt e e ettt e e e a bt e e e e e e e e anree s 291
23.3 TeSt ACCESS POrt — TAP ..o 291
234 TAP CONMIOIEE .o 294
23.5 Using the Boundary-scan Chainccccooiiiiiiiiiiiiiiei e 295
23.6 Using the On-chip Debug SyStemcooiiiiiiiiiiiii e 295
23.7 On-chip Debug Specific JTAG Instructionscccoooiiiiiiiiiiiiiiiieee, 296
23.8 On-chip Debug Related Register in I/O Memoryccoocceeiiiiiieeiiiniiieeeene 297
23.9 Using the JTAG Programming Capabilitiescccccoiiiiiiiiiiiiiieee, 297
23.10 BiblIOGrapny ..oeeeieiiieiie e 297
24 Boundary-scan IEEE 1149.1 (JTAG)cooeeemmmmmeeeeeeeeeeecccccssssssssssssssnas 298
241 FEAMUIES ..ooiiitieie e 298
24.2 SyStEM OVEIVIEWeeiiiiiiiiiiii ettt e e e 298
243 Data ReGiStersc.ueiiiiiiiiiii e 298
24.4 Boundary-scan Specific JTAG INStructionsoccieiiiiiiiiiiiiiie e 300
245 Boundary-scan Related Register in I/O Memoryccccocciiiiiiiiieniiieeen, 301
246 Boundary-sCan Chaincoooiiiiiiiiiiiiiiiee e 302
247 AT90CAN128 Boundary-scan Ordercccccceeeieiiiiiiiieiiiieee e 312
24.8 Boundary-scan Description Language Filesccccooiiiiiiiiiiiiieeeee 318
25 Boot Loader Support — Read-While-Write Self-Programming 319
25,1 FEAMUIES ..ot 319
25.2 Application and Boot Loader Flash Sectionsccccccceviiiiiiiiiiiiiiiiiieeeeeeee. 319
25.3 Read-While-Write and No Read-While-Write Flash Sectionscccc..... 319
254 Boot Loader LOCK BitSooiiiiiiiiiiiiiiiie e 322
25.5 Entering the Boot Loader Programocceeeiiiiiiiiiee e 323

4250G-CAN-09/05

AIMEL

25.6 Addressing the Flash During Self-Programmingcccocooviiiiiiiineeiiiiieenn, 325
25.7 Self-Programming the FIash ..o 326
26 Memory Programmlingccccoooossssssmmmmmmmmmmmmmmssmmmmmssssssssssssssssssssssnnes 333
26.1 Program and Data Memory LOock BitScoooiiiiiiiiiiiiiieceee e, 333
26.2 FUSE BitS .oeiiiiiiiiiiie it 334
26.3 SIgNAture BYLEScuveeiieiiiiiiie et 336
26.4 Calibration BYLEcooiiiiiiiiii e 336
26.5 Parallel Programming OVEIVIEWcccueeiiiiiiiiiiasiiiiieeeseiieee e seeeeee s nneneeeens 336
26.6 Parallel Programmingcoooiiiiiiiiieiieee e e e 338
26.7 SPI Serial Programming OVEIVIEWccccueiieiiiiiiieeeiiiieieeeesiiieee e e snieeee e 344
26.8 SPI Serial Programmingcccceeieiiiiiiiie e ciiiee e seeeee e e e annaeeee s 346
26.9 JTAG Programming OVEIVIEWcceeieeeiiiuiieieeiiiieieeessieeeeaessnseeeeessnnsneeeeans 349
27 Electrical CharacteriStiCsccoovoemmmmmmmmmmmmmmmiiiisisssssssssssssssssssssnnnnns 361
27.1 Absolute Maximum Ratings™ooviiiiiiiiiie e 361
27.2 DC CharacteriStiCSccoiuieiiiiieiiie ittt 361
27.3 External Clock Drive CharacteriStiCsooccveiiiiiiiiiiiiiiii e 363
27.4 Maximum SPeed VS. VCCouiiiiiiiiieeiee et 364
27.5 Two-wire Serial Interface Characteristicsccccoovviiiiiiiniii e 365
27.6 SPI Timing CharacteriStiCseuuiiiiuiiiieiiiiiiee e 366
27.7 CAN Physical Layer CharacteristiCsccccuieiiiiiiiiiiiiieeeeeee e 368
27.8 ADC CharacCteriStiCSc.uieiiiieiiiiieiiee et 369
27.9 External Data Memory Characteristicsccceoviiiiiiiiiiiiiie e 371
27.10 Parallel Programming CharacteristiCscccuviiiiiiiiiiiiieeeeeeee, 376
28 Decoupling Capacitorscooummmmmmeemmeeieeiciesisssseesseenennnmss s 379
29 AT90CAN128 Typical CharacteriStiCscccccevvvivrvvvccsiviiiiiissneennnnns 380
29.1 Active SUPPIly CUITENT ... e e e 380
29.2 Idle SUPPLY CUIENT ... e e e e e 383
29.3 Power-down SUpply CUITENTeiiiiiiiiiiee et 385
29.4 Power-save SUPPIY CUMENLeeeiiiiiiiiiiieeccceee e 386
29.5 Standby SUPPIY CUITENToiiiiiiiiiee e e e eeeeee e 387
29.6 PN PUIFUD woeeie ettt 387
29.7 Pin Driver Strength ... 389
29.8 Pin Thresholds and HySteresis ... 391
29.9 BOD Thresholds and Analog Comparator Offsetcccccccvveeiiiiiieeeniiiieenn, 393
29.10 Internal OsCillator SPEEAeeiiiiiiiiiiiiieiice e 395
vi ATI0CAN128 m——————

4250G-CAN-09/05

29.11 Current Consumption of Peripheral Unitsc.cccoriiiiiiiiiicie e 397
29.12 Current Consumption in Reset and Reset Pulse Widthc..l. 399
30 RegiSter SUMMAIYcoouviieeiiiiiiiisssssssssssennnnnnseess s s ssssssssssssssssssssssssss 401
31 Instruction Set SUMMALIYccoovvvvemmmmmemieeeeneeeiiissssssssssssssssssssssssnnnnns 405
32 Ordering INfOrmMationccoovvvsieemmmmmieieeeeeeeesssssssss s s ssssssssnnnnnnes 408
33 Packaging INformationccoovvemmmmmmmmmmmnnmiisiiisise s 408
331 TQFPBA ..t 409
332 QFNBA .o e 410
B) 4 - 1 - R 412
34T REV C e 412
34.2 REV A & B e 414
35 Datasheet Change Log for ATIOCANT28ooeeevvvvccsseeeeeens 416
35.1 Changes from 4250F-04/05 t0 4250G-09/05ccccoiiiiieiiiieiiiiee e 416
35.2 Changes from 4250E-12/04 t0 4250F-04/05cocociiiiiiiiiie e 416
35.3 Changes from 4250D-07/04 t0 4250E-12/04cocoeiiiiiiiiiiie e 416
35.4 Changes from 4250C-03/04 t0 4250D-07/04ccoceeeiiimeeiiiee e 416
35.5 Changes from 4250B-02/04 t0 4250C-03/04cccoeiiiieiiniieeiiiee e 416
35.6 Changes from 4250A-10/03 t0 4250B-02/04cccceeiiieiiniieeiiiee e 417

A mEl% vii

4250G-CAN-09/05

AIMEL

Y R

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

RF/Automotive

Theresienstrasse 2
Postfach 3535

74025 Heilbronn, Germany
Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

Chinachem Golden Plaza Fax: (33) 4-76-58-34-80
77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369
1150 East Cheyenne Mtn. Blvd.

Japan Colorado Springs, CO 80906

9F, Tonetsu Shinkawa Bldg. Tel: 1(719) 576-3300
1-24-8 Shinkawa Fax: 1(719) 540-1759

Chuo-ku, Tokyo 104-0033 . .
Japan Scottish Enterprise Technology Park

Tel: (81) 3-3523-3551 Maxwell Building

Fax: (81) 3-3523-7581 East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof are registered trademarks, and Everywhere You Are® are
the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

@ Printed on recycled paper.

4250G-CAN-09/05 /xM

	1. Features
	2. Description
	2.1 Block Diagram
	2.2 Pin Configurations
	2.3 Pin Descriptions
	2.3.1 VCC
	2.3.2 GND
	2.3.3 Port A (PA7..PA0)
	2.3.4 Port B (PB7..PB0)
	2.3.5 Port C (PC7..PC0)
	2.3.6 Port D (PD7..PD0)
	2.3.7 Port E (PE7..PE0)
	2.3.8 Port F (PF7..PF0)
	2.3.9 Port G (PG4..PG0)
	2.3.10 RESET
	2.3.11 XTAL1
	2.3.12 XTAL2
	2.3.13 AVCC
	2.3.14 AREF

	3. About Code Examples
	4. AVR CPU Core
	4.1 Introduction
	4.2 Architectural Overview
	4.3 ALU - Arithmetic Logic Unit
	4.4 Status Register
	4.5 General Purpose Register File
	4.5.1 The X-register, Y-register, and Z-register
	4.5.2 Extended Z-pointer Register for ELPM/SPM - RAMPZ

	4.6 Stack Pointer
	4.7 Instruction Execution Timing
	4.8 Reset and Interrupt Handling
	4.8.1 Interrupt Behavior
	4.8.2 Interrupt Response Time

	5. Memories
	5.1 In-System Reprogrammable Flash Program Memory
	5.2 SRAM Data Memory
	5.2.1 SRAM Data Access
	5.2.2 SRAM Data Access Times

	5.3 EEPROM Data Memory
	5.3.1 EEPROM Read/Write Access
	5.3.2 The EEPROM Address Registers - EEARH and EEARL
	5.3.3 The EEPROM Data Register - EEDR
	5.3.4 The EEPROM Control Register - EECR
	5.3.5 Preventing EEPROM Corruption

	5.4 I/O Memory
	5.5 External Memory Interface
	5.5.1 Overview
	5.5.2 Using the External Memory Interface
	5.5.3 Address Latch Requirements
	5.5.4 Pull-up and Bus-keeper
	5.5.5 Timing
	5.5.6 External Memory Control Register A - XMCRA
	5.5.7 External Memory Control Register B - XMCRB
	5.5.8 Using all Locations of External Memory Smaller than 64 KB
	5.5.9 Using all 64KB Locations of External Memory

	5.6 General Purpose I/O Registers
	5.6.1 General Purpose I/O Register 2 - GPIOR2
	5.6.2 General Purpose I/O Register 1 - GPIOR1
	5.6.3 General Purpose I/O Register 0 - GPIOR0

	6. System Clock
	6.1 Clock Systems and their Distribution
	6.1.1 CPU Clock - clkCPU
	6.1.2 I/O Clock - clkI/O
	6.1.3 Flash Clock - clkFLASH
	6.1.4 Asynchronous Timer Clock - clkASY
	6.1.5 ADC Clock - clkADC

	6.2 Clock Sources
	6.3 Default Clock Source
	6.4 Crystal Oscillator
	6.5 Low-frequency Crystal Oscillator
	6.6 Calibrated Internal RC Oscillator
	6.6.1 Oscillator Calibration Register - OSCCAL

	6.7 External Clock
	6.8 Clock Output Buffer
	6.9 Timer/Counter2 Oscillator
	6.10 System Clock Prescaler
	6.10.1 Clock Prescaler Register - CLKPR

	7. Power Management and Sleep Modes
	7.0.1 Sleep Mode Control Register - SMCR
	7.1 Idle Mode
	7.2 ADC Noise Reduction Mode
	7.3 Power-down Mode
	7.4 Power-save Mode
	7.5 Standby Mode
	7.6 Minimizing Power Consumption
	7.6.1 Analog to Digital Converter
	7.6.2 Analog Comparator
	7.6.3 Brown-out Detector
	7.6.4 Internal Voltage Reference
	7.6.5 Watchdog Timer
	7.6.6 Port Pins
	7.6.7 JTAG Interface and On-chip Debug System

	8. System Control and Reset
	8.1 Reset
	8.1.1 Resetting the AVR
	8.1.2 Reset Sources
	8.1.3 Power-on Reset
	8.1.4 External Reset
	8.1.5 Brown-out Detection
	8.1.6 Watchdog Reset
	8.1.7 MCU Status Register - MCUSR

	8.2 Internal Voltage Reference
	8.2.1 Voltage Reference Enable Signals and Start-up Time
	8.2.2 Voltage Reference Characteristics

	8.3 Watchdog Timer
	8.3.1 Watchdog Timer Control Register - WDTCR

	8.4 Timed Sequences for Changing the Configuration of the Watchdog Timer
	8.4.1 Safety Level 1
	8.4.2 Safety Level 2

	9. Interrupts
	9.1 Interrupt Vectors in AT90CAN128
	9.2 Moving Interrupts Between Application and Boot Space
	9.2.1 MCU Control Register - MCUCR

	10. I/O-Ports
	10.1 Introduction
	10.2 Ports as General Digital I/O
	10.2.1 Configuring the Pin
	10.2.2 Toggling the Pin
	10.2.3 Switching Between Input and Output
	10.2.4 Reading the Pin Value
	10.2.5 Digital Input Enable and Sleep Modes
	10.2.6 Unconnected Pins

	10.3 Alternate Port Functions
	10.3.1 MCU Control Register - MCUCR
	10.3.2 Alternate Functions of Port A
	10.3.3 Alternate Functions of Port B
	10.3.4 Alternate Functions of Port C
	10.3.5 Alternate Functions of Port D
	10.3.6 Alternate Functions of Port E
	10.3.7 Alternate Functions of Port F
	10.3.8 Alternate Functions of Port G

	10.4 Register Description for I/O-Ports
	10.4.1 Port A Data Register - PORTA
	10.4.2 Port A Data Direction Register - DDRA
	10.4.3 Port A Input Pins Address - PINA
	10.4.4 Port B Data Register - PORTB
	10.4.5 Port B Data Direction Register - DDRB
	10.4.6 Port B Input Pins Address - PINB
	10.4.7 Port C Data Register - PORTC
	10.4.8 Port C Data Direction Register - DDRC
	10.4.9 Port C Input Pins Address - PINC
	10.4.10 Port D Data Register - PORTD
	10.4.11 Port D Data Direction Register - DDRD
	10.4.12 Port D Input Pins Address - PIND
	10.4.13 Port E Data Register - PORTE
	10.4.14 Port E Data Direction Register - DDRE
	10.4.15 Port E Input Pins Address - PINE
	10.4.16 Port F Data Register - PORTF
	10.4.17 Port F Data Direction Register - DDRF
	10.4.18 Port F Input Pins Address - PINF
	10.4.19 Port G Data Register - PORTG
	10.4.20 Port G Data Direction Register - DDRG
	10.4.21 Port G Input Pins Address - PING

	11. External Interrupts
	11.0.1 External Interrupt Control Register A - EICRA
	11.0.2 External Interrupt Control Register B - EICRB
	11.0.3 External Interrupt Mask Register - EIMSK
	11.0.4 External Interrupt Flag Register - EIFR

	12. Timer/Counter3/1/0 Prescalers
	12.1 Overview
	12.1.1 Internal Clock Source
	12.1.2 Prescaler Reset
	12.1.3 External Clock Source

	12.2 Timer/Counter0/1/3 Prescalers Register Description
	12.2.1 General Timer/Counter Control Register - GTCCR

	13. 8-bit Timer/Counter0 with PWM
	13.1 Features
	13.2 Overview
	13.2.1 Registers
	13.2.2 Definitions

	13.3 Timer/Counter Clock Sources
	13.4 Counter Unit
	13.5 Output Compare Unit
	13.5.1 Force Output Compare
	13.5.2 Compare Match Blocking by TCNT0 Write
	13.5.3 Using the Output Compare Unit

	13.6 Compare Match Output Unit
	13.6.1 Compare Output Function
	13.6.2 Compare Output Mode and Waveform Generation

	13.7 Modes of Operation
	13.7.1 Normal Mode
	13.7.2 Clear Timer on Compare Match (CTC) Mode
	13.7.3 Fast PWM Mode
	13.7.4 Phase Correct PWM Mode

	13.8 Timer/Counter Timing Diagrams
	13.9 8-bit Timer/Counter Register Description
	13.9.1 Timer/Counter0 Control Register A - TCCR0A
	13.9.2 Timer/Counter0 Register - TCNT0
	13.9.3 Output Compare Register A - OCR0A
	13.9.4 Timer/Counter0 Interrupt Mask Register - TIMSK0
	13.9.5 Timer/Counter0 Interrupt Flag Register - TIFR0

	14. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)
	14.1 Features
	14.2 Overview
	14.2.1 Registers
	14.2.2 Definitions
	14.2.3 Compatibility

	14.3 Accessing 16-bit Registers
	14.3.1 Code Examples
	14.3.2 Reusing the Temporary High Byte Register

	14.4 Timer/Counter Clock Sources
	14.5 Counter Unit
	14.6 Input Capture Unit
	14.6.1 Input Capture Trigger Source
	14.6.2 Noise Canceler
	14.6.3 Using the Input Capture Unit

	14.7 Output Compare Units
	14.7.1 Force Output Compare
	14.7.2 Compare Match Blocking by TCNTn Write
	14.7.3 Using the Output Compare Unit

	14.8 Compare Match Output Unit
	14.8.1 Compare Output Function
	14.8.2 Compare Output Mode and Waveform Generation

	14.9 Modes of Operation
	14.9.1 Normal Mode
	14.9.2 Clear Timer on Compare Match (CTC) Mode
	14.9.3 Fast PWM Mode
	14.9.4 Phase Correct PWM Mode
	14.9.5 Phase and Frequency Correct PWM Mode

	14.10 Timer/Counter Timing Diagrams
	14.11 16-bit Timer/Counter Register Description
	14.11.1 Timer/Counter1 Control Register A - TCCR1A
	14.11.2 Timer/Counter3 Control Register A - TCCR3A
	14.11.3 Timer/Counter1 Control Register B - TCCR1B
	14.11.4 Timer/Counter3 Control Register B - TCCR3B
	14.11.5 Timer/Counter1 Control Register C - TCCR1C
	14.11.6 Timer/Counter3 Control Register C - TCCR3C
	14.11.7 Timer/Counter1 - TCNT1H and TCNT1L
	14.11.8 Timer/Counter3 - TCNT3H and TCNT3L
	14.11.9 Output Compare Register A - OCR1AH and OCR1AL
	14.11.10 Output Compare Register B - OCR1BH and OCR1BL
	14.11.11 Output Compare Register C - OCR1CH and OCR1CL
	14.11.12 Output Compare Register A - OCR3AH and OCR3AL
	14.11.13 Output Compare Register B - OCR3BH and OCR3BL
	14.11.14 Output Compare Register C - OCR3CH and OCR3CL
	14.11.15 Input Capture Register - ICR1H and ICR1L
	14.11.16 Input Capture Register - ICR3H and ICR3L
	14.11.17 Timer/Counter1 Interrupt Mask Register - TIMSK1
	14.11.18 Timer/Counter3 Interrupt Mask Register - TIMSK3
	14.11.19 Timer/Counter1 Interrupt Flag Register - TIFR1
	14.11.20 Timer/Counter3 Interrupt Flag Register - TIFR3

	15. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
	15.1 Features
	15.2 Overview
	15.2.1 Definitions

	15.3 Timer/Counter Clock Sources
	15.4 Counter Unit
	15.5 Output Compare Unit
	15.5.1 Force Output Compare
	15.5.2 Compare Match Blocking by TCNT2 Write
	15.5.3 Using the Output Compare Unit

	15.6 Compare Match Output Unit
	15.6.1 Compare Output Function
	15.6.2 Compare Output Mode and Waveform Generation

	15.7 Modes of Operation
	15.7.1 Normal Mode
	15.7.2 Clear Timer on Compare Match (CTC) Mode
	15.7.3 Fast PWM Mode
	15.7.4 Phase Correct PWM Mode

	15.8 Timer/Counter Timing Diagrams
	15.9 8-bit Timer/Counter Register Description
	15.9.1 Timer/Counter2 Control Register A- TCCR2A
	15.9.2 Timer/Counter2 Register - TCNT2
	15.9.3 Output Compare Register A - OCR2A

	15.10 Asynchronous operation of the Timer/Counter2
	15.10.1 Asynchronous Status Register - ASSR
	15.10.2 Asynchronous Operation of Timer/Counter2
	15.10.3 Timer/Counter2 Interrupt Mask Register - TIMSK2
	15.10.4 Timer/Counter2 Interrupt Flag Register - TIFR2

	15.11 Timer/Counter2 Prescaler
	15.11.1 General Timer/Counter Control Register - GTCCR

	16. Output Compare Modulator - OCM
	16.1 Overview
	16.2 Description
	16.2.1 Timing Example
	16.2.2 Resolution of the PWM Signal

	17. Serial Peripheral Interface - SPI
	17.1 Features
	17.2 SS Pin Functionality
	17.2.1 Slave Mode
	17.2.2 Master Mode
	17.2.3 SPI Control Register - SPCR
	17.2.4 SPI Status Register - SPSR
	17.2.5 SPI Data Register - SPDR

	17.3 Data Modes

	18. USART (USART0 and USART1)
	18.1 Features
	18.2 Overview
	18.3 Dual USART
	18.4 Clock Generation
	18.4.1 Internal Clock Generation - Baud Rate Generator
	18.4.2 Double Speed Operation (U2X)
	18.4.3 External Clock
	18.4.4 Synchronous Clock Operation

	18.5 Serial Frame
	18.5.1 Frame Formats
	18.5.2 Parity Bit Calculation

	18.6 USART Initialization
	18.7 Data Transmission - USART Transmitter
	18.7.1 Sending Frames with 5 to 8 Data Bit
	18.7.2 Sending Frames with 9 Data Bit
	18.7.3 Transmitter Flags and Interrupts
	18.7.4 Parity Generator
	18.7.5 Disabling the Transmitter

	18.8 Data Reception - USART Receiver
	18.8.1 Receiving Frames with 5 to 8 Data Bits
	18.8.2 Receiving Frames with 9 Data Bits
	18.8.3 Receive Complete Flag and Interrupt
	18.8.4 Receiver Error Flags
	18.8.5 Parity Checker
	18.8.6 Disabling the Receiver
	18.8.7 Flushing the Receive Buffer

	18.9 Asynchronous Data Reception
	18.9.1 Asynchronous Clock Recovery
	18.9.2 Asynchronous Data Recovery
	18.9.3 Asynchronous Operational Range

	18.10 Multi-processor Communication Mode
	18.10.1 MPCM Protocol
	18.10.2 Using MPCM

	18.11 USART Register Description
	18.11.1 USART0 I/O Data Register - UDR0
	18.11.2 USART1 I/O Data Register - UDR1
	18.11.3 USART0 Control and Status Register A - UCSR0A
	18.11.4 USART1 Control and Status Register A - UCSR1A
	18.11.5 USART0 Control and Status Register B - UCSR0B
	18.11.6 USART1 Control and Status Register B - UCSR1B
	18.11.7 USART0 Control and Status Register C - UCSR0C
	18.11.8 USART1 Control and Status Register C - UCSR1C
	18.11.9 USART0 Baud Rate Registers - UBRR0L and UBRR0H
	18.11.10 USART1 Baud Rate Registers - UBRR1L and UBRR1H

	18.12 Examples of Baud Rate Setting

	19. Two-wire Serial Interface
	19.1 Features
	19.2 Two-wire Serial Interface Bus Definition
	19.2.1 TWI Terminology
	19.2.2 Electrical Interconnection

	19.3 Data Transfer and Frame Format
	19.3.1 Transferring Bits
	19.3.2 START and STOP Conditions
	19.3.3 Address Packet Format
	19.3.4 Data Packet Format
	19.3.5 Combining Address and Data Packets Into a Transmission

	19.4 Multi-master Bus Systems, Arbitration and Synchronization
	19.5 Overview of the TWI Module
	19.5.1 SCL and SDA Pins
	19.5.2 Bit Rate Generator Unit
	19.5.3 Bus Interface Unit
	19.5.4 Address Match Unit
	19.5.5 Control Unit

	19.6 TWI Register Description
	19.6.1 TWI Bit Rate Register - TWBR
	19.6.2 TWI Control Register - TWCR
	19.6.3 TWI Status Register - TWSR
	19.6.4 TWI Data Register - TWDR
	19.6.5 TWI (Slave) Address Register - TWAR

	19.7 Using the TWI
	19.8 Transmission Modes
	19.8.1 Master Transmitter Mode
	19.8.2 Master Receiver Mode
	19.8.3 Slave Receiver Mode
	19.8.4 Slave Transmitter Mode
	19.8.5 Miscellaneous States
	19.8.6 Combining Several TWI Modes

	19.9 Multi-master Systems and Arbitration

	20. Controller Area Network - CAN
	20.1 Features
	20.2 CAN Protocol
	20.2.1 Principles
	20.2.2 Message Formats
	20.2.2.1 Can Standard Frame
	20.2.2.2 CAN Extended Frame
	20.2.2.3 Format Co-existence

	20.2.3 CAN Bit Timing
	20.2.3.1 Bit Construction
	20.2.3.2 Synchronization Segment
	20.2.3.3 Propagation Time Segment
	20.2.3.4 Phase Segment 1
	20.2.3.5 Sample Point
	20.2.3.6 Phase Segment 2
	20.2.3.7 Information Processing Time
	20.2.3.8 Bit Lengthening
	20.2.3.9 Bit Shortening
	20.2.3.10 Synchronization Jump Width
	20.2.3.11 Programming the Sample Point
	20.2.3.12 Synchronization

	20.2.4 Arbitration
	20.2.5 Errors
	20.2.5.1 Error at Message Level
	20.2.5.2 Error at Bit Level
	20.2.5.3 Error Signalling

	20.3 CAN Controller
	20.4 CAN Channel
	20.4.1 Configuration
	20.4.2 Bit Timing
	20.4.3 Baud Rate
	20.4.4 Fault Confinement
	20.4.5 Overload Frame

	20.5 Message Objects
	20.5.1 Operating Modes
	20.5.1.1 Disabled
	20.5.1.2 Tx Data & Remote Frame
	20.5.1.3 Rx Data & Remote Frame
	20.5.1.4 Automatic Reply
	20.5.1.5 Frame Buffer Receive Mode

	20.5.2 Acceptance Filter
	20.5.3 MOb Page
	20.5.4 CAN Data Buffers

	20.6 CAN Timer
	20.6.1 Prescaler
	20.6.2 16-bit Timer
	20.6.3 Time Triggering
	20.6.4 Stamping Message

	20.7 Error Management
	20.7.1 Fault Confinement
	20.7.2 Error Types
	20.7.3 Error Setting

	20.8 Interrupts
	20.8.1 Interrupt organization
	20.8.2 Interrupt Behavior

	20.9 CAN Register Description
	20.10 General CAN Registers
	20.10.1 CAN General Control Register - CANGCON
	20.10.2 CAN General Status Register - CANGSTA
	20.10.3 CAN General Interrupt Register - CANGIT
	20.10.4 CAN General Interrupt Enable Register - CANGIE
	20.10.5 CAN Enable MOb Registers - CANEN2 and CANEN1
	20.10.6 CAN Enable Interrupt MOb Registers - CANIE2 and CANIE1
	20.10.7 CAN Status Interrupt MOb Registers - CANSIT2 and CANSIT1
	20.10.8 CAN Bit Timing Register 1 - CANBT1
	20.10.9 CAN Bit Timing Register 2 - CANBT2
	20.10.10 CAN Bit Timing Register 3 - CANBT3
	20.10.11 CAN Timer Control Register - CANTCON
	20.10.12 CAN Timer Registers - CANTIML and CANTIMH
	20.10.13 CAN TTC Timer Registers - CANTTCL and CANTTCH
	20.10.14 CAN Transmit Error Counter Register - CANTEC
	20.10.15 CAN Receive Error Counter Register - CANREC
	20.10.16 CAN Highest Priority MOb Register - CANHPMOB
	20.10.17 CAN Page MOb Register - CANPAGE

	20.11 MOb Registers
	20.11.1 CAN MOb Status Register - CANSTMOB
	20.11.2 CAN MOb Control and DLC Register - CANCDMOB
	20.11.3 CAN Identifier Tag Registers - CANIDT1, CANIDT2, CANIDT3, and CANIDT4
	20.11.4 CAN Identifier Mask Registers - CANIDM1, CANIDM2, CANIDM3, and CANIDM4
	20.11.5 CAN Time Stamp Registers - CANSTML and CANSTMH
	20.11.6 CAN Data Message Register - CANMSG

	20.12 Examples of CAN Baud Rate Setting

	21. Analog Comparator
	21.1 Overview
	21.2 Analog Comparator Register Description
	21.2.1 ADC Control and Status Register B - ADCSRB
	21.2.2 Analog Comparator Control and Status Register - ACSR

	21.3 Analog Comparator Multiplexed Input
	21.3.1 Digital Input Disable Register 1 - DIDR1

	22. Analog to Digital Converter - ADC
	22.1 Features
	22.2 Operation
	22.3 Starting a Conversion
	22.4 Prescaling and Conversion Timing
	22.4.1 Differential Channels

	22.5 Changing Channel or Reference Selection
	22.5.1 ADC Input Channels
	22.5.2 ADC Voltage Reference

	22.6 ADC Noise Canceler
	22.6.1 Analog Input Circuitry
	22.6.2 Analog Noise Canceling Techniques
	22.6.3 Offset Compensation Schemes
	22.6.4 ADC Accuracy Definitions

	22.7 ADC Conversion Result
	22.8 ADC Register Description
	22.8.1 ADC Multiplexer Selection Register - ADMUX
	22.8.2 ADC Control and Status Register A - ADCSRA
	22.8.3 The ADC Data Register - ADCL and ADCH
	22.8.4 ADC Control and Status Register B - ADCSRB
	22.8.5 Digital Input Disable Register 0 - DIDR0

	23. JTAG Interface and On-chip Debug System
	23.1 Features
	23.2 Overview
	23.3 Test Access Port - TAP
	23.4 TAP Controller
	23.5 Using the Boundary-scan Chain
	23.6 Using the On-chip Debug System
	23.7 On-chip Debug Specific JTAG Instructions
	23.7.1 PRIVATE0 (0x8)
	23.7.2 PRIVATE1 (0x9)
	23.7.3 PRIVATE2 (0xA)
	23.7.4 PRIVATE3 (0xB)

	23.8 On-chip Debug Related Register in I/O Memory
	23.8.1 On-chip Debug Register - OCDR

	23.9 Using the JTAG Programming Capabilities
	23.10 Bibliography

	24. Boundary-scan IEEE 1149.1 (JTAG)
	24.1 Features
	24.2 System Overview
	24.3 Data Registers
	24.3.1 Bypass Register
	24.3.2 Device Identification Register
	24.3.2.1 Version
	24.3.2.2 Part Number
	24.3.2.3 Manufacturer ID
	24.3.2.4 Device ID

	24.3.3 Reset Register
	24.3.4 Boundary-scan Chain

	24.4 Boundary-scan Specific JTAG Instructions
	24.4.1 EXTEST (0x0)
	24.4.2 IDCODE (0x1)
	24.4.3 SAMPLE_PRELOAD (0x2)
	24.4.4 AVR_RESET (0xC)
	24.4.5 BYPASS (0xF)

	24.5 Boundary-scan Related Register in I/O Memory
	24.5.1 MCU Control Register - MCUCR
	24.5.2 MCU Status Register - MCUSR

	24.6 Boundary-scan Chain
	24.6.1 Scanning the Digital Port Pins
	24.6.2 Boundary-scan and the Two-wire Interface
	24.6.3 Scanning the RESET Pin
	24.6.4 Scanning the Clock Pins
	24.6.5 Scanning the Analog Comparator
	24.6.6 Scanning the ADC

	24.7 AT90CAN128 Boundary-scan Order
	24.8 Boundary-scan Description Language Files

	25. Boot Loader Support - Read-While-Write Self-Programming
	25.1 Features
	25.2 Application and Boot Loader Flash Sections
	25.2.1 AS - Application Section
	25.2.2 BLS - Boot Loader Section

	25.3 Read-While-Write and No Read-While-Write Flash Sections
	25.3.1 RWW - Read-While-Write Section
	25.3.2 NRWW - No Read-While-Write Section

	25.4 Boot Loader Lock Bits
	25.5 Entering the Boot Loader Program
	25.5.1 Store Program Memory Control and Status Register - SPMCSR

	25.6 Addressing the Flash During Self-Programming
	25.7 Self-Programming the Flash
	25.7.1 Performing Page Erase by SPM
	25.7.2 Filling the Temporary Buffer (Page Loading)
	25.7.3 Performing a Page Write
	25.7.4 Using the SPM Interrupt
	25.7.5 Consideration While Updating BLS
	25.7.6 Prevent Reading the RWW Section During Self-Programming
	25.7.7 Setting the Boot Loader Lock Bits by SPM
	25.7.8 EEPROM Write Prevents Writing to SPMCSR
	25.7.9 Reading the Fuse and Lock Bits from Software
	25.7.10 Preventing Flash Corruption
	25.7.11 Programming Time for Flash when Using SPM
	25.7.12 Simple Assembly Code Example for a Boot Loader
	25.7.13 Boot Loader Parameters

	26. Memory Programming
	26.1 Program and Data Memory Lock Bits
	26.2 Fuse Bits
	26.2.1 Latching of Fuses

	26.3 Signature Bytes
	26.4 Calibration Byte
	26.5 Parallel Programming Overview
	26.5.1 Signal Names
	26.5.2 Pin Mapping
	26.5.3 Commands
	26.5.4 Parameters

	26.6 Parallel Programming
	26.6.1 Enter Programming Mode
	26.6.2 Considerations for Efficient Programming
	26.6.3 Chip Erase
	26.6.4 Programming the Flash
	26.6.5 Programming the EEPROM
	26.6.6 Reading the Flash
	26.6.7 Reading the EEPROM
	26.6.8 Programming the Fuse Low Bits
	26.6.9 Programming the Fuse High Bits
	26.6.10 Programming the Extended Fuse Bits
	26.6.11 Programming the Lock Bits
	26.6.12 Reading the Fuse and Lock Bits
	26.6.13 Reading the Signature Bytes
	26.6.14 Reading the Calibration Byte

	26.7 SPI Serial Programming Overview
	26.7.1 Signal Names
	26.7.2 Pin Mapping
	26.7.3 Parameters

	26.8 SPI Serial Programming
	26.8.1 Data Polling Flash
	26.8.2 Data Polling EEPROM

	26.9 JTAG Programming Overview
	26.9.1 Programming Specific JTAG Instructions
	26.9.1.1 AVR_RESET (0xC)
	26.9.1.2 PROG_ENABLE (0x4)
	26.9.1.3 PROG_COMMANDS (0x5)
	26.9.1.4 PROG_PAGELOAD (0x6)
	26.9.1.5 PROG_PAGEREAD (0x7)

	26.9.2 Data Registers
	26.9.2.1 Reset Register
	26.9.2.2 Programming Enable Register
	26.9.2.3 Programming Command Register
	26.9.2.4 Flash Data Byte Register

	26.9.3 Programming Algorithm
	26.9.3.1 Entering Programming Mode
	26.9.3.2 Leaving Programming Mode
	26.9.3.3 Performing Chip Erase
	26.9.3.4 Programming the Flash
	26.9.3.5 Reading the Flash
	26.9.3.6 Programming the EEPROM
	26.9.3.7 Reading the EEPROM
	26.9.3.8 Programming the Fuses
	26.9.3.9 Programming the Lock Bits
	26.9.3.10 Reading the Fuses and Lock Bits
	26.9.3.11 Reading the Signature Bytes
	26.9.3.12 Reading the Calibration Byte

	27. Electrical Characteristics
	27.1 Absolute Maximum Ratings*
	27.2 DC Characteristics
	27.3 External Clock Drive Characteristics
	27.4 Maximum Speed vs. VCC
	27.5 Two-wire Serial Interface Characteristics
	27.6 SPI Timing Characteristics
	27.7 CAN Physical Layer Characteristics
	27.8 ADC Characteristics
	27.9 External Data Memory Characteristics
	27.10 Parallel Programming Characteristics

	28. Decoupling Capacitors
	29. AT90CAN128 Typical Characteristics
	29.1 Active Supply Current
	29.2 Idle Supply Current
	29.3 Power-down Supply Current
	29.4 Power-save Supply Current
	29.5 Standby Supply Current
	29.6 Pin Pull-up
	29.7 Pin Driver Strength
	29.8 Pin Thresholds and Hysteresis
	29.9 BOD Thresholds and Analog Comparator Offset
	29.10 Internal Oscillator Speed
	29.11 Current Consumption of Peripheral Units
	29.12 Current Consumption in Reset and Reset Pulse Width

	30. Register Summary
	31. Instruction Set Summary
	32. Ordering Information
	33. Packaging Information
	33.1 TQFP64
	33.2 QFN64

	34. Errata
	34.1 Rev C
	34.2 Rev A & B

	35. Datasheet Change Log for AT90CAN128
	35.1 Changes from 4250F-04/05 to 4250G-09/05
	35.2 Changes from 4250E-12/04 to 4250F-04/05
	35.3 Changes from 4250D-07/04 to 4250E-12/04
	35.4 Changes from 4250C-03/04 to 4250D-07/04
	35.5 Changes from 4250B-02/04 to 4250C-03/04
	35.6 Changes from 4250A-10/03 to 4250B-02/04

